直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

最新的comfyui整合包

回答

以下是关于最新的 ComfyUI 整合包的相关信息:

  • 如果您是 AI 绘图工作者,对 ComfyUI 不熟悉,可在 GitHub 上拉取项目,或在 B 站下载整合包,如秋叶大佬的绘世整合包、只剩一瓶辣椒酱的铁锅炖整合包。
  • ComfyUI LLM party 是一个以 ComfyUI 作为前端的节点库,用于 LLM 智能体以及 LLM 工作流的无代码开发。可通过以下方法安装:
    • comfyui 管理器中搜索 comfyui_LLM_party,一键安装,然后重启 ComfyUI。
    • 导航到 ComfyUI 根文件夹中的 custom_nodes 子文件夹,使用克隆此存储库:git clone https://github.com/heshengtao/comfyui_LLM_party.git
  • 教学辅导书(含知识点扩充与分享链接):第 1 课:初始界面与基础操作
    • ComfyUI 整合包下载:
      • 官方 Release 页面:github.com/comfyanonymous/ComfyUI/releases
      • 分流度盘:pan.baidu.com/s/1d9XLF96OzWlLtUGvZiYdVA?pwd=nely
      • 分流 Quark:pan.quark.cn/s/ff8172bebe27(无提取码,请完整复制所有链接)
  • 8 月 13 日 ComfyUI 共学中提到了关于康维 UI 部署及工作流搭建的分享会,包括 dream shaper 的 SD 1.5 底模、秋叶的两个整合包等内容,还提供了特定文件的下载链接及电脑配置要求的说明,以及关于 AI 绘图的本地及云端部署、模型介绍与文生图工作流讲解。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AI 女友麦洛薇(0 代码 comfyui 搭建,知识图谱稳定人设,无限上下文,永久记忆,可接入飞书)

如果你是一个AI绘图工作者,你一定对Comfyui并不陌生。如果你从来没有接触过Comfyui,你需要先到GitHub上拉取Comfyui这个项目,或者你可以在B站下载整合包,例如:秋叶大佬的绘世整合包或者只剩一瓶辣椒酱的铁锅炖整合包。[heading2]2、Comfyui LLM party下载[content]Comfyui LLM party是一个以Comfyui作为前端的节点库,用于LLM智能体以及LLM工作流的无代码开发。功能类似于coze、dify、flowise等。但由于可以在Comfyui中直接使用,与Comfyui生态下的绝大部分节点都相辅相成,有着无缝接入SD图像流的特色。今天所介绍的麦洛薇,就是用这套节点库开发完成的。项目地址如下:使用以下方法之一安装:方法一:1.在[comfyui管理器](https://github.com/ltdrdata/ComfyUI-Manager)中搜索comfyui_LLM_party,一键安装2.重启comfyui方法二:1.导航到ComfyUI根文件夹中下的custom_nodes子文件夹2.使用克隆此存储库。git clone https://github.com/heshengtao/comfyui_LLM_party.git

第1课:做最好懂的Comfy UI入门教程:Stable Diffusion专业节点式界面新手教学

[title]第1课:做最好懂的Comfy UI入门教程:Stable Diffusion专业节点式界面新手教学为什么说Comfy UI是你2024年必须掌握的一个新的生成式AI工具?这个系列,希望可以成为你看过最好懂的Comfy UI入门教程!📕教学辅导书(含知识点扩充与分享链接):[第1课:初始界面与基础操作](http://gf66fxi6ji.feishu.cn/wiki/UzFfwaOx3iY3ZAksErvcBbrpnPb)fyUI整合包下载:官方Release页面:github.com/comfyanonymous/ComfyUI/releases分流度盘:pan.baidu.com/s/1d9XLF96OzWlLtUGvZiYdVA?pwd=nely分流Quark:pan.quark.cn/s/ff8172bebe27(无提取码,请完整复制所有链接)感谢[@eSheep_电子羊](https://space.bilibili.com/1693856846)对本期教程视频的大力支持!🐏到eSheep电子羊AIGC社区,体验原汁原味的在线Comf

8月13日ComfyUI共学

