Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能训练师证书值得考吗

Answer

人工智能训练师证书是否值得考,需要综合多方面因素来判断。

从经验来看,像 MQ 老师这样在教育行业工作 15 年以上,考过了国家工信部、微软、讯飞三个初级人工智能工程师证书,并在教育场景中进行了 AI 实践的人士,能为我们提供一定的参考。

对于新手学习 AI 而言,首先要了解 AI 的基本概念,比如熟悉术语和基础概念,了解其主要分支及相互联系,还可以浏览入门文章。然后可以在相关在线教育平台上按照自己的节奏学习课程,并有机会获得证书。

在医疗保健领域,虽然 AI 具有一定的能力,如 GPT-4 在美国医学执照考试中超过及格分数 20 分,但也存在不足。为了在该领域产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。

综合而言,人工智能训练师证书的价值取决于您的职业规划和发展需求。如果您希望在 AI 相关领域深入发展,获取相关证书可能有助于提升您的竞争力和专业认可度。但同时也要考虑证书的权威性、行业认可度以及您为获取证书所投入的时间和精力成本等因素。

Content generated by AI large model, please carefully verify (powered by aily)

References

MQ:AI + 教育 | 实践与探索

大家好,我是MQ老师,知乎的AI讲师,考过了国家工信部,微软,讯飞三个初级人工智能工程师证书。我在教育行业工作15年+,教过2岁到20岁的娃,也做过校级管理层。过去半年多,我一直在探索教育场景中的AI实践:零散写了200 +小文,培训了来自30 +高等院校,K12国际学校和创新学校等上千位老师,家长和同学。今天这篇来详细复盘我的心路历程并分享实践。半年前画的AI +教师赋能全景图

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

然而,尽管探索这些能力很令人愉悦——例如,GPT-4在美国医学执照考试中[超过](https://www.microsoft.com/en-us/research/publication/capabilities-of-gpt-4-on-medical-challenge-problems/)及格分数20分——但这样做的结果主要是强调了它们的不足。拥有读取、保留并根据需要重复所有这些数据的能力使得今天的AI在所有方面都很优秀,但没有在任何方面做得非常出色。毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家” AI——它们像我们今天最优秀的医生和药物开发者那样学习。

