直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

知识图片与RAG

回答

RAG 分为离线数据处理和在线检索两个过程。离线数据处理旨在构建知识库,就像准备一本“活字典”,知识会按特定格式和排列方式存储在其中以待使用。在线检索则是利用知识库和大模型进行查询的过程。

LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具帮助构建 RAG 应用,包括:

  1. 数据加载器(DocumentLoader):能从数据源加载数据并转换为包含 page_content(文本内容)和 metadata(元数据)的文档对象。
  2. 文本分割器(DocumentSplitter):将文档对象分割成多个小文档对象,方便后续检索和生成,因大模型输入窗口有限,短文本更易找相关信息。
  3. 文本嵌入器(Embeddings):将文本转换为高维向量的嵌入,用于衡量文本相似度以实现检索。
  4. 向量存储器(VectorStore):存储和查询嵌入,通常使用 Faiss 或 Annoy 等索引技术加速检索。
  5. 检索器(Retriever):根据文本查询返回相关文档对象,常见实现是向量存储器检索器,利用向量存储器的相似度搜索功能检索。
  6. 聊天模型(ChatModel):基于大模型如 GPT-3,根据输入序列生成输出消息。

使用 LangChain 构建 RAG 应用的一般流程如下:(具体流程未给出)

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

胎教级教程:万字长文带你理解 RAG 全流程

旁白:一路千辛万苦,终于要真正了解RAG的全貌了,好激动前面的开胃菜已经完毕,这里我们进入正餐,先上一张图注:这张图引用自:https://mp.weixin.qq.com/s/37tKVQbxenVVBAeMZ334aQ公众号:AI花果山一位RAG大佬,正在编写一系列教程《RAG高效应用指南》这张图将会是我们本章的知识地图,看到这么多的概念,不要慌,我们先整体理解下RAG。自顶向下,RAG的流程分为离线数据处理和在线检索两个过程。我们前面讲到,知识库是RAG的“活字典”,可以让AI随时进行查阅。而离线数据处理的目的就是为了构建出这本“活字典”。经过离线数据后,知识则会按照某种格式以及排列方式存储在知识库中,等待被使用。而在线检索则是我们使用利用知识库+大模型进行查询的过程。在学习一门新知识的时候,是什么与为什么同等重要是什么让你知其然为什么让你知其所以然接下来我们就以RAG最经典的应用场景《构建智能问答客服》来了解RAG所有流程中的What与Why

开发:LangChain应用开发指南-大模型的知识外挂RAG

[title]开发:LangChain应用开发指南-大模型的知识外挂RAG[heading3]LangChain和RAG的结合LangChain是一个专注于大模型应用开发的平台,它提供了一系列的组件和工具,帮助你轻松地构建RAG应用。LangChain提供了以下的组件来帮助你构建RAG应用:数据加载器(DocumentLoader):数据加载器是一个对象,可以从一个数据源加载数据,并将其转换为文档(Document)对象。一个文档对象包含两个属性:page_content(str)和metadata(dict)。page_content是文档的文本内容,metadata是文档的元数据,例如标题、作者、日期等。文本分割器(DocumentSplitter):文本分割器是一个对象,可以将一个文档对象分割成多个较小的文档对象。这样做的目的是为了方便后续的检索和生成,因为大模型的输入窗口是有限的,而且在较短的文本中更容易找到相关的信息。文本嵌入器(Embeddings):文本嵌入器是一个对象,可以将文本转换为嵌入(Embedding),即一个高维的向量。文本嵌入可以用来衡量文本之间的相似度,从而实现检索的功能。向量存储器(VectorStore()):向量存储器是一个对象,可以存储和查询嵌入。向量存储器通常使用一些索引技术,例如Faiss()或Annoy,来加速嵌入的检索。检索器(Retriever):检索器是一个对象,可以根据一个文本查询返回相关的文档对象。检索器的一种常见实现是向量存储器检索器(VectorStoreRetriever),它使用向量存储器的相似度搜索功能来实现检索。聊天模型(ChatModel):聊天模型是一个对象,可以根据一个输入序列生成一个输出消息。聊天模型通常基于大模型,例如GPT-3,来实现文本生成的功能。使用LangChain构建RAG应用的一般流程如下:

开发:LangChain应用开发指南-大模型的知识外挂RAG

[title]开发:LangChain应用开发指南-大模型的知识外挂RAG[heading2]LangChain和RAG的结合LangChain是一个专注于大模型应用开发的平台,它提供了一系列的组件和工具,帮助你轻松地构建RAG应用。LangChain提供了以下的组件来帮助你构建RAG应用:数据加载器(DocumentLoader):数据加载器是一个对象,可以从一个数据源加载数据,并将其转换为文档(Document)对象。一个文档对象包含两个属性:page_content(str)和metadata(dict)。page_content是文档的文本内容,metadata是文档的元数据,例如标题、作者、日期等。文本分割器(DocumentSplitter):文本分割器是一个对象,可以将一个文档对象分割成多个较小的文档对象。这样做的目的是为了方便后续的检索和生成,因为大模型的输入窗口是有限的,而且在较短的文本中更容易找到相关的信息。文本嵌入器(Embeddings):文本嵌入器是一个对象,可以将文本转换为嵌入(Embedding),即一个高维的向量。文本嵌入可以用来衡量文本之间的相似度,从而实现检索的功能。向量存储器(VectorStore):向量存储器是一个对象,可以存储和查询嵌入。向量存储器通常使用一些索引技术,例如Faiss或Annoy,来加速嵌入的检索。检索器(Retriever):检索器是一个对象,可以根据一个文本查询返回相关的文档对象。检索器的一种常见实现是向量存储器检索器(VectorStoreRetriever),它使用向量存储器的相似度搜索功能来实现检索。聊天模型(ChatModel):聊天模型是一个对象,可以根据一个输入序列生成一个输出消息。聊天模型通常基于大模型,例如GPT-3,来实现文本生成的功能。使用LangChain构建RAG应用的一般流程如下:

其他人在问
有没有RAG 基本架构的中文图示
以下是关于 RAG 基本架构的介绍: RAG 是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其工作原理如下: 1. 应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。 2. 这些文件被“分块”成更小的文本块,作为向量嵌入并存储在数据库(如 Pinecone)中,以实现更精确的检索。 3. 当用户提出问题时,系统检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。 4. LLM 从检索到的上下文中合成答复返回给用户。 RAG 的基本概念: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成的质量和准确性。其基本流程为: 首先,给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文)。 然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。 最后,从大模型的输出中提取或格式化所需信息返回给用户。
2024-10-17
基于飞书的知识库RAG的搭建,需要什么接口进行全文搜索
基于飞书的知识库 RAG 搭建,可用于全文搜索的接口方式主要有以下几种: 1. 语义检索:语义匹配关注查询和文档内容的意义,而非仅仅表面的词汇匹配。通过向量的相似性来判断语义的相似性。 2. 全文检索:这是基于关键词的检索方式。例如,对于句子“猫的饮食习惯包括吃鱼和鸡肉”,输入“猫”“饮食”“猫的饮食习惯”“吃鱼”等关键词可搜索到该句子,但输入“猫喜欢吃什么呀”则无法搜索到。 3. 混合检索:结合了语义匹配和全文检索的优点,通常系统先进行全文检索获取初步结果,然后再对这些结果进行语义匹配和排序。 此外,在本地部署资讯问答机器人实现 RAG 时,会涉及加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型。还会为文档内容生成向量,如使用文本向量模型 bgem3 等。 在开发 LangChain 应用开发指南中,实现 LangChain 和 RAG 的结合时,需要加载数据、分割文档、转换嵌入并存储到向量存储器、创建检索器以及聊天模型等步骤。
2024-10-17
如何在个人电脑中部署本地RAG
在个人电脑中部署本地 RAG 可以按照以下步骤进行: 1. 加载所需的库和模块: 确保 ollama 服务已开启并下载好模型,ollama 用于在 python 程序中跑大模型。 feedparse 用于解析 RSS 订阅源。 2. 从订阅源获取内容: 函数用于从指定的 RSS 订阅 url 提取内容,如需接收多个 url 可稍作改动。 通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,用于进一步的数据处理或信息提取任务。 3. 为文档内容生成向量: 使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,如 /path/to/bgem3,通过函数利用 FAISS 创建一个高效的向量存储。 4. 创建 Python 虚拟环境: 创建 python 虚拟环境,并安装相关库,版本如下: ollama:0.1.8 langchain:0.1.14 faisscpu:1.8.0(有 gpu 则安装 gpu 版本) gradio:4.25.0 feedparser:6.0.11 sentencetransformers:2.6.1 lxml:5.2.1 5. 导入依赖库。 6. 基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现 RAG。 7. 创建网页 UI:通过 gradio 创建网页 UI,并进行评测。 8. 问答测试:对于同样的问题和上下文,基于 Qwen7b、Gemma、Mistral、Mixtral 和 GPT4 分别进行多次测试。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署一个资讯问答机器人,同时结合 RSSHub 来处理和提供资讯。 2. 上下文数据质量和大模型的性能决定了 RAG 系统性能的上限。 3. RAG 通过结合检索技术和生成模型来提升答案的质量和相关性,可以缓解大模型幻觉、信息滞后的问题,但并不意味着可以消除。
2024-10-13
RAG什么意思
RAG 是检索增强生成(RetrievalAugmented Generation)的缩写,是一种结合了检索模型和生成模型的技术。其核心目的是通过某种途径把知识告诉给 AI 大模型,让大模型“知道”我们的私有知识,变得越来越“懂”我们。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。 RAG 的最常见应用场景包括知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 大模型存在一些缺点,如无法记住所有知识尤其是长尾知识、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高,而 RAG 具有一些优点,如数据库对数据的存储和更新稳定、数据更新敏捷且可解释、能降低大模型输出出错的可能、便于管控用户隐私数据、可降低大模型的训练成本。 一个 RAG 的应用可以抽象为 5 个过程:文档加载(从多种不同来源加载文档)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量形式并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题以及检索出来的嵌入片一起提交给 LLM 生成答案)。
2024-10-08
什么是RAG技术
RAG 是检索增强生成(RetrievalAugmented Generation)的缩写,是一种结合了检索模型和生成模型的技术。其核心目的是通过某种途径把知识告诉给 AI 大模型,让大模型“知道”我们的私有知识,变得越来越“懂”我们。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。 RAG 由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得 RAG 非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。 一个 RAG 的应用可以抽象为 5 个过程: 1. 文档加载(Document Loading):从多种不同来源加载文档。 2. 文本分割(Splitting):把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储(Storage):包括将切分好的文档块进行嵌入(Embedding)转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索(Retrieval):通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2024-10-06
RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构。 大语言模型(LLM)需要 RAG 进行检索优化的原因在于 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳,还存在丢失原有知识的风险。 3. 输出难以解释和验证,结果可能受幻觉等问题干扰,且内容黑盒不可控。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 在 Natural Questions、WebQuestions 和 CuratedTrec 等基准测试中表现出色,在使用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用 RAG 后也有更好结果。基于检索器的方法越来越流行,常与 ChatGPT 等流行 LLM 结合使用以提高能力和事实一致性。 在商业化问答场景中,优化 AI 更准确回答问题的过程中,RAG 是一个专业术语。RAG 由检索器和生成器组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,能提供详细准确的回答。
2024-10-01
AI的基础知识
以下是关于 AI 基础知识的介绍: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI,建议: 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品并分享作品。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2024-10-18
AI的入门知识
以下是关于 AI 入门知识的介绍: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-10-18
知识库都有哪些提示词框架
以下是一些常见的提示词框架: ICIO 框架:包括 Instruction(指令)、Context(背景信息)、Input Data(输入数据)、Output Indicator(输出引导)。 CRISPE 框架:涵盖 Capacity and Role(能力和角色)、Insight(见解)、Statement(声明)、Personality(个性)、Experiment(实验)。 BROKE 框架:包含 Background(背景)、Role(角色)、Objectives(目标)、Key Result(关键结果)。 TRACE 框架:有 TASK(任务)、REQUEST(请求)、ACTION(行动)、CONTEXT(上下文)、EXAMPLE(示例)。 ERA 框架:包括 EXPECTATION(期望)、ROLE(角色)、ACTION(行动)。 CARE 框架:由 CONTEXT(上下文)、ACTION(行动)、RESULT(结果)、EXAMPLE(示例)组成。 ROSES 框架:包含 ROLE(角色)、OBJECTIVE(目的)、SCENARIO(方案)。 Evolve 框架:包括试验并改进,通过改进输入、改进答案、重新生成等方法。 APE 框架。 COAST 框架:包含 CONTEXT(上下文背景)、OBJECTIVE(目的)、ACTION(行动)、SCENARIO(方案)、TASK(任务)。 TAG 框架:包括 TASK(任务)、ACTION(行动)、GOAL(目标)。 RISE 框架。
2024-10-17
有相关图片识别的相关知识和工具么?
以下是关于图片识别的相关知识和工具: 知识: 图片识别中,对于印刷体图片的识别,可能先将图片变为黑白、调整为固定尺寸,再与数据库对比得出结论。但实际情况复杂,存在多种字体、拍摄角度等例外情况,传统基于规则的方法不可行。 神经网络专门处理未知规则的情况,其发展得益于生物学研究支持和数学方向的指引,能处理如手写体识别等未知情况。 图像融合是将两个或多个图像合成为一个新的图像,以获得更全面和丰富的信息,可通过像素级、特征级和决策级融合等技术实现,在多个领域有应用。 目标检测是在图像或视频中准确识别和定位特定对象,多模态信息融合可提高其性能和鲁棒性。 工具和参考文献: 推荐阅读《这就是 ChatGPT》这本书,有助于深入了解相关内容。 以下是一些相关的参考文献: VisionLanguage Models for Vision Tasks:A Survey Visual Instruction Tuning towards GeneralPurpose Multimodal Model:A Survey ViTs are Everywhere:A Comprehensive StudyShowcasing Vision Transformers in Different Domain Multimodal Foundation Models:From Specialists to GeneralPurpose Assistants VisionLanguage Pretraining:Basics,Recent Advances,and Future Trends An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale COGVLM:VISUAL EXPERT FOR LARGE LANGUAGE MODELS CogAgent:A Visual Language Model for GUI Agents AppAgent:Multimodal Agents as Smartphone Users Gemini:A Family of Highly Capable Multimodal Models QwenVL:A Versatile VisionLanguage Model for Understanding,Localization,Text Reading,and Beyond arxiv:ChatVideo:A Trackletcentric Multimodal and Versatile Video Understanding System arxiv:Video Understanding with Large Language Models:A Survey arxiv:Vid2Seq:LargeScale Pretraining of a Visual Language Model for Dense Video Captioning CSDN 博客:视频理解多模态大模型(大模型基础、微调、视频理解基础) CSDN 博客:逐字稿| 9 视频理解论文串讲(下)【论文精读】_视频理解论文串讲(下) Youtube:Twostream Convolutional Networks for Action Recognition in Videos arxiv:Is SpaceTime Attention All You Need for Video Understanding? 相关算法: 图像融合的相关算法有:小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 目标检测的相关算法有:基于深度学习的目标检测算法(如 RCNN、Fast RCNN、Faster RCNN、YOLO、SSD 等)、基于传统计算机视觉技术的目标检测算法(如 HOG、SIFT、SURF 等)。
2024-10-16
推荐一些知识库系统
以下为您推荐一些知识库系统: 1. 专家系统: 是符号人工智能的早期成就之一,为充当有限问题领域的专家而设计。 包含从人类专家提取的知识库、推理引擎以及问题记忆。 推理引擎协调问题状态空间的搜索过程,必要时向用户提问。 例如根据动物物理特征判断动物的专家系统,可通过绘制 ANDOR 树或使用规则来表示知识。 2. AI Agent 中的外置知识: 由外部数据库提供,特点是能够动态更新和调整。 涉及多种数据存储和组织方式,包括向量数据库、关系型数据库和知识图谱。 实际应用中常采用 RAG 架构,结合检索和生成,增强模型的生成能力。 3. 知识管理体系: 是组织和管理信息、数据和知识的方法,帮助个人或组织有效捕捉、组织、访问和使用知识,提高效率、创新能力和决策质量。 包括收集信息、整理知识、分享经验、促进学习和创新等流程,以及分类、标签和索引等组织方式。 关键组成部分有知识的捕捉、组织、分享和应用。 创建知识管理体系可提高效率、增强决策能力、促进创新和增强适应能力。