[title]8月13日ComfyUI共学[heading1]智能纪要[heading2]智能章节[00:04](https://waytoagi.feishu.cn/minutes/obcn4w986vn7d5kc9tg2zy69?t=4000)关于康维UI部署及工作流搭建的分享会介绍本章节AJ表示在做前期准备,担心算力并发问题找了多个平台,佑萌老师将带着大家学习康维UI部署及工作流搭建,包括云部署和本地部署,中间小田老师会带大家实操云部署平台流程,且为新用户争取了一周的使用时长。[06:58](https://waytoagi.feishu.cn/minutes/obcn4w986vn7d5kc9tg2zy69?t=418000)关于AI绘画底模及秋叶整合包的介绍本章节郭佑萌介绍了所发文档中的三个链接,其一为dream shaper的SD 1.5底模,需装在CONFIUI里出图,新手本地部署可先下载。还提到秋叶的两个整合包,分别在跨客盘和百度盘,二者内容相同。[09:03](https://waytoagi.feishu.cn/minutes/obcn4w986vn7d5kc9tg2zy69?t=543000)关于特定文件下载及电脑配置要求的说明本章节主要内容为:提供了跨客盘和百度盘的下载链接及文件。需下载3.7个g的文件或亚索包,有独立显卡的电脑优先下载。Mac中M2以上可以,下载后解压。配置低或无显卡的待会讲云部署方案。[11:28](https://waytoagi.feishu.cn/minutes/obcn4w986vn7d5kc9tg2zy69?t=688000)关于AI绘图的本地及云端部署、模型介绍与文生图工作流讲解

其他人在问
你好,什么事comfyui LLM party
ComfyUI LLM Party 相关内容如下: 作为 ComfyUI 插件的开发者,主要目的是讲解 LLM(大语言模型)与 ComfyUI 结合的基础、进阶和高阶用法,个人将 ComfyUI 中 LLM 应用粗略分为四大类:文本方面(提示词扩写、润色、对话)、图像视觉方面(图像提示词反推、OCR、LoRA 训练集图像打标)、LLM Agent(工具调用、长期/短期记忆、本地/API 大语言模型调用、封装 ComfyUI 工作流等)、其他独立于这些之外的 LLM 节点或功能。 对于 ComfyUI 和 ComfyUI LLM Party 的下载: 如果是 AI 绘图工作者,对 ComfyUI 不陌生。若未接触过,可在 GitHub 上拉取项目,或在 B 站下载整合包,如秋叶大佬的绘世整合包或者只剩一瓶辣椒酱的铁锅炖整合包。 ComfyUI LLM Party 是以 ComfyUI 作为前端的节点库,用于 LLM 智能体以及 LLM 工作流的无代码开发,功能类似于 coze、dify、flowise 等,与 ComfyUI 生态下的绝大部分节点相辅相成,有着无缝接入 SD 图像流的特色。可通过以下方法安装: 方法一:在中搜索 comfyui_LLM_party,一键安装,然后重启 comfyui。 方法二:导航到 ComfyUI 根文件夹中的 custom_nodes 子文件夹,使用克隆此存储库 git clone https://github.com/heshengtao/comfyui_LLM_party.git 。
2024-11-22
ComfyUI的Windows下载包
以下是关于 ComfyUI 的 Windows 下载包的相关信息: 下载地址:https://github.com/comfyanonymous/ComfyUI ,您可以在此下载安装包,也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip 。 安装方法: 下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 目前安装 ComfyUI 有以下两种方法,您可以根据自己的需求选择: 本地安装: 命令行安装:普适性最强,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说可能有一定门槛。ComfyUI 的源码地址在 https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中,您也可以按照 Readme 文档进行操作。 安装包安装:安装比较简单,下载就能用。ComfyUI 的官方安装包下载地址是 https://github.com/comfyanonymous/ComfyUI/releases ,目前仅支持 Windows 系统,且显卡必须是 Nivida。下载最新的版本,解压就能使用。 云端安装:云端配置相对较高,生成图片的速度会更快,但是需要一定的费用。如果您想在云端安装,可以跳到。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 汉化安装方法:在网盘连接中下载汉化包,并解压。将文件夹拖入到 E:\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 目录下。启动 ComfyUI 界面,点击右侧的小齿轮。在弹出界面的底部就可以切换语言了,选择中文即可。点击下方的“切换语言”,就可以在中文和英文之间随意切换。需要 blender 插件和汉化包的朋友,可以关注公众号【白马与少年】,发送【ComfyUI】即可获取链接。
2024-11-22
ComfyUI 安装教程
