Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

知识库的体系怎么搭建

Answer

搭建知识库的体系可以从以下几个方面入手:

  1. 明确需求和兴趣点,选择相关的信息源,确保信息的质量与相关性。
  2. 建立信息通路,通过各种工具和方法(如浏览器插件、笔记应用等),确保信息能够顺畅地流入知识体系。
  3. 对收集的信息进行知识结构化处理,使用不同的笔记方法和工具将其分类、标签化和链接,形成便于检索和应用的结构化知识体系。
  4. 注重知识内化与应用,通过定期的复习、思考和实践,将外部信息转化为个人知识,并在实际工作和生活中应用,解决具体问题。
  5. 知识抽取方面,通过自动化技术抽取出可用的知识单元,包括实体抽取(命名实体识别)、关系抽取(提取实体之间的关联关系)、属性抽取(采集特定实体的属性信息)。
  6. 知识表示可采用属性图、三元组等方式。
  7. 进行知识融合,在同一框架规范下对异构数据进行整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库,包括实体对齐以消除不一致性问题,以及知识加工和本体构建等。
  8. 重视知识更新,不断迭代扩展现有知识,增加新的知识。
  9. 进行知识推理,在已有的知识库基础上挖掘隐含的知识。

此外,您还可以在网上做一些调研,找到人类试图量化和编写知识的领域,如回顾布卢姆 的分类法、林奈创建生物分类法的工作、德米特里·门捷列夫创建描述和分组化学元素的方法等有趣的例子。作业方面,可以建立一个本体,比如选择一个主题(如一个人、一个地方或一件事)建立该主题的模型,使用 Protégé 构建本体。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:信息管理工具与方法

4.用得上:最终目标是将积累的知识转化为实际行动和成果。当需要解决问题或创造价值时,能够从知识库中调取相应信息,形成解决方案、产品、文章或个人生活指导等。这意味着知识不再是静态的存储,而是动态的应用于具体情境中,实现知识的价值转化。这一步将信息管理的成果落实到具体产出上,体现了知识的实践意义。🏗知识体系搭建:信息源的选择:在搭建知识体系时,首先要明确自己的需求和兴趣点,选择与之相关的信息源,确保信息的质量与相关性。信息通路的建立:通过各种工具和方法,如浏览器插件、笔记应用等,建立稳定的信息获取和存储机制,确保信息能够顺畅地流入知识体系。知识结构化:使用不同的笔记方法和工具,将收集的信息进行分类、标签化和链接,形成结构化的知识体系,便于检索和应用。知识内化与应用:通过定期的复习、思考和实践,将外部信息转化为个人知识,并在实际工作和生活中应用这些知识,解决具体问题。

知识图谱

1.知识抽取:通过自动化的技术抽取出可用的知识单元实体抽取:命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体;关系抽取(Relation Extraction):从数据源中提取实体之间的关联关系,形成网状的知识结构;属性抽取:从数据源中采集特定实体的属性信息。1.知识表示属性图三元组1.知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库实体对齐(Entity Alignment):消除异构数据中的实体冲突、指向不明等不一致性问题;知识加工:对知识统一管理,形成大规模的知识体系本体构建:以形式化方式明确定义概念之间的联系;质量评估:计算知识的置信度,提高知识的质量。知识更新:不断迭代更新,扩展现有知识,增加新的知识1.知识推理:在已有的知识库基础上挖掘隐含的知识

知识表示和专家系统

在网上做一些调研,找到一些人类试图量化和编写知识的领域。看看布卢姆的分类法(Bloom's Taxonomy),回顾历史,了解人类是如何试图理解他们的世界的。探索林奈创建生物分类法的工作,观察德米特里·门捷列夫创建描述和分组化学元素的方法。你还能找到哪些有趣的例子?作业:建立一个本体建立知识库就是对表示了特定主题事实的模型进行分类。选择一个主题——比如一个人、一个地方或一件事——然后建立该主题的模型。使用本课中介绍的一些技术和建模策略。例如,创建一个客厅的本体,包括家具、灯光等。客厅与厨房有什么不同?浴室有什么不同?你怎么知道这是客厅而不是餐厅?使用Protégé构建本体。

