直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

知识库的体系怎么搭建

回答

搭建知识库的体系可以从以下几个方面入手:

  1. 明确需求和兴趣点,选择相关的信息源,确保信息的质量与相关性。
  2. 建立信息通路,通过各种工具和方法(如浏览器插件、笔记应用等),确保信息能够顺畅地流入知识体系。
  3. 对收集的信息进行知识结构化处理,使用不同的笔记方法和工具将其分类、标签化和链接,形成便于检索和应用的结构化知识体系。
  4. 注重知识内化与应用,通过定期的复习、思考和实践,将外部信息转化为个人知识,并在实际工作和生活中应用,解决具体问题。
  5. 知识抽取方面,通过自动化技术抽取出可用的知识单元,包括实体抽取(命名实体识别)、关系抽取(提取实体之间的关联关系)、属性抽取(采集特定实体的属性信息)。
  6. 知识表示可采用属性图、三元组等方式。
  7. 进行知识融合,在同一框架规范下对异构数据进行整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库,包括实体对齐以消除不一致性问题,以及知识加工和本体构建等。
  8. 重视知识更新,不断迭代扩展现有知识,增加新的知识。
  9. 进行知识推理,在已有的知识库基础上挖掘隐含的知识。

此外,您还可以在网上做一些调研,找到人类试图量化和编写知识的领域,如回顾布卢姆 的分类法、林奈创建生物分类法的工作、德米特里·门捷列夫创建描述和分组化学元素的方法等有趣的例子。作业方面,可以建立一个本体,比如选择一个主题(如一个人、一个地方或一件事)建立该主题的模型,使用 Protégé 构建本体。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

小七姐:信息管理工具与方法

4.用得上:最终目标是将积累的知识转化为实际行动和成果。当需要解决问题或创造价值时,能够从知识库中调取相应信息,形成解决方案、产品、文章或个人生活指导等。这意味着知识不再是静态的存储,而是动态的应用于具体情境中,实现知识的价值转化。这一步将信息管理的成果落实到具体产出上,体现了知识的实践意义。🏗知识体系搭建:信息源的选择:在搭建知识体系时,首先要明确自己的需求和兴趣点,选择与之相关的信息源,确保信息的质量与相关性。信息通路的建立:通过各种工具和方法,如浏览器插件、笔记应用等,建立稳定的信息获取和存储机制,确保信息能够顺畅地流入知识体系。知识结构化:使用不同的笔记方法和工具,将收集的信息进行分类、标签化和链接,形成结构化的知识体系,便于检索和应用。知识内化与应用:通过定期的复习、思考和实践,将外部信息转化为个人知识,并在实际工作和生活中应用这些知识,解决具体问题。

知识图谱

1.知识抽取:通过自动化的技术抽取出可用的知识单元实体抽取:命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体;关系抽取(Relation Extraction):从数据源中提取实体之间的关联关系,形成网状的知识结构;属性抽取:从数据源中采集特定实体的属性信息。1.知识表示属性图三元组1.知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库实体对齐(Entity Alignment):消除异构数据中的实体冲突、指向不明等不一致性问题;知识加工:对知识统一管理,形成大规模的知识体系本体构建:以形式化方式明确定义概念之间的联系;质量评估:计算知识的置信度,提高知识的质量。知识更新:不断迭代更新,扩展现有知识,增加新的知识1.知识推理:在已有的知识库基础上挖掘隐含的知识

知识表示和专家系统

在网上做一些调研,找到一些人类试图量化和编写知识的领域。看看布卢姆的分类法(Bloom's Taxonomy),回顾历史,了解人类是如何试图理解他们的世界的。探索林奈创建生物分类法的工作,观察德米特里·门捷列夫创建描述和分组化学元素的方法。你还能找到哪些有趣的例子?作业:建立一个本体建立知识库就是对表示了特定主题事实的模型进行分类。选择一个主题——比如一个人、一个地方或一件事——然后建立该主题的模型。使用本课中介绍的一些技术和建模策略。例如,创建一个客厅的本体,包括家具、灯光等。客厅与厨房有什么不同?浴室有什么不同?你怎么知道这是客厅而不是餐厅?使用Protégé构建本体。