以下是 ComfyUI 的安装教程: 1. 电脑硬件要求: 系统:Windows 7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并更新 Nvidia 显卡驱动下载地址:https://www.nvidia.cn/geforce/drivers/ 2. 下载并安装所需要环境(安装过 WebUI 的同学请忽略本步骤): 依次下载并安装 python、VSCode、Git,安装过程中一直点击勾选对应选项,一直下一步。 Python 版本 3.10 以上,下载地址: VSCode 下载地址: Git 下载地址: 安装 Python 时选中“将 Python 添加到系统变量”。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network ,下载文件:cuda_12.2.0_536.25_windows.exe 3. 安装 ComfyUI: 地址:https://github.com/comfyanonymous/ComfyUI 可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git 或者下载安装包 下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 4. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 5. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 6. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到你已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 7. 快捷键(未提及具体快捷键内容)
2024-11-17
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细信息: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:未提及。
2024-11-16
如何在Mac上运行comfyUI
在 Mac 上运行 ComfyUI 的步骤如下: 1. 电脑配置:MacBook Pro,M1 芯片,16G 内存,Sonoma 14.6.1 系统版本。 2. 部署 ComfyUI: 安装依赖:在终端中输入“pip3 install r requirements.txt”安装 ComfyUI 的依赖文件。终端提示需要特定版本的 numpy 时,输入“Y”卸载当前版本,然后输入“pip3 install numpy==1.26.4”安装指定版本。 启动 ComfyUI:在终端中输入“pwd”查看 ComfyUI 的文件路径,复制文件路径,替换启动命令中的相应部分,然后将命令“source cf/bin/activate && cd /Users/vina/Documents/ComfyUI && python main.py autolaunch listen dontupcastattention outputdirectory ~/Desktop”复制到终端。启动成功后,浏览器会自动跳转,但网页地址可能不对,直接在浏览器打开“http://localhost:8188/”即可使用。 3. 管理器和资源占用插件:官方的 ComfyUI 安装包不带管理器和资源占用视图,需要从 GitHub 下载。管理器插件下载地址:https://github.com/ltdrdata/ComfyUIManager 。资源占用视图插件装不装均可,下载地址:https://github.com/crystian/ComfyUICrystools 。 此外,还有一种搭建自己第一个 ComfyUI 的方法(熟手推荐 自定义创建): 1. 创建工作空间:进入工作空间,点击自定义创建,按照以下内容配置,点击立即创建。镜像选择 lanruicomfyui 镜像;网盘默认挂载;数据集默认挂载 sdbase;启动方式默认选择手动启动。待实例状态由启动中变为运行中后,稍等一会,点击进入 JupyterLab,选择 terminal 终端。 2. 启动 ComfyUI:进入终端后,先参考配置学术加速。运行如下启动命令后按回车键,等待 1 分钟左右。(每次启动都需要输入启动命令)如果想要长时间持续运行任务,请用 nonhup 启动:启动命令“nohup bash /home/user/start.sh > comfy.log 2>&1 &”;查看启动/出图进度命令“tail fn 500 comfy.log”;停止命令“pkill 9 f '27777'”。当页面显示“To see the GUI go to:http://0.0.0.0:27777”,说明已启动成功。 3. 访问 ComfyUI 界面:返回工作空间,点击实例右侧的「打开调试地址」到浏览器,就可以使用 ComfyUI 啦。 需要注意的是,在 Mac 上使用 ComfyUI 存在一些难点: 1. 生图慢,因为 Mac M 只有 CPU,没有 GPU。 2. 生图的大模型在 CPU 环境中不一定适配、好用。 3. 用 Mac 生图的人少,能一起讨论的人也少,解决方案也少,需要自己摸索。 4. 大神们在 Windows 系统里做的一键包,在 Mac 中不能用。 5. 大神们的工作流也要做适配 Mac 的修改,需要一点点代码阅读和修改的能力。