Others are asking
我想要学习prompt,请你推送10篇知识库相关文章给我
以下是 10 篇与 prompt 相关的知识库文章: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
2024-12-26
我如何创建一个自己的知识库和对话机器人,当我有问题时可以根据知识库的内容给我一个回答。
要创建一个自己的知识库和对话机器人,并实现根据知识库内容回答问题,您可以参考以下步骤: 1. 了解 RAG 机制:RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术。它先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。 2. 创建知识库:创建一个包含大量相关文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库。通过手工录入的方式陆续将各个板块的文章和资料导入到知识库中。 3. 设计 Bot:在设计对话机器人时,添加创建好的知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。 4. 配置相关要素:在问答机器人的配置中,包括 AI 模型、提示词和知识库。AI 模型如同学习过无数知识的人;提示词用于指定模型的角色和专注技能;知识库则相当于给员工的工作手册。例如,可以使用阿里千问模型,设定角色为“美嘉”,知识库为《爱情公寓》全季剧情。 通过以上步骤,您可以创建一个能够根据知识库内容回答问题的对话机器人。
2024-12-25
想制作个人的知识库国内有什么好的AI工具么
以下是一些国内可用于制作个人知识库的 AI 工具: 1. Kimi 智能助手:是 ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解表现出色,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。PC 端可通过下载。 2. 飞书:汇集了各类 AI 优质知识库、AI 工具使用实践,助力人人成为效率高手。可通过下载。 此外,学习使用国内大语言模型工具可以从提示词开始。一些国产大模型如智谱和文心可以实现文生图的功能。
2024-12-24
想建立个人知识库使用什么AI工具更好一些
以下是为您推荐的用于建立个人知识库的 AI 工具: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型、选择向量数据库。安装地址:https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在使用时,可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合训练数据和上传文档给出答案,Query 模式仅依靠文档数据给出答案),配置完成后即可进行对话测试。 2. LlamaIndex:是更高一层 LangChain 的抽象,简化了 LangChain 对文本分割、查询的接口,提供了更丰富的 Data Connector。只针对 GPT Model 做 Index,参考 https://gptindex.readthedocs.io/en/latest/ 。 3. ExoBrain 的集成软件 Maimo.ai:作为外脑的主要记忆空间,能捕获多种数字内容并随时随地访问,可挂接和导入外部记忆,能快速理解捕获内容、灵活创作笔记、生成创作建议,可与外脑知识库对话并自动做外部检索完善答案。今年十一月将开放第一个体验版,关注获取最新信息。
2024-12-24
如何构建自己的知识库和数据集
构建自己的知识库和数据集可以参考以下几种方法: 使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 创建并使用知识库(上传表格数据): 1. API 方式: 获取在线 API 的 JSON 数据,将 JSON 数据上传至知识库。 在表格格式页签下,选择 API,然后单击下一步。 单击新增 API。 输入网址 URL 并选择数据的更新频率,然后单击下一步。 输入单元名称或使用自动添加的名称,然后单击下一步。 配置数据表信息后,单击下一步。 确认表结构:系统已默认获取了表头的列名,您可以自定义修改列名,或删除某一列名。 指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。 2. 自定义方式: 在表格格式页面下,选择自定义,然后单击下一步。 输入单元名称。 在表结构区域添加字段,单击增加字段添加多个字段。 设置列名,并选择指定列字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 单击确定。 单击创建分段,然后在弹出的页面输入字段值,然后单击保存。 从零开始,用 GPT 打造个人知识库: 要搭建基于 GPT API 的定制化知识库,涉及到给 GPT 输入(投喂)定制化的知识。但 GPT3.5(当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字。这点容量对于绝大多数领域知识根本不够。为了使用 GPT 的语言能力来处理大量的领域知识,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性。小距离表示高关联度,大距离表示低关联度。向量是数学中表示大小和方向的一个量,通常用一串数字表示。在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上给了创建 embeddings 的示例,上面的命令访问 embeddings API 接口,将 input 语句,转化成下面这一串浮点数字。