其他人在问
AI知识库是是什么?有哪些知名的AI知识库
AI 知识库是一系列 AI 相关的信息和知识的集合。以下为您介绍一些知名的 AI 知识库: 通往 AGI 之路:这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。在这里,用户既是知识的消费者,也是知识的创作者。它不仅提供各种 AI 资源,还具有一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程,并且会追踪 AI 领域最新进展并时刻更新。其网址为:https://waytoagi.com/ ,您可即刻体验:https://waytoagi.com/ 。 Coze 知识库:例如在飞书软件搭建的。
2024-11-23
AI知识库工具
以下是为您提供的关于 AI 知识库工具的相关信息: WayToAGI(通往 AGI 之路): 这是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库。 大家贡献并整合各种 AI 资源,让人们能轻松学习 AI 知识,应用各类 AI 工具和实战案例。 提供一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程。 追踪 AI 领域最新进展并时刻更新,无论您是初学者还是行业专家,都能在此发掘有价值的内容。 网址:https://waytoagi.com/ 体验链接:https://waytoagi.com/ 知识库在 AI 模型中的作用: 知识库就像 AI 的“活字典”,是一个非常贴切的比喻。 能解决 AI 知识“过期”的问题,AI 可随时从更新的知识库中检索相关信息,给出更准确的回答。 例如可建立包含最新新闻、科技发展、法律法规等内容的知识库,让 AI 回答最新事件的问题。 像热门的 AI 搜索,就是将整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。 产品经理 AI 工具集: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(https://uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(https://www.hypertype.co/) 会议信息:AskFred(http://fireflies.ai/apps) 团队知识库:Sense(https://www.senseapp.ai/) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(https://www.ellie.ai/) 企业自动化:Moveworks(moveworks.com)
2024-11-22
知识库软件有什么推荐的吗
以下是为您推荐的一些知识库软件: 稿定 AI:国内设计工具稿定推出的 AI 创意工具合集,包括设计宣传图、绘图、素材、商品图、文案、AI 圈等功能,能切中国内内容营销的痛点,体验良好。 OpenCat:由开发,推出了付费订阅计划,每月 18 元可无限使用 GPT3.5 及一些软件的高级功能,如 iCloud 同步、AI 键盘等。 Tana:非常强大的知识管理软件,推出了 AI 相关功能,不仅能扩写文本,还能与您的所有数据交互并访问网上信息。 Read Speak:由开发的利用 ChatGPT 联系口语的 APP,支持与虚拟角色对话边学边练,具有实时发音评价、实时语法纠错等功能。 STUDIO AI:AI 驱动的无代码网页构建工具,能学习用户反馈并将设计转化为实际网站,内含 WebDesignAI,具有自动补全样式和内容的功能,支持语音控制编辑器完成日常设计任务。 Clarity:AI 驱动的分层阅读工具,提供分层的深度阅读功能,用户可从摘要开始掌握复杂主题,通过点击相应内容了解更多细节。 如果您想搭建个人知识库,还可以参考文章,忽略本地部署大模型环节,直接看其中推荐的软件。但使用时可能需要对接一些额外的 API,建议先了解 RAG 的原理再使用。
2024-11-22
有什么知识库的应用推荐?
以下是为您推荐的知识库应用: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库。其中提到大模型存在不准确和数据限制的问题,知识库可解决这些问题,典型应用如客服系统,公司可将用户问题及答案记录在文档中以知识库形式投喂给大模型,使大模型更准确回复用户。 01通往 AGI 之路知识库使用指南。涵盖智能纪要、总结等内容,包括关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。 张梦飞:【知识库】FastGPT + OneAPI + COW 带有知识库的机器人完整教程。包括创建知识库应用的步骤,如地址输入、模型选择、创建和上传文件等,以及安装并接入 cow 的操作流程。
2024-11-22
本群怎么实现的调用知识库
要实现本群对知识库的调用,可以通过以下两种方式: 1. 在 Bot 内使用知识库: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项说明如下: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:您需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 2. 在工作流内使用 Knowledge 节点: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。
2024-11-21
AI知识库有什么
