直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

什么是qwen模型?

回答

Qwen(通义千问)是由阿里巴巴推出的大模型。

Qwen 具有以下特点和成就:

  1. 是国内唯一出现在 OpenAI 视野里,可以参与国际竞争的国产大模型。
  2. 多次冲进 LMSys 榜单,得分不断提高。
  3. 开源模型累计下载量突破 1600 万,国内外有海量开发者基于其开发模型和应用,尤其在企业级方面。
  4. Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,包括 Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B 和 Qwen2-72B。
  5. 除英语和中文外,还接受过另外 27 种语言的数据训练。
  6. 在大量基准评估中表现出最先进的性能,代码和数学性能显著提高,全面超越 llama3。
  7. 增大了上下文长度支持,最高达到 128K tokens(Qwen2-72B-Instruct)。
  8. 在权威模型测评榜单 OpenCompass 中,Qwen1.5-110B 已领先于文心 4.0 等一众中国闭源模型,Qwen2-72B 整体性能相比 Qwen1.5-110B 又取得大幅提升,在 MMLU、GPQA、HumanEval、GSM8K、BBH、MT-Bench、Arena Hard、LiveCodeBench 等国际权威测评中获十几项世界冠军,超过美国的 Llama3。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

[title]本地部署资讯问答机器人:Langchain+Ollama+RSSHub实现RAGGemma:Gemma是由Google推出的轻量级模型,Google表示,“Gemma 2B和7B与其他开放式模型相比,在其规模上实现了同类最佳的性能。”本次开发,下载的是7B模型。Mistral:Mistral是由欧洲法国Mistral AI团队推出的大模型,该模型采用了分组查询注意力(GQA)以实现更快的推断速度。本次开发,下载的是7B模型。Mixtral:Mixtral也是由Mistral AI团队推出的大模型,但Mixtral是一个8*7B的MoE模型,在大多数基准测试中都优于Llama 2 70B和GPT-3.5。Qwen:Qwen(通义千问)是由阿里巴巴推出的大模型,本次开发,下载的是7B模型。万物皆可RSS巧妇难为无米之炊。不管是获取日常新闻,还是获取A股行情,都需要有稳定靠谱的数据源。大家可能第一时间会想到爬虫,但自己去搭建和维护这样一个爬虫系统还是比较麻烦的。有没有其他更好的方式呢?这就需要用到「上古神器」 RSS了!大家可能会觉得RSS已经过时了。现如今,打开手机,今日头条、微博、微信等APP时不时就会给你推送最新的资讯,日常生活工作好像没有用到RSS的场景。确实,大部分情况下,我们想要获取资讯,手机APP基本够用了。但是,如果你想针对一些特定的需求,需要从某些网站上获取最新通知或相关信息呢?比如,获取https://openai.com/blog的最新更新获取https://www.producthunt.com每天的热门产品获取https://github.com/trending每天的热门开源项目

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

[title]Qwen 2开源了模型性能超越目前所有开源模型和国内闭源模型[heading1]相关参考信息可以说,Qwen是国内唯一出现在OpenAI视野里,可以参与国际竞争的国产大模型。不久前,OpenAI创始人奥特曼在X上转发了一条OpenAI研究员公布的消息,GPT-4o在测试阶段登上了Chatbot Arena(LMSys Arena)榜首位置,这个榜单是OpenAI唯一认可证明其地位的榜单,而Qwen是其中唯一上榜的国内模型。早些时候,有人做了个LMSys榜单一年动态变化视频。过去一年内,国产大模型只有Qwen多次冲进这份榜单,最早出现的是通义千问14B开源视频Qwen-14B,后来是Qwen系列的72B、110B以及通义千问闭源模型Qwen-Max,得分一个比一次高,LMSys也曾官方发推认证通义千问开源模型的实力。在顶尖模型公司的竞争中,目前为止中国模型只有通义千问真正入局,能与头部厂商一较高下。开发者用脚投票的结果,显示了Qwen系列的受欢迎程度。目前为止,Qwen系列开源模型的累计下载量突破了1600万,国内外有海量开发者都基于Qwen开发了自己的模型和应用,尤其是企业级的模型和应用。Qwen的很多忠实拥趸是海外开发者,他们时常在社交平台发表“我们为什么没有这种模型”的溢美之词(配图详见附件)。可以说,通义大模型用行动证明了开源开放的力量。七、为什么大模型的生态建设如此重要?AI大模型是全球数字技术体系的竞争,这个体系包括芯片、云计算、闭源模型、开源模型、开源生态等等。中国信息化百人会执委、阿里云副总裁安筱鹏指出,全球AI大模型竞争的制高点是AI基础大模型,因为基础大模型决定了产业智能化的天花板,商业闭环的可能性,应用生态的繁荣以及产业竞争的格局。与此同时,开源生态在整个技术体系的竞争中也有着至关重要的作用。

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

5种尺寸的预训练和指令调整模型,包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B和Qwen2-72B;(Qwen2-57B-A14B这个模型可以重点看看除英语和中文外,还接受过另外27种语言的数据训练;在大量基准评估中表现出最先进的性能;在大量基准评估中获得SOTA性能。代码和数学性能显著提高,全面超越llama3增大了上下文长度支持,最高达到128K tokens(Qwen2-72B-Instruct)。HF最新榜第一72B和7B可处理128k上下文57B-A14B可处理64k上下文0.5B和1.5B可处理32k上下文相比2月推出的通义千问Qwen1.5,Qwen2实现了整体性能的代际飞跃。在权威模型测评榜单OpenCompass中,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型。刚刚开源的Qwen2-72B,整体性能相比Qwen1.5-110B又取得了大幅提升。(图说:在上海人工智能实验室推出的OpenCompass大模型测评榜单上,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型)通义千问Qwen2系列模型大幅提升了代码、数学、推理、指令遵循、多语言理解等能力。在MMLU、GPQA、HumanEval、GSM8K、BBH、MT-Bench、Arena Hard、LiveCodeBench等国际权威测评中,Qwen2-72B获十几项世界冠军,超过美国的Llama3。(图说:Qwen2-72B在十多个权威测评中获得冠军,超过美国的Llama3-70B模型)