2024-11-15
comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:暂未提及。
2024-11-09
整合多家大预言模型的工具
以下为整合多家大语言模型的工具介绍: 1. Poe: 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验,但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性。 支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导能够启发用户,支持 Explore Chatbot,但丰富度不如后续要介绍的 Character,midjourney prompt 扩写 Chatbot 能力很惊人。 2. Ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 下载安装地址:https://ollama.com/download/ ,安装完后,在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。 3. 未来还会不断丰富大模型的外延能力,例如知识库检索、计算工具、WolframAlpha、操作软件等。首先集成了 LangChain 框架,可更方便地基于 Llama2 开发文档检索、问答机器人和智能体应用等。针对 LangChain 框架封装的 Llama2 LLM 类见,简单的调用代码示例如下。
2024-11-15
可以调用不同大预言模型的整合工具推荐
以下是为您推荐的可以调用不同大语言模型的整合工具: 1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。访问地址: 。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可以尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 2. 国内的一些模型,如智谱和文心,在文生图方面有一定能力。 另外,大模型工具可根据自身条件准备,推荐顺序为:1. chatGPT 4.0 2. kimichat 3. 智谱清言 4 。
2024-11-12
有什么AI可以将我的多份文献阅读笔记整合为一份。
以下是一些可以将您的多份文献阅读笔记整合为一份的 AI 工具和方法: 1. ChatGPT:例如马多克斯先生将自己的锻炼笔记粘贴进去,让 ChatGPT 用简洁格式总结并指出遗漏的肌肉群,还能给出训练建议。森博斯基女士让 ChatGPT 写无麸质饮食计划。卡彭先生口述文章让 ChatGPT 纠正拼写和语法错误。 2. 利用 Coze 与飞书多维表格的组合:通过飞书机器人与 Coze 搭建的智能体在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划的推荐。 此外,您还可以参考以下关于知识管理体系构建的思路: 像小七姐提到的,把碎片化信息通过整理归纳、标记重点、打赏标签等方式放入笔记系统,准备展开深度思考和实践,基于此生成自己的观点和决策,并打造成体系化的内容产品。 希望这些信息对您有所帮助。
2024-11-07
我需要一个AI将我的多份文献阅读笔记整合为一份。
以下是为您提供的将多份文献阅读笔记整合为一份的相关信息和思路: 在 AI 与生活场景结合的案例中,ChatGPT 可以帮助人们在健康方面发挥作用,如马多克斯先生利用它制定锻炼计划,森博斯基女士让其规划无麸质饮食,还有应对注意力缺陷多动障碍(ADHD)和阅读障碍等。 另外,关于打造专属 AI 智能体来实现文献阅读笔记的整合,一泽 Eze 提出的方案思路如下: 1. 简化“收集”:实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 即可完成收集,借鉴微信文件传输助手的方式通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”:系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态,且阅读清单支持跨平台查看。 3. 智能“选择”推荐:根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成合适的阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理数据,理论上无需开发插件、APP 就能实现跨平台的收集与智能阅读计划推荐。
2024-11-07
推荐一些国内的整合AI