AI 知识库主要包括以下内容: 通往 AGI 之路:这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。在这里,用户既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 特点: 由一群热爱 AI 的专家和爱好者共同建设。 大家贡献并整合各种 AI 资源,使大家可以轻松学习各种 AI 知识,应用各类 AI 工具和实战案例等。 提供一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽的教程。 追踪 AI 领域最新的进展,时刻更新,让用户每次访问都能有新的收获。 链接: https://waytoagi.com/ 即刻体验:https://waytoagi.com/ 此外,还有关于 Coze 的知识库相关内容,如大圣撰写的文章,帮助非编程人士理解 AI 时代的知识库,包括其概念、实现原理、能力边界,以及在通往 AGI 之路大群中通过对话获取知识库中资料的原理,还有如何更好地使用 Coze 等 AI Agent 平台中的知识库组件来打造更加强大的智能体。
2024-11-21
如何搭建利用产品原图和模特模板生成商业图的工作流 或者有没有这类ai 应用
以下是关于利用产品原图和模特模板生成商业图的工作流及相关 AI 应用的信息: 美国独立站搭建工作流中,有给模特戴上珠宝饰品的应用。 大淘宝设计部在主题活动页面、超级品类日传播拍摄创意、产品营销视觉、定制模特生成、产品场景生成等方面应用了 AI。例如,七夕主题活动页面通过 AI 生成不受外部拍摄条件限制的素材;在 UI 设计场景中,利用 SD 中 controlnet 生成指定范围内的 ICON、界面皮肤等;通过对 AI 大模型的训练和应用,提升合成模特的真实性和美感,提供定制化线上真人模特体验,如 AI 试衣间、AI 写真等;还能根据商品图和用户自定义输入生成多张场景效果,无需 3D 模型、显卡渲染和线下拍摄。
2024-11-22
agent的搭建
以下是一些常见的 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,能拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 搭建工作流驱动的 Agent 通常可分为以下 3 个步骤: 1. 规划: 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2024-11-21
如何使用coze搭建智能体
以下是使用 Coze 搭建智能体的步骤: 1. 进入 Coze 官网(https://www.coze.cn/home)。 2. 点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 3. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 4. 了解编辑视图与功能,左侧「选择节点」模块中,根据子任务需要,实际用到的有: 插件:提供一系列能力工具,拓展智能体的能力边界。如思维导图、英文音频等无法通过 LLM 生成的内容,需依赖插件实现。 大模型:调用 LLM,实现各项文本内容的生成。如中文翻译、英文大纲、单词注释等。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 5. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 6. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,完成工作流框架的搭建。 对于图像工作流: 1. 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类。 2. 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,即提示词对效果图的影响度;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 3. 按照构架配置工作流,调试工作流效果,调试毛坯房测试用例(https://tgi1.jia.com/129/589/29589741.jpg)。 4. 开始节点对应配置三项内容,进行提示词优化。 5. 设定人设和回复逻辑,然后点击右上角发布。
2024-11-20
怎么搭建智能体
搭建智能体可以参考以下步骤: 1. 明确我们的 KnowHow 和 AI 的能力: 明确 AI 对公司不了解的部分,如公司的主要产品、产品解决的用户需求、产品的独特之处、获得的认可、依赖的核心渠道、核心购买人群、使用过的营销手段、在新渠道的期望结果等。 了解 AI 的真正能力,如通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据可输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。确定智能体更适合做引导型的助手,成为灵感提问助手,在寻找卖点时提供更多思考维度。 2. 确定智能体的结构: 按照市场营销的逻辑组织智能体的结构。 确定以品牌卖点提炼六步法为核心的流程,并将其他分析助手加入工作流,包括品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等。 还包括一些在后续应用过程中有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。 3. 逐步搭建 AI 智能体: 经过配置得到可用的工作流(如整理入库、选择内容)。 把工作流编排成为一个完整的智能体,配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把配置好的工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词等。完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2024-11-19
如何用coze搭建一个总结聊天记录的功能