其他人在问
docker部署qwen
以下是关于 Docker 部署相关问题的综合回答: 容器编排模板: 容器编排模板是一种配置文件,用于在 Docker 中部署和管理多个容器,可一键部署复杂环境,无需手动配置细节,如配置 COW 组件与微信和极简未来平台交互。 使用 Docker 部署 COW 组件的原因: Docker 提供隔离运行环境,确保应用在任何环境稳定运行,简化安装和配置过程,保证环境一致,便于管理和维护。 配置多个前缀触发机器人回复的原因: 配置如“bot”、“@bot”等多个前缀,能确保机器人只在特定情况回复,避免群聊或私聊中频繁干扰,提高响应准确性和用户体验。 扫码登录失败的解决办法: 1. 重启 Docker 容器:在宝塔面板中找到对应容器,点击“重启”。 2. 检查网络连接:确保服务器和微信客户端能正常访问互联网。 3. 重新扫描二维码:等待容器重启后,重新扫描日志中生成的二维码。 费用相关: 使用 AI 微信聊天机器人的费用实际上不高,极简未来平台按使用量收费,对一般用户费用相对低廉,充值少量费用通常可用很长时间,且平台提供每天签到免费领积分福利,进一步降低使用成本。使用极简未来平台创建 AI 机器人的具体费用未明确给出。
2024-10-20
qwen大语言模型有视觉模式吗?
Qwen 大语言模型具有视觉模式。以下是相关信息: 有博主称 QwenVL 已迁移到 ComfyUI 中,它支持本地图像、上下文窗口多轮对话,支持 PLUS 和 MAX 双视觉模型,支持百万像素、任意规格图像,具有超强细节和文字识别能力,在开源领域表现出色,中文能力突出,目前 API 免费开放。 关于部署 Qwen 大语言模型,如在 Windows 电脑上,可点击 win+R,输入 cmd 回车;在 Mac 电脑上,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”选择“终端”应用程序,然后复制相关命令行粘贴回车进行下载。
2024-10-11
什么是加载别人训练的qwen模型?
加载别人训练的 qwen 模型通常涉及以下步骤: 1. 对于直接调用千问的某一个大模型,如“qwenmax”模型,在 COW 中需要更改 key 和 model。在 /root/chatgptonwechat/文件夹下,打开 config.json 文件进行更改,并添加"dashscope_api_key"。获取 key 可参考视频教程或图文教程。同时,需要“实名认证”后,这些 key 才可以正常使用,若对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,可能是未实名认证,可点击去,或查看自己是否已认证。 2. 部署大语言模型时,如下载 qwen2:0.5b 模型,对于不同的电脑系统操作有所不同。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。之后复制相关命令行并粘贴回车,等待自动下载完成。 3. 对于 Ollama 大模型部分,为避免没下载大模型带来的报错,需要先下载 ollama,网站:网站中复制代码,然后像特定操作一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd,进入到下方的命令行,右键粘贴刚才的代码,等待下载即可。
2024-10-01
怎么使用qwen2
以下是关于 Qwen2 的相关信息: 1. 性能表现:Qwen 2 开源了,其模型性能超越目前所有开源模型和国内闭源模型。在权威模型测评榜单 OpenCompass 中,此前开源的 Qwen1.5110B 已领先于文心 4.0 等一众中国闭源模型,刚开源的 Qwen272B 相比 Qwen1.5110B 整体性能大幅提升。在 MMLU、GPQA、HumanEval、GSM8K、BBH、MTBench、Arena Hard、LiveCodeBench 等国际权威测评中,Qwen272B 获十几项世界冠军,超过美国的 Llama3。 2. 训练与微调:大规模预训练后,通义千问团队对模型进行精细微调,提升了代码、数学、推理、指令遵循、多语言理解等能力,还让模型学会对齐人类价值观。微调过程遵循使训练规模化并减少人工标注的原则,探索了多种自动方法获取高质量数据,结合了有监督微调、反馈模型训练以及在线 DPO 等方法,采用在线模型合并方法减少对齐税。不久后将推出 Qwen2 的技术报告。 3. 特点:Qwen2 有 5 种尺寸的预训练和指令调整模型,包括 Qwen20.5B、Qwen21.5B、Qwen27B、Qwen257BA14B 和 Qwen272B。除英语和中文外,还接受过另外 27 种语言的数据训练,在大量基准评估中表现出最先进的性能,代码和数学性能显著提高,增大了上下文长度支持,最高达到 128K tokens(Qwen272BInstruct)。 4. 体验与下载:Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已上线中国大语言模型评测竞技场 Compass Arena,所有人都可以登录体验 Qwen2 的性能,或者选择 Qwen2 模型与其他大模型进行对比测评。测评地址为。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 5. 开源社区影响力:Qwen 系列模型正在全球爆火,近一个月内总下载量翻倍,已突破 1600 万次。海内外开源社区已经出现了超过 1500 款基于 Qwen 二次开发的模型和应用。自今年 2 月 Qwen1.5 发布前后,就有大量开发者催更 Qwen2。6 月 7 日晚上 24 点左右 Qwen2 上线后,多个重要的开源生态伙伴火速宣布支持 Qwen2。
2024-10-01
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20