2024-12-23
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
智能体搭建
以下是关于智能体搭建的相关内容: 在品牌卖点提炼中,搭建智能体需要确定其结构。按照市场营销逻辑组织,包括品牌卖点定义与分类助手、品牌卖点提炼六步法、STP 市场分析助手、用户画像分析助手、触点收集助手等。同时还包括一些后续应用中有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素。 智谱 BigModel 开放平台提供多 Agent、工作流、知识管理、批量效果调优等能力,用户可在画布上通过拖拉拽操作构建任务流,配合批量调试能力预览智能体效果,最终通过页面嵌入、api 调用等形式融入业务流程。 智谱 BigModel 共学营第二期关于把微信变成超级 AI 助理的课程中,创建助手工作流的步骤包括:注册智谱 Tokens 智谱 AI 开放平台(https://bigmodel.cn/),获取资源包(新注册用户注册即送 2000 万 Tokens,或通过充值/购买多种模型的低价福利资源包,或共学营报名赠送资源包),先去【财务台】左侧的【资源包管理】查看资源包,进入智能体中心我的智能体开始创建智能体。此流程会手把手编辑,完成一个简单智能体的搭建,实现特定功能。
2024-12-26
如何从0到1搭建系统
以下是从 0 到 1 搭建系统的一些方法: 1. 搭建拥有 AI 大模型的微信助手: 搭建 ,用于汇聚整合多种大模型接口,并方便后续更换使用各种大模型,还会告知如何白嫖大模型接口。 搭建 ,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。若不想接入微信,搭建到此即可,其有问答界面。 搭建 ,其中的 cow 插件能进行文件总结、MJ 绘画。 2. 参加 CAMEL AI 上海黑客松搭建多智能体系统: 活动亮点包括友好入门,从基础知识到实际应用涵盖智能体、提示、模型、工具及不同智能体结构等内容,即使非 AI 从业者也能快速掌握关键技能。 有大咖分享,聚焦行业前沿,邀请 AI 领域资深专家带来独家观点与趋势解读。 有实战 Workshop,通过实践环节掌握技术,打造真实场景中的多智能体系统。 黑客马拉松,团队协作开发多智能体项目,挑战自我赢取奖品,探索无限创意与可能。 3. 像刘遥行(Dora.run)那样搭建系统: 脑暴全部传播场景、路径,搭建宣传矩阵,如亲友、KOL、投放等轮番上阵。 好奇并研究各种系统的运转方式,例如各种游戏、产品设计等,抽象出规则和约束。 基于信息论,秉承人本主义精神,独创“信息流转学”。学习 AIGC、LLM 知识也不例外,从经典论文读起,梳理知识之间的脉络关系。
2024-12-25
本地化搭建问答机器人流程
本地化搭建问答机器人的流程如下: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过函数从指定的 RSS 订阅 url 提取内容,如需接收多个 url 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3(从 hf 下载好模型后假设放置在某个路径,通过函数利用 FAISS 创建高效的向量存储)。 4. 推荐 RSSHub 项目:可将关注的信息汇聚在同一平台,一旦有更新能在各种终端收到提醒。其为各种网站生成 RSS 源,大部分社交媒体、传统媒体和金融媒体都能配合订阅。 5. 流程拆解: 创建 Python 虚拟环境,并安装相关库,如 ollama(0.1.8)、langchain(0.1.14)、faisscpu(1.8.0,有 gpu 则安装 gpu 版本)、gradio(4.25.0)、feedparser(6.0.11)、sentencetransformers(2.6.1)、lxml(5.2.1)。 6. 了解 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持自定义模型,可修改温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 先安装 ollama,访问 https://ollama.com/download/ 下载安装。安装完确保 ollama 后台服务已启动(在 mac 上启动应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。
2024-12-21
智能体搭建案例