以下是用 Coze 搭建一个总结聊天记录功能的步骤: 1. 设计 Bot 目的:明确 Bot 的用途,例如作为一个 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效的站内信息检索服务。 2. 了解 Coze 平台常用概念和功能:包括提示词(设定 Bot 的身份和目标)、插件(通过 API 连接集成各种平台和服务)、工作流(设计复杂的多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。 3. 进行 Bot 基础设置:根据机器人的作用,设计人设和回复逻辑,限制机器人的功能使其更专注于 AI 相关的知识回答和服务,还可以加入长期记忆功能来总结聊天对话内容以更好地响应用户消息,以及设计更加美观的 Bot 开场白。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可以查官方指南。
2024-11-15
使用coze搭建一个心理咨询机器人,将机器人接入自己开发的应用后,如何再进一步实现让ai把每个用户每天的聊天内容,总结成日记,并传回给应用展示日记
目前知识库中没有关于使用 Coze 搭建心理咨询机器人,并将用户每天聊天内容总结成日记传回应用展示的相关内容。但一般来说,要实现这个功能,您可能需要以下步骤: 1. 数据采集与存储:在机器人与用户交互过程中,采集并妥善存储聊天数据。 2. 自然语言处理与分析:运用相关的自然语言处理技术,对聊天内容进行理解和分析,提取关键信息。 3. 内容总结:基于分析结果,使用合适的算法和模型将聊天内容总结成日记形式。 4. 数据传输:建立与应用的稳定接口,将总结好的日记数据传输回应用。 这只是一个大致的思路,具体的实现会涉及到很多技术细节和开发工作。
2024-11-15
关于大模型技术体系、国内外应用研究希望有一段内容总结给我
以下是关于大模型技术体系、国内外应用研究的总结: 大模型技术体系: Embedding(嵌入):是一个浮点数的向量,用于度量相关性,有词、句子、文档、图像等分类。在大模型中有重要价值,可从数据集中获取结果并保存为 csv 文件。 模型架构:多模态大模型架构分为模态编码器、输入投影器、语言模型骨干、输出投影器和模态生成器等部分,不同架构有不同的应用和实现选择。 训练流程:包括多模态预训练和多模态指令微调两个阶段。 架构分类:如 encoderonly 适用于自然语言理解任务,encoderdecoder 用于理解和生成内容,decoderonly 擅长自然语言生成任务。 大模型的特点: 预训练数据量大,来自互联网上的多种来源,如论文、代码、公开网页等,通常以 TB 级别计。 参数众多,如 GPT3 已达 170B 的参数。 国内外应用研究: 企业级应用开发涉及利用开源的 Embedding 模型、向量数据库做检索增强生成(RAG),以及购买 GPU 服务器搭建企业级大模型项目。 对多模态大模型从模型架构、训练数据集规模等多维度进行对比,总结提升模型效果的重要训练方法,并探讨未来发展的 5 大方向,包括构建更强大的模型、设计更具挑战性的评估集、移动端/轻量级部署、具备实体性的智能和持续性指令调整。
2024-09-13
小七姐知识体系
小七姐关于提示词和知识管理体系有如下见解: 提示词的知识体系: 小七姐将提示词学习分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应反过来。最后是思维方式,经过前面四个层次,会理解到提示词本质是逻辑思维和表达能力,交互对象从人变成大模型。最终要面对三类问题:知识储备不足(包括大模型特性的知识和世界知识)、业务 know how 不扎实(能干自己活但是抽象不出方法论)、语言逻辑有缺陷(脑子里都知道,但表述不清楚)。小七姐还建了一个学习小组快闪飞书群,有缘看到的同学可以进群一起学习。 知识管理体系: 知识管理体系是一套流程、工具和策略的组合,用于系统地管理个人或组织的知识资产,包括但不限于收集信息、整理知识、分享经验、促进学习和创新。它可以非常个性化,如个人的笔记系统,也可以是组织内部的复杂系统,如企业的知识库或数据库。一个有效的知识管理体系通常包括以下关键组成部分:知识的捕捉,即收集个人或组织在日常工作和学习中产生的知识和信息;知识的组织,通过分类、标签和索引等方式使知识易于访问和检索;知识的分享,促进知识在个人或组织内部的流动,增加协作和创新的机会;知识的应用,确保知识被有效利用,以支持决策制定、问题解决和新知识的创造。
2024-07-20
我想在公司构建AI客服体系,我要准备什么内容
构建AI客服体系是一个涉及多个步骤和技术的复杂过程,需要精心规划和执行。以下是您可能需要准备的内容: 1. 需求分析: 确定您的客户服务需求,包括常见问题、客户查询类型和业务流程。 2. 技术选型: 选择合适的AI客服技术平台,如聊天机器人、自然语言处理(NLP)引擎、机器学习工具等。 3. 数据准备: 收集和整理用于训练AI模型的数据,包括常见问题、客户对话记录和业务知识库。 4. 模型训练: 使用收集的数据训练AI模型,以识别和响应客户查询。 5. 系统集成: 将AI客服系统与现有的客户服务平台(如CRM系统、呼叫中心、社交媒体等)集成。 6. 用户界面设计: 设计用户友好的交互界面,确保客户可以轻松地与AI客服系统进行交流。 7. 测试与优化: 在实际环境中测试AI客服系统的性能,并根据反馈进行优化。 8. 员工培训: 对客服团队进行培训,让他们了解AI系统的工作方式,以及如何在必要时介入。 9. 安全与合规: 确保AI客服系统符合数据保护法规和行业标准,保护客户隐私。 10. 部署与监控: 部署AI客服系统,并建立监控机制,以跟踪系统性能和客户满意度。 11. 持续学习: 实施持续学习机制,让AI系统能够根据新的客户互动不断改进。 12. 沟通策略: 制定清晰的沟通策略,告知客户AI客服系统的使用和限制。 13. 反馈机制: 建立客户反馈机制,收集客户对AI客服系统的意见和建议。 14. 预算规划: 制定项目预算,包括技术开发、系统维护、员工培训和市场营销等费用。 15. 项目管理: 建立项目管理计划,包括时间表、里程碑和风险管理策略。 构建AI客服体系是一个持续的过程,需要不断地评估、测试和优化。确保您的团队准备好应对可能出现的挑战,并利用AI技术提供更好的客户服务体验。
2024-04-17