Others are asking
到目前为止,人工只能已经发展到什么样的一个程度了,未来前景怎么样?普通人如何通过人工智能挣到钱
目前人工智能的发展呈现出复杂的态势: 预计明年会有团体花费超过 10 亿美元训练单个大规模模型,通用人工智能的热潮仍在持续,但其成本也在不断增加。 政府和大型科技公司都面临着计算需求超出电网支持能力的问题。 人工智能对选举的影响尚未完全显现,但仍需关注。 以 OpenAI、Meta 以及中国实验室为代表,竞争激烈。 未来前景方面: 深度学习被证明有效,且随着规模扩大预期会改善,能帮助解决更多难题,对全球人民生活产生有意义的改善。 人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,并推动各领域科学进展。 对于普通人如何通过人工智能挣钱,以下是一些可能的途径: 学习相关技能,如编程、数据分析等,参与人工智能项目的开发和维护。 利用人工智能工具进行内容创作,如写作、绘画等,并通过相关平台实现盈利。 关注人工智能领域的新兴应用,寻找创业机会。
2025-02-05
目前国内最好的生产PPT的人工智能软件是哪一款
目前国内有以下几款较好的生产 PPT 的人工智能软件: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有强大团队,能把握市场机遇,已确立市场领先地位。 6. 闪击 7. Process ON 8. WPS AI
2025-02-05
人工智能设计拜年PPT的软件
以下是一些可以用于人工智能设计拜年 PPT 的软件: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包含互动元素和动画效果,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 此外,还有以下相关内容: 1. 2024 年 6 月 22 日更新的一批研究报告,如《》等。 2. 熊猫 Jay 编写的超全的 AI 工具生成 PPT 的思路和使用指南,介绍了 MindShow、爱设计、闪击、Process ON、WPS AI 等工具,并因该培训获得 1000 元奖励。原文:https://mp.weixin.qq.com/s/uVoIIcePa7WTx7GNqkAPA 公众号:熊猫 Jay 字节之旅
2025-01-28
快速好用的人工智能网页翻译AI
以下为您推荐快速好用的人工智能网页翻译 AI: Open AI Translator(强烈推荐) 推荐指数:🌟🌟🌟🌟🌟 功能:是一款接入了 GPT 能力的文本翻译、总结、分析类产品。适合在浏览网页时查询个别单词、句子,能得到等同词典的体验。也可用于分析代码,搭配 Chat GPT 使用效果佳。 优势:可以在脱离只提供产品内 AI 能力的场景使用,可用于任何 web 场景。强烈推荐配合 Arc Browser 而非 Chrome 使用。 调用方式:选中页面中的文本后,会悬浮该插件,点击即可翻译,速度极快,摆脱“复制打开翻译软件粘贴翻译”的流程。 注意事项:安装后需要获取 Open AI 的 API Key,首次打开插件设置好 Open AI Key 地址,可找个地方保存好 API Key,方便在体验产品时复制粘贴。 下载地址: 此外,10 月盘点中还有一些相关的 AI 应用: 用自然语言对网页编程,实现各种操作: 浏览器插件→ 安装向导→https://yiu45q2746h.feishu.cn/docx/UM5Idb3AVo5cQXxgu09cTCAOnye 把输入文字自动翻译成多种语言后进行搜索(沉浸式翻译团队的新产品):网页应用→https://bilin.ai🔮 AI Youtube 搜索和总结,并支持播放 Youtube 视频,突然走红:网页应用→https://www.jenova.ai🔮 302.ai:汇集全球顶级品牌的 AI 超市,网页应用→https://302.ai,AI 播客生成器、AI 视频生成器、AI 网页生成器等 30+生产级应用,GitHub→https://github.com/302ai 另外,如果您想在网站上增加一个 AI 助手,只需 4 步: 1. 创建大模型问答应用:通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算,来快速搭建一个网站,模拟您的企业官网或者其他站点。 3. 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 4. 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助您更好的应对客户咨询。
2025-01-26
2030年前全国中小学普及人工智能是哪发布 的
目前没有明确的权威信息表明“2030 年前全国中小学普及人工智能”这一具体说法的发布来源。但以下信息可能对您有所帮助: 美国第 116 届国会第二次会议提到,国家科学基金会主任应授予 K12 等教育阶段的教育项目资助,以支持人工智能系统相关的多样化劳动力培养、提高对其伦理、社会、安全等影响的认识,并促进对人工智能原理和方法的广泛理解。 北京市大中小学推广了 AI 学伴和 AI 导学应用。
2025-01-24
如何学习好人工智能
