直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

怎么使用qwen2

回答

以下是关于 Qwen2 的相关信息:

  1. 性能表现:Qwen 2 开源了,其模型性能超越目前所有开源模型和国内闭源模型。在权威模型测评榜单 OpenCompass 中,此前开源的 Qwen1.5-110B 已领先于文心 4.0 等一众中国闭源模型,刚开源的 Qwen2-72B 相比 Qwen1.5-110B 整体性能大幅提升。在 MMLU、GPQA、HumanEval、GSM8K、BBH、MT-Bench、Arena Hard、LiveCodeBench 等国际权威测评中,Qwen2-72B 获十几项世界冠军,超过美国的 Llama3。
  2. 训练与微调:大规模预训练后,通义千问团队对模型进行精细微调,提升了代码、数学、推理、指令遵循、多语言理解等能力,还让模型学会对齐人类价值观。微调过程遵循使训练规模化并减少人工标注的原则,探索了多种自动方法获取高质量数据,结合了有监督微调、反馈模型训练以及在线 DPO 等方法,采用在线模型合并方法减少对齐税。不久后将推出 Qwen2 的技术报告。
  3. 特点:Qwen2 有 5 种尺寸的预训练和指令调整模型,包括 Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B 和 Qwen2-72B。除英语和中文外,还接受过另外 27 种语言的数据训练,在大量基准评估中表现出最先进的性能,代码和数学性能显著提高,增大了上下文长度支持,最高达到 128K tokens(Qwen2-72B-Instruct)。
  4. 体验与下载:Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen2-72b-instruct 模型已上线中国大语言模型评测竞技场 Compass Arena,所有人都可以登录体验 Qwen2 的性能,或者选择 Qwen2 模型与其他大模型进行对比测评。测评地址为[https://opencompass.org.cn/arena]。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。
  5. 开源社区影响力:Qwen 系列模型正在全球爆火,近一个月内总下载量翻倍,已突破 1600 万次。海内外开源社区已经出现了超过 1500 款基于 Qwen 二次开发的模型和应用。自今年 2 月 Qwen1.5 发布前后,就有大量开发者催更 Qwen2。6 月 7 日晚上 24 点左右 Qwen2 上线后,多个重要的开源生态伙伴火速宣布支持 Qwen2。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

[title]Qwen 2开源了模型性能超越目前所有开源模型和国内闭源模型[heading1]相关参考信息玉宝搞过一个LLM的在线评估,里面可以看到国内各个闭源大模型的HUMANEVAL测评得分,可以和QWEN2对比https://www.llmrank.cn/2023年8月起,通义千问密集推出Qwen、Qwen1.5、Qwen2三代开源模型,实现了全尺寸、全模态开源。不到一年时间,通义开源大模型性能不断突破,Qwen系列的72B、110B模型多次登顶HuggingFace的Open LLM Leaderboard开源模型榜单。(图说:HuggingFace的开源大模型排行榜Open LLM Leaderboard是目前大模型领域最具权威性的榜单,收录了全球上百个开源大模型的性能测试结果,Qwen-72B和Qwen1.5-110B都曾登顶这一榜单)二、在哪里可以体验Qwen2系列模型?Qwen2系列已上线魔搭社区ModelScope和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型API。同时,Qwen2-72b-instruct模型已经上线中国大语言模型评测竞技场Compass Arena,所有人都可以登录体验Qwen2的性能,或者选择Qwen2模型与其他大模型进行对比测评。测评地址([https://opencompass.org.cn/arena](https://opencompass.org.cn/arena))。Compass Arena是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的20多款大模型,包括阿里通义千问、百度文心一言、腾讯混元、讯飞星火、字节跳动豆包、智谱AI、百川智能、零一万物、月之暗面等等,用户可在平台选择大模型的两两“对战”,实名或匿名对战皆可。