2024-10-16
ai现在拍摄一本书的图片能够识别到这是什么书么
目前的 AI 技术在拍摄一本书的图片并识别其是什么书方面已经取得了一定的进展。 在图像识别领域,神经网络发挥着重要作用。例如,对于识别印刷体图片,通常会先将图片转换为黑白,调整至固定尺寸,然后与数据库中的内容进行对比以得出结论。但实际情况较为复杂,存在多种字体、不同拍摄角度等多种例外情况,单纯依靠添加规则的方法不可行,而神经网络专门处理这类未知规则的情况。 不过,要准确识别一本书,还面临一些挑战,如书籍的版本、封面设计的多样性等。但随着技术的不断发展和数据的积累,未来 AI 识别一本书的准确性有望不断提高。 同时,也有一些相关的实验和研究,比如通过设计工作流让 AI 自举式地进行创造,从作家的作品中提取名场面并转译成绘画指令等。
2024-10-17
怎么用AI绘制一个我指定的动漫人物原型的各类图片,例如日漫《好想告诉你》中的黒沼爽子
要使用 AI 绘制指定的动漫人物原型,如日漫《好想告诉你》中的黑沼爽子,您可以按照以下步骤进行: 1. 选择合适的 AI 绘画工具:目前有许多在线的 AI 绘画平台和软件可供选择,例如 DALL·E2、StableDiffusion 等。 2. 明确描述特征:在输入描述时,尽可能详细地描述黑沼爽子的外貌特征,包括发型(如黑色的长直发)、眼睛(如大而明亮的眼睛)、服装(如校服的款式和颜色)、表情(如羞涩的微笑)等。 3. 参考相关图片:如果可能,找到黑沼爽子的官方图片或其他粉丝绘制的作品,作为参考提供给 AI 绘画工具,以帮助其更好地理解您的需求。 4. 不断调整和优化:根据生成的初步结果,对描述进行调整和优化,例如修改某些特征的描述、增加更多细节等,以获得更符合您期望的图片。 需要注意的是,AI 绘画的结果可能会受到多种因素的影响,不一定能完全符合您的预期,但通过不断尝试和优化,您有机会获得较为满意的作品。
2024-10-17
有可以查询图片的快速方法吗?
以下为一些快速查询图片的方法: 1. 利用 Perplexity.AI 的 Search Images 功能:点击搜索结果旁的加号,可快速浏览并选择与主题紧密相连的图片资源。在挑选图片时,要避免使用带有水印、画质不清晰或分辨率较低的图片。图片出处主要在 twitter 和官方网站。 2. 对于 Midjourney 生成的图片: 作业 ID 是其唯一标识符,格式类似于 9333dcd0681e4840a29c801e502ae424,可以在图像文件名的第一部分、网站上的 URL 和图像文件名中找到。 在网页上,可通过选择...> Copy...>作业 ID 来在作品库中查找任何图像的作业 ID。 从 URL 中,可在打开作品的网页链接末尾找到 Job ID。 从文件名中,Job ID 在文件名的最后一部分。 使用表情符号✉️可以将已完成的作业发送到私信中,私信中将包括图像的 seed 号和作业 ID,但✉️表情符号只适用于您自己的作业。 3. 如果不喜欢用模板找封面图,可根据文章内容搜索匹配的封面。比如在公众号中搜索同行的封面,直接“拿来主义”。若文章正文里没有封面图,可用壹伴浏览器插件的“查看封面”按钮(需会员),或者使用秘塔 AI 搜索工具,输入文章链接获取封面。相关在线工具链接:https://www.mgpaiban.com/tool/wxfm.html ,为方便使用可将其收藏。
2024-10-16
现在最新的 AI 生成图片产品有哪些
目前最新的 AI 生成图片产品主要有以下这些: 1. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,可将图片转换为非凡肖像,有 500 多种风格供选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计,能将上传的照片转换为芭比风格,效果出色。 此外,还有一些用于设计海报的 AI 产品: 1. Canva(可画):https://www.canva.cn/ ,是受欢迎的在线设计工具,提供大量模板和设计元素,AI 功能可协助选择颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ ,智能设计工具采用先进人工智能技术,自动分析和生成设计方案。 3. VistaCreate:https://create.vista.com/ ,简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ ,通过简单拖放界面,可快速创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能。 以下是图像生成的 Top30 AI 产品数据: |排名|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |||||| |1|Adobe firefly|图像生成|28890|0.053| |2|Freepik|图像生成|8341|0.076| |3|Shutterstock|图像生成|6389|0.068| |4|Civitai|图像生成|2592|0.046| |5|Leonardo.Ai|图像生成|1680|0.027| |6|Midjourney|图像生成|1673|0.109| |7|Yodayo|图像生成|1554|0.044| |8|Ideogram|图像生成|1140|0.081| |9|Picsart Al|图像生成|1103|0| |10|Sea Art AI|图像生成|912|0.018| |11|PixAI|图像生成|899|0.07| |12|Openart|图像生成|650|0.074| |13|NovelAI|图像生成|639|0.052| |14|Playground|图像生成|631|0.065| |15|Krea|图像生成|611|0.119| |16|nightcafe|图像生成|606|0.039| |17|Media.io|图像生成|551|0.086|
2024-10-16
我想找一些具有「图片理解」能力的模型,最好是国内的
以下是一些具有“图片理解”能力的国内模型: 1. Gemini 模型:在各种图像理解基准测试中表现出色,如在表 7 中的各项测试中是最先进的,在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等任务中性能强大。在 zeroshot 评估中表现优于其他模型,在多学科的 MMMU 评估基准测试中也取得了最好的分数。 2. 国内大模型: 北京企业机构:百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ 上海企业机构:商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 3. 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,具备 GUI 图像的 Agent 能力。 CogVLM17B:强大的开源视觉语言模型,在多模态权威学术榜单上综合成绩第一,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。 RDM:Relay Diffusion Model,级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。
2024-10-16