当前从 AI 发展到 AGI 的路径主要包括以下方面:
总的来说,Ilya预计token预测这种方法可以走得很远,甚至有可能一直突破到AGI:“我认为这种范式将会走得非常、非常远,我不会低估它。这很有可能就是最终通往AGI的形式。”尽管最终也许需要与其他想法结合,但token预测提供了一个可行的路径。所以,从当前的语言模型到未来的AGI,仍有一些问题有待解决,比如提高多步推理能力,但是token预测作为一种方法为我们提供了一条可行的道路。Ilya对此保持着乐观态度,我们拭目以待他是否可以如愿以偿!
减少搜索宽度:在某个状态下,不对所有的可以落子的位置进行搜索,而是通过落子位置采样的方式,也就减小了搜索宽度。落子的采样可以服从某一策略的分布。而且,在人工智能的持续发展中,人们对于利用人工智能新算法解决挑战性问题一直抱有着初心,如AI4S或AGI到ASI,因此随着RL的持续发展,针对在某些领域的挑战突破上,其中的一条可行的路径也许是找到一个适合的模拟任务环境(这点非常重要,且需要有自反馈机制,如围棋)从白板状态开始训练、学习,而非借助人类专家先验,以达到人类或超过人类的状态。而不借助专家历史经验或数据也是考虑监督学习最终会达到一个天花板,且这个天花板就是所有已知标签化监督数据被纳入到训练集中用于模型训练并最终达到的顶峰。这不不光是RL在算法上的创新突破,更体现出其深远的价值与意义。
“我们都知道,探索知识善如磨刀,面对复杂多元的在人工智能(AGI)领域,如何打破条条框框,去捕捉每一丝有价值的信息和知识呢?那么我相信答案就是:通往AGI之路「WaytoAGI」,一个由开发者、学者和有志人士等等参与的学习社区和开源的AI知识库。在这里,你既是知识的消费者,也是知识的创作者。这个世界上有很多走走停停的探索者,所以,我们以"无弯路,全速前进"为目标,助力每一个怀揣AI梦想的人能疾速前行。每一份崭新的尝试都值得赞美,每一份坚毅的付出都应得到鼓励。AI知识库的生长正得益于每一个你平凡而坚持的时间,因为你们的一致肯定和支持,我们才充满信心,不断修炼,探寻AGI领域的无限可能。「通往AGI之路」不仅是一个知识库,它是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。我们在共创计划的道路上,不断收获,快速成长。对于一切,我们都满怀期待,乐观向阳。继续坚持,信息世界中你我皆是探索者。