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

[title]Qwen 2开源了模型性能超越目前所有开源模型和国内闭源模型[heading1]相关参考信息大规模预训练后,通义千问团队对模型进行精细的微调,以提升其智能水平,让其表现更接近人类。这个过程进一步提升了代码、数学、推理、指令遵循、多语言理解等能力。此外,模型学会对齐人类价值观,它也随之变得更加对人类有帮助、诚实以及安全。通义千问团队的微调过程遵循的原则是使训练尽可能规模化的同时并且尽可能减少人工标注。团队探索了如何采用多种自动方法以获取高质量、可靠、有创造力的指令和偏好数据,其中包括针对数学的[拒绝采样](https://arxiv.org/pdf/2308.01825)、针对代码和指令遵循的代码执行反馈、针对创意写作的回译、针对角色扮演的[scalable oversight](https://arxiv.org/pdf/2401.12474)、等等。在训练方面,团队结合了有监督微调、反馈模型训练以及在线DPO等方法。还采用了[在线模型合并](https://arxiv.org/pdf/2405.17931)的方法减少对齐税。这些做法都大幅提升了模型的基础能力以及模型的智能水平。不久后,通义千问团队将推出Qwen2的技术报告。四、Qwen2系列模型在开源社区的影响力怎么样?Qwen系列模型正在全球爆火,近一个月内总下载量翻倍,已突破1600万次。海内外开源社区已经出现了超过1500款基于Qwen二次开发的模型和应用。事实上,自今年2月Qwen1.5发布前后,就有大量开发者催更Qwen2(附件:海外开发者催更)。6月7日晚上24点左右Qwen2上线后,多个重要的开源生态伙伴火速宣布支持Qwen2,包括TensorRT-LLM、OpenVINO、OpenCompass、XTuner、LLaMA-Factory、Firefly、OpenBuddy、vLLM、Ollama等。

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

5种尺寸的预训练和指令调整模型,包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B和Qwen2-72B;(Qwen2-57B-A14B这个模型可以重点看看除英语和中文外,还接受过另外27种语言的数据训练;在大量基准评估中表现出最先进的性能;在大量基准评估中获得SOTA性能。代码和数学性能显著提高,全面超越llama3增大了上下文长度支持,最高达到128K tokens(Qwen2-72B-Instruct)。HF最新榜第一72B和7B可处理128k上下文57B-A14B可处理64k上下文0.5B和1.5B可处理32k上下文相比2月推出的通义千问Qwen1.5,Qwen2实现了整体性能的代际飞跃。在权威模型测评榜单OpenCompass中,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型。刚刚开源的Qwen2-72B,整体性能相比Qwen1.5-110B又取得了大幅提升。(图说:在上海人工智能实验室推出的OpenCompass大模型测评榜单上,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型)通义千问Qwen2系列模型大幅提升了代码、数学、推理、指令遵循、多语言理解等能力。在MMLU、GPQA、HumanEval、GSM8K、BBH、MT-Bench、Arena Hard、LiveCodeBench等国际权威测评中,Qwen2-72B获十几项世界冠军,超过美国的Llama3。(图说:Qwen2-72B在十多个权威测评中获得冠军,超过美国的Llama3-70B模型)