以下为您提供两个智能体搭建案例: 案例一: 智能体名称:市场分析报告 智能体简介:品牌营销公司在用的生成智能体,输入行业/类目关键词自动检索关联信息并生成报告。数据化呈现更具真实性,附带信息来源网址便于源信息校正。可帮助品牌主/营销人员减少信息收集时间,聚焦决策判断。 应用场景: 目标人群:企业管理层(做发展策略评估)、投资者(评估投资机会)、创业者(评估项目可行性)、营销人员(做营销计划依据)。 当前痛点:信息收集需要长时间;报告的真实性是否可验证;现有大模型做的市场报告太过概念化,不能做有效参考。 应用价值:减少信息收集时间、真实可验证、聚焦决策判断。 智能体主要功能:根据用户的要求或指定的行业、产品,搜索网络信息,生成一份完整的市场调研报告,用数据支撑,并附引用链接。 案例二: 智能体开发平台:字节扣子和腾讯元器。 概念定义:智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,很多公司开始关注 AI 应用层的产品机会。 C 端案例:社交方向,用户注册后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:帮助 B 端商家搭建 Agent。 智能体开发平台介绍:字节于 2 月 1 日正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人比较常用的还是扣子。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么用扣子搭建一个仿写文章的智能体
以下是关于用扣子搭建仿写文章智能体的相关信息: 生物医药小助手:这是生物医药垂直领域的第一个智能体,其创建者将个人发布的大量生物医药文章转化为可交互数据库,以解决读者咨询占用过多时间的问题。通过扣子平台,解决了高成本搭建问题,并实现了一问一答的形式,用户可在扣子的 bot 商店或公众号中发起问答。 手搓插件:可参考相关文章和链接,了解在扣子中手搓插件的方法,包括 API 参数测试等步骤。 竖起耳朵听智能体:其编排包括插件、工作流和知识库。插件如同工具箱,可添加现有或自制的 API 以增强智能体能力;工作流像可视化拼图游戏,由多个节点组成,可组合各种功能创建复杂稳定的业务流程。 如果您想进一步了解具体的搭建步骤和细节,还需要您提供更明确的需求。
2024-12-19
如何通过AI构建自己的知识体系,比如通识教育,英语口语,以及子女学习辅导
以下是关于如何通过 AI 构建自己在通识教育、英语口语、子女学习辅导方面知识体系的建议: 通识教育: 1. 把学习任务切割成小单元,利用 AI 构建专属智能体。 2. 定期根据结果反馈调整智能体。 3. 审视学习流程,更多地应用 AI 。 4. 培养并维持旺盛的好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识。 英语口语: 1. 利用智能辅助工具,如 Grammarly 进行写作和语法纠错,改进表达和写作能力。 2. 借助语音识别应用,如 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 使用自适应学习平台,如 Duolingo 获得量身定制的学习计划和个性化内容练习。 4. 与智能对话机器人,如 ChatGPT 进行会话练习和对话模拟,提升交流能力和语感。 子女学习辅导: 1. 对于英语学习,可参考上述英语口语的学习方法。 2. 数学学习方面,使用自适应学习系统,如 Khan Academy 获得个性化学习路径和练习题;利用智能题库和作业辅助工具,如 Photomath 获取问题解答和解题步骤;借助虚拟教学助手,如 Socratic 解答问题、获取教学视频和答疑服务;参与交互式学习平台,如 Wolfram Alpha 的课程和实践项目进行数学建模和问题求解。 需要注意的是,在使用 AI 辅助学习的过程中,要结合传统学习方法,仔细甄别生成的内容,以取得更好的学习效果。
2024-12-22
多智能体系统如何搭建
搭建多智能体系统需要考虑以下几个方面: 1. 多智能体的概念:多智能体是由多个自主、独立的智能体组成的系统。每个智能体能够感知环境、进行决策并执行任务,它们之间可以进行信息共享、任务协调以及协同行动,以实现整体目标。随着大型语言模型的出现,以其为核心构建的智能体系统受到广泛关注,为不同智能体分配角色和任务信息,并配备工具插件以完成复杂任务。 2. 常见框架:目前更常见的框架主要集中在单智能体场景,其核心在于语言模型与工具的协同配合,可能需要与用户进行多轮交互。同时,越来越多的框架开始关注多智能体场景,为不同智能体指定不同角色,通过协作完成复杂任务,与用户的交互可能相对减少。 3. 主要组成部分: 环境:所有智能体应处于同一个环境中,环境包含全局状态信息,智能体与环境存在信息交互与更新。 阶段:为完成复杂任务,现有多智能体框架通常采用 SOP 思想,将复杂任务分解为多个子任务。 控制器:可以是语言模型或预先定义好的规则,负责环境在不同智能体和阶段之间的切换。 记忆:在多智能体框架中,由于智能体数量增多,消息数量增多,每条消息可能需要记录发送方、接收方等字段。 4. 开源框架示例:如 OpenAI 官方开源的多智能体框架「Swarm」,其在多智能体通信方面表现出色,处理了交接的逻辑。例如构建客服多智能体,只需要准备普通接线客服和宽带客服等不同角色的智能体。
2024-11-29
拆解 通往AGI之路 知识付费运营体系