以下是为您推荐的一些国内的整合 AI 产品: 聊天对话类: Kimi:具有超长上下文能力,最初支持 20 万字,现提升至 200 万字,对处理长文本或大量信息任务有优势,但文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。 智谱清言:背后技术源自清华大学研发团队的科研成果转化,以 ChatGPT 为对标打造用户体验,是国内首批开放智能体应用的公司之一,在逻辑推理和处理复杂提示词方面表现出色。 图像类: 可灵:由快手团队开发,用于生成高质量的图像和视频,图像质量高,但价格相对较高。 通义万相:在中文理解和处理方面出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,现免费,每天签到获取灵感值即可,但某些类型图像因国内监管要求无法生成,处理非中文语言或国际化内容可能不如国际工具出色,处理多元文化内容时可能存在偏差。 PPT 类: 爱设计 PPT:背后团队实力强大,对市场需求有敏锐洞察力,成功把握 AI 与 PPT 结合的市场机遇,已确立市场领先地位,能提高 PPT 制作效率并保证高质量输出。
2024-11-05
项目型,任务型的AI整合工具,推荐一下
以下是为您推荐的项目型、任务型的 AI 整合工具: 1. 项目管理和任务跟踪工具: Jira、Trello 等项目管理软件已开始集成 AI 功能,可辅助制定计划、分配任务、跟踪进度。 2. 文档和协作工具: 微软的 Copilot 可集成到 Office 套件中,为项目文档撰写、编辑提供 AI 助手功能。 云存储服务如 Google Drive 也开始提供 AI 驱动的文档管理和协作功能。 3. 风险管理和决策支持工具: 部分 AI 工具能帮助识别和分析项目风险,并提供决策建议。 4. 沟通和协作工具: AI 助手可辅助进行团队沟通协调、客户关系维护等。 5. 创意生成工具: 如文心一格、Vega AI 等 AI 绘画工具,可帮助快速生成创意图像素材。 6. Dart: 是一款擅长智能化处理任务管理的项目管理工具,具有路线图、日历视图、文档处理等功能。 拥有用户友好界面、AI 功能(如自动填充特性和子任务自动生成),可高度自定义布局,轻松区分工作和个人任务。 集成了生成性 AI(如 ChatGPT),在规划和任务创建方面能为用户节约大量时间和精力。 随着 AI 技术的发展,越来越多的工具正在为项目管理提供智能化的辅助功能,涵盖项目管理的各个环节,有助于提高工作效率和决策能力。
2024-09-19
最新AI资讯
以下是为您提供的最新 AI 资讯: 新手学习 AI 方面:AI 是快速发展的领域,新的研究成果和技术不断涌现。您可以关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 AIGC Weekly 32 方面: Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位: Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作提取相关数据、操作新功能或创建报告: Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能: OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展: Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器: ShowMeAI 周刊 No.12 方面: JENOVA:AI Reddit 搜索& AI Youtube 搜索功能上线,以及为啥这个需求爆了? Artifacts:与 AI 交互的形式,正在被开发者们玩出新花样 画布:更彻底的 AI 交互革命,从一维走向二维的 LLM 交互新体验 再见,会读!为体面的退场鼓掌!&&源源不断冒出的更多新产品们 AI 编程:江山代有 AI 出,各领风骚数十天,以及 AI Coding 赛道洞察 AI 陪伴:EVE 创始人 VS C.AI 工程师,到底谁才是真正的 AI 陪伴? AI 原生游戏:1001 Nights 和 Oasis,两个极端,哪种才是真正的 Native 方向? Kimi:杨植麟身陷诉讼风波,发布数学推理模型 k0math,但是回应不了一切? Scaling Law:如果此路不通向 AGI,敢问路在何方? 社群讨论:如何选择创业产品的承载形式:App、网站、小程序
2024-11-22
AI 的最新资讯
以下是为您整理的 AI 最新资讯: 新手学习 AI 方面:AI 是快速发展的领域,新的研究成果和技术不断涌现。您可以关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 AIGC Weekly 32 方面: Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位: Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作提取相关数据、操作新功能或创建报告: Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能: OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展: Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器: XiaoHu.AI 日报 10 月 10 日方面: PMRF:全新图像修复算法。