其他人在问
给我推荐几个国内使用频率很高的前几位AI吧,可选择的工具太多导致我选择恐惧症犯了
以下为您推荐一些国内使用频率较高的 AI 工具: 1. 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,但价格相对较高,重度用户年费最高可达几千元,轻度用户有免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,目前免费,每天签到获取灵感值即可,但存在一定局限性,如某些类型图像无法生成等。 2. 其他类别: 百度 Chat:AI 聊天机器人。 360AI 搜索。 AIbot ai 工具集:导航网站。 创客贴 AI:设计工具。 MasterGo:设计工具。 美图设计室:图像编辑。 魔搭社区 阿里达摩院:AI 训练模型。 即时 AI 设计:设计工具。 Boardmix 博思 AI 白板:PPT。 百度飞桨 AI Studio:AI 学习。 字节扣子。 秘塔写作猫:通用写作。 xmind:思维导图。 标小智 LOGO 生成:图像生成。 liblib.art:图像生成。 稿定设计:设计工具。 千帆大模型平台:模型。 DeepSeek:AI 聊天机器人。 墨刀 AI:设计工具。 沉浸式翻译:翻译。 火山方舟:AI 训练模型。 bigjpgAI 图片无损放大:图片增强。 processon:思维导图。 Pika:图生视频。 千库网:资源。 无限画:图像生成。 autoDL 云服务租用。 同花顺问财:金融。
2024-11-17
如何使用coze
使用 Coze 的步骤如下: 1. 先跑起来,创建第一个 bot: 打开 coze.cn/home,点击创建 Bot。 输入随便的信息,如“尝试联网”。 尝试询问:今天的 hacker news 上有什么新闻?可能会答不出。 了解到 AI 如同书呆子,聪明但不出门不知外事也不会交流。 引入联网插件 WebPilot,插件> + >选择 WebPilot,重新尝试联网,再次询问上述问题可能成功。 2. 用上「回复逻辑」,让它能将链接转换成回答。 3. 发布到飞书,基本成型。 4. 【进阶】使用工作流/workflow & 代码/code,更灵活自定。 安装 Coze Scraper 并采集数据的步骤如下: 1. 登录。 2. 在左侧菜单栏,选择一个工作区。 3. 在工作区内,单击知识库页签。 4. 创建一个知识库或点击一个已存在的知识库。 5. 在知识库页面,单击新增单元。 6. 在文本格式页签下,选择在线数据,然后单击下一步。 7. 单击手动采集,然后在弹出的页面点击权限授予完成授权。 8. 在弹出的页面输入要采集内容的网址,然后单击确认。 9. 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 10. 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。更多关于知识库的内容,详情请参考。
2024-11-17
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
openapi如何使用
OpenAPI 的使用方式如下: OpenAI 的文本嵌入: 概述:文本嵌入衡量文本字符串的相关性,常用于搜索、聚类、推荐、异常检测、多样性测量、分类等。嵌入是浮点数的向量,两个向量之间的距离衡量相关性,小距离表示高相关性,大距离表示低相关性。访问定价页面了解嵌入定价,请求按输入中的 Token 数量计费。 如何获得嵌入:将文本字符串连同选择的嵌入模型 ID(例如,textembeddingada002)一起发送到嵌入 API 端点,响应将包含一个嵌入,可提取、保存和使用。在中可查看更多 Python 代码示例。 OneAPI 的配置: 访问 OneAPI 的地址为:http://这里改成你自己宝塔左上角的地址:3001/(举例:http://11.123.23.454:3001/),账号默认 root,密码 123456。 点击【渠道】,类型选择阿里通义千问,名称随意。 把千问里创建的 API Key 粘贴到秘钥里中,点击确认。 点击【令牌】【添加新令牌】。 名称随意,时间设为永不过期、额度设为无限额度,点击【提交】。 点击【令牌】,复制出现的 key。
2024-11-15
怎么使用Thinking Claude
使用 Thinking Claude 可以参考以下方法: 1. 逐步提示思考:例如,使用以下步骤:逐一查看线索,并考虑每个线索是否有潜在相关性;结合相关线索来推理出问题的答案;将答案对应到其中一个多项选择选项。 2. 参考 Claude 官方提示词文档汇总(24 年 4 月)中的相关内容,如: 等。 3. 捕捉克劳德的思维过程:为了更容易将克劳德的逐步推理与最终响应分开,可以考虑使用 XML 标签如 <thinking> 和 <answer> 。您可以指示克劳德将其思维过程放在 <thinking> 标签内,并将其最终答案放在 <answer> 标签内。例如,在提示中可以这样写:“在回答问题之前,请在<thinking></thinking>标签内逐步考虑。然后,在<answer></answer>标签内提供最终答案。”甚至可以在助手角色中预填<thinking>标记,以指导克劳德从何处开始。使用标签使得在后期处理时,如果需要,可以简单地提取<answer></answer>标签中的最终答案。
2024-11-15