通往 AGI 之路的知识付费运营体系可以从以下几个方面来拆解: 1. 课程特点: 【野菩萨的 AIGC 资深课】由工信部下属单位【人民邮电出版社】开设,是全网技术更新最快的课程之一。 课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识,能满足不同阶段学习者的需求。 2. 付费与开源的比较: 开源社区资源丰富,适合自律的自主学习者。 知识付费课程提供系统结构、专业指导、针对性计划和互动反馈,是高效的学习途径。 3. 社区需求: 新同学加入时,对适合小白新手入门的课程有需求,相比啃知识库的图文,更愿意接受老师手把手的教学。 4. 个人经历:创建者在希望快速入门 AI 绘画时,投入金钱学习了许多付费的 AI 课程,并最终选择了野菩萨的课程。 通往 AGI 之路本身不仅是开源的 AI 知识库,还是连接 AI 学习者、实践者、创新者的社区,具有以下特点: 1. 共同建设:由一群热爱 AI 的专家和爱好者共同贡献并整合各种 AI 资源。 2. 丰富内容:提供一系列开箱即用的工具,文生图、文生视频、文生语音等详尽的教程。 3. 紧跟前沿:追踪 AI 领域最新的进展,时刻更新。 4. 活动多样:包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等社区共创项目,以及 AIPO 活动、共学活动等。 5. 扶持与奖励:在小红书发布活动内容带特定标签有流量扶持,设有最佳创业奖和最佳投资奖等。
2024-11-25
可以介绍下AGI的知识体系吗,从入门级开始
以下是为您介绍的 AGI 知识体系入门级内容: 首先,推荐您从以下几个方面开始了解: 1. 记忆相关基础知识,如 AI 的历史、基本术语、重要人物、方法和原理等。您可以通过以下链接获取详细信息: 其次,您可以先试用提示词练手,参加相关的 battle 活动,如 prompt battle、video battle 等,与大神交流。还可以关注最新活动,如 AI 春晚、AIPO 项目等,感兴趣的话可以报名参与执行导演、平面设计、商务统筹或运营等工作。 另外,“通往 AGI 之路”不仅是开源的 AI 知识库,更是连接 AI 学习者、实践者、创新者的社区,基于无边界组织完成了 AI 春晚、“离谱村”短片等共创项目。 市面上的【野菩萨的 AIGC 资深课】由工信部下属单位【人民邮电出版社】开设,是为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。您可以扫码添加菩萨老师助理,了解更多信息。
2024-11-23
关于大模型技术体系、国内外应用研究希望有一段内容总结给我
以下是关于大模型技术体系、国内外应用研究的总结: 大模型技术体系: Embedding(嵌入):是一个浮点数的向量,用于度量相关性,有词、句子、文档、图像等分类。在大模型中有重要价值,可从数据集中获取结果并保存为 csv 文件。 模型架构:多模态大模型架构分为模态编码器、输入投影器、语言模型骨干、输出投影器和模态生成器等部分,不同架构有不同的应用和实现选择。 训练流程:包括多模态预训练和多模态指令微调两个阶段。 架构分类:如 encoderonly 适用于自然语言理解任务,encoderdecoder 用于理解和生成内容,decoderonly 擅长自然语言生成任务。 大模型的特点: 预训练数据量大,来自互联网上的多种来源,如论文、代码、公开网页等,通常以 TB 级别计。 参数众多,如 GPT3 已达 170B 的参数。 国内外应用研究: 企业级应用开发涉及利用开源的 Embedding 模型、向量数据库做检索增强生成(RAG),以及购买 GPU 服务器搭建企业级大模型项目。 对多模态大模型从模型架构、训练数据集规模等多维度进行对比,总结提升模型效果的重要训练方法,并探讨未来发展的 5 大方向,包括构建更强大的模型、设计更具挑战性的评估集、移动端/轻量级部署、具备实体性的智能和持续性指令调整。
2024-09-13
小七姐知识体系
小七姐关于提示词和知识管理体系有如下见解: 提示词的知识体系: 小七姐将提示词学习分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应反过来。最后是思维方式,经过前面四个层次,会理解到提示词本质是逻辑思维和表达能力,交互对象从人变成大模型。最终要面对三类问题:知识储备不足(包括大模型特性的知识和世界知识)、业务 know how 不扎实(能干自己活但是抽象不出方法论)、语言逻辑有缺陷(脑子里都知道,但表述不清楚)。小七姐还建了一个学习小组快闪飞书群,有缘看到的同学可以进群一起学习。 知识管理体系: 知识管理体系是一套流程、工具和策略的组合,用于系统地管理个人或组织的知识资产,包括但不限于收集信息、整理知识、分享经验、促进学习和创新。它可以非常个性化,如个人的笔记系统,也可以是组织内部的复杂系统,如企业的知识库或数据库。一个有效的知识管理体系通常包括以下关键组成部分:知识的捕捉,即收集个人或组织在日常工作和学习中产生的知识和信息;知识的组织,通过分类、标签和索引等方式使知识易于访问和检索;知识的分享,促进知识在个人或组织内部的流动,增加协作和创新的机会;知识的应用,确保知识被有效利用,以支持决策制定、问题解决和新知识的创造。
2024-07-20