擅长处理去噪、超分辨率、着色、盲图像恢复等任务,生成自然逼真的图像。不仅提高图片清晰度,还确保图片看起来像真实世界中的图像。能应对复杂图像退化问题,修复细节丰富的面部图像或多重损坏的图片,效果优质。详细介绍: 2024 年诺贝尔化学奖授予三位科学家:大卫·贝克、丹米斯·哈萨比斯、约翰·乔普。表彰贝克在计算蛋白质设计的贡献,以及哈萨比斯和乔普在蛋白质结构预测方面的杰出贡献。 nworld AI 发布《Beyond 2024》,具有动态游戏 AI,角色和系统根据玩家行为和环境做出实时反应,敌对角色动态调整策略,NPC 拥有独立思维。复杂动作与互动方面,AI 不再局限于对话,还能执行复杂动作,决策算法和认知系统增强了游戏中的 AI 表现。协作支持方面,AI 代理不仅在游戏中协作,还可为老年人提供局部支持,独立做出策略选择。
2024-11-22
AI目前最新发展是什么
AI 目前的最新发展包括以下几个方面: 1. 技术发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 2. 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 3. 产品设计和商业化思路的变化: 从通用能力到专业化细分:如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理(各种 AI 配音、音乐生成工具)等,每个细分领域的产品都在不断提升核心能力,为用户提供更精准和高质量的服务。 商业模式的探索与创新:ToB 市场的深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)等,从单纯的技术展示向解决用户痛点和创造商业价值转变。 此外,AI 是一个快速发展的领域,新的研究成果和技术不断涌现。新手可以通过持续学习和跟进,关注 AI 领域的新闻、博客、论坛和社交媒体,考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流来保持对最新发展的了解。
2024-11-18
马斯克脑机接口最新发展
马斯克脑机接口的最新发展包括以下方面: 脑虎科技创始人彭雷指出脑机接口是人类脑计划的核心底层工具,能长期稳定读取大规模神经元活动信号。脑机接口是交叉领域,存在侵入式解决方案,如马斯克采用的柔性脑机结构,其柔性丝比头发细很多,通道无上限,可通过脑机信号控制物体。 2024 年 8 月 4 日,《马斯克最新 6 万字访谈!8.5 小时详解脑机接口、机器人、外星人,以及 AI 与人类的未来(一)》发布,这是马斯克第 5 次参加 Lex Fridman 播客,也是有史以来时间最长、最完整、信息量最大的一次,全球首位 Neuralink 脑机接口植入者 Noland 也参与了对话。 2024 年 1 月 30 日,马斯克宣布首例人类大脑芯片植入手术成功。
2024-11-16
人工智能最新信息
以下是人工智能的一些最新信息: 神经网络研究在 2010 年左右开始有巨大发展,ImageNet 大型图像集合催生了相关挑战赛。 2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率。 从 2015 年到 2020 年,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中陆续实现人类水平准确率。 过去几年大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据。 OpenAI 通用人工智能(AGI)的计划中,原计划 2026 年发布的 GPT7 因埃隆·马斯克的诉讼被暂停,计划 2027 年发布的 GPT8 将实现完全的 AGI。GPT3 及其升级版本 GPT3.5 是朝着 AGI 迈出的巨大一步。
2024-11-16
国内AI行业最新发展状况
以下是关于国内 AI 行业最新发展状况的介绍: OpenAI 的 o1 模型主导:OpenAI 最新推出的 o1 模型正在重新定义 AI 在数学、科学和推理方面的极限,使竞争对手困惑甚至“破产”。 中国的 AI 崛起:无视制裁,中国的模型凭借坚韧和战略智慧正在“屠榜”,证明他们仍在牌桌之上。 生成式 AI 的数十亿繁荣:AI 初创公司正赚得盆满钵满,但可持续性难以捉摸。 AI 产业链中的机会分析: 1. 基础设施层:布局投入确定性强,但资金投入量大,入行资源门槛高,未来更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 2. 技术层:技术迭代迅速,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 3. 应用层:是广阔蓝海,当前成熟应用产品不多,“杀手级”应用凤毛麟角,普通个体和小团队推荐重点布局,发展空间巨大。 AI 产品发展的未来展望: 1. 更深度的行业整合:AI 技术将与各行各业更紧密结合。 2. 用户体验的持续优化:易用性和稳定性将进一步提升。 3. 新兴应用场景的出现:可能在智能家居、自动驾驶等领域找到新突破口。 相关报告及解读链接: (报告 212 页)
2024-11-14