以下是关于如何学习好人工智能的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、中学生学习 AI 的特别建议 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的发展做好准备。 七、在医疗保健领域的 AI 学习 为了在医疗保健中让 AI 产生真正的改变,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于 AI 来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。我们应该通过使用彼此堆叠的模型来训练 AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。
2025-01-23
AI从业者相关资质证书
以下是一些与 AI 从业者相关的资质证书和学习资源: 学习资源: 云端问道:https://developer.aliyun.com/topic/techworkshop?spm=a2c6h.29649919.J_3425856640.1.45d87102rfvft7 云起实践平台:https://developer.aliyun.com/adc/?spm=a2c6h.28938832.0.0.5ca5448a0xO1Q9 人工智能认证证书: (免费) 视觉开放平台:https://vision.aliyun.com/ 此外,以下是一些关于 AI 从业者的相关信息: 【已结束】AI 创客松中参与同学的自我介绍和分类,包括擅长领域、想法方向和优势等。 AI 切磋大会第七期·线下狂欢 Show 中提到适合做 AI 摊主的人群特点,如技术背景丰富、产品开发与管理经验、多元化应用场景等,以及 AI 爱好者与学习者、AI 内容创作与营销能力方面的相关情况。
2025-01-23
有什么AI相关的证书可以考
以下是一些 AI 相关的证书可以考: 1. 国家工信部初级人工智能工程师证书。 2. 微软初级人工智能工程师证书。 3. 讯飞初级人工智能工程师证书。 4. 阿里云大模型工程师 ACA 认证(免费)。 5. 阿里云人工智能高级工程师 ACP 认证。
2025-01-17
写一个关于AI面试B端软件的需求文档,里面核心功能包括AI面试功能、背调功能(比如线上、证明人、应聘者提供的材料)、简历筛选关键词功能(比如UI设计里面负责项目包括用户调研、原型设计、需求缝隙、高保真设计、切图)、提取简历证书项目功能(比如初级设计师、建筑设计师、一级建造师)。
以下是为您生成的关于 AI 面试 B 端软件的需求文档: 一、核心功能 1. AI 面试功能 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、招聘全环节集成解决方案、先进防作弊技术及严密数据安全保障,能完成面试、初筛并自动发送面试邀约。 海纳 AI 面试:通过在线方式自动面试、评估,精准度高达 98%,面试效率比人工提升 5 倍以上,候选人到面率提升最高达 30%。 InterviewAI:在线平台提供面试职位相关问题及 AI 生成的推荐答案,候选人用设备麦克风回答,每个问题最多回答三次,会收到评估、建议和得分。 2. 背调功能 线上背调。 证明人背调。 对应聘者提供材料的背调。 3. 简历筛选关键词功能 UI 设计方面,负责项目包括用户调研、原型设计、需求缝隙、高保真设计、切图。 4. 提取简历证书项目功能 初级设计师。 建筑设计师。 一级建造师。 二、案例参考 1. HR 相关案例 HR:团队绩效管理,根据团队和个人绩效的往期数据,分析员工绩效排名,输出绩效考评和迭代改进建议。 HR:面试工具,作者开发使用 GPT4 技术的实时转录工具,帮助求职者在面试中生成完美回答。 2. 其他工作场景案例 销售:话术总结优缺点,涵盖产品特点、服务优势等方面。 销售:定制销售解决方案,涉及企业产品和服务内容等方面。 客服:定制客服话术,包含产品知识、使用方法等关键词库。 三、提示词工程师面试经验分享 某岗位面试一面完不到 2 个小时就通知二面,效率较高。 技术面:面试官直接给出同行美妆 GPT 案例,让判断实现方式,应试者提出 C 端优化方案及补充 B 端商业化方案后通过。 BOSS 面:了解学业情况、经历和意向,询问经典问题。
2024-12-02
写一个关于AI面试B端软件的需求文档,里面核心功能包括AI面试功能、背调功能、简历筛选关键词功能、提取简历证书项目功能。
以下是一份关于 AI 面试 B 端软件的需求文档,核心功能包括 AI 面试功能、背调功能、简历筛选关键词功能、提取简历证书项目功能: 一、AI 面试功能 目前市场上有一些相关产品,例如: 1. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。能帮助企业完成面试,借助人岗匹配模型自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 2. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善,到面率比之前提升最高达 30%。 3. InterviewAI:这是一个在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 二、背调功能 (此处可详细描述背调的具体流程、涵盖的内容、数据来源等) 三、简历筛选关键词功能 (说明如何设置关键词、关键词的匹配规则等) 四、提取简历证书项目功能 (阐述如何准确提取简历中的证书和项目信息) 需要注意的是,使用这些产品时,企业需要考虑到数据安全性和隐私保护的问题。
2024-12-02
人工智能训练师证书有必要报班吗
抱歉,您提供的内容与“人工智能训练师证书是否有必要报班”这一问题无关。关于此问题,需要综合多方面因素来考虑。报班学习有其优势,比如能获得系统的课程安排、专业的指导、实践机会以及与同行交流的环境。但也并非绝对必要,如果您具备较强的自学能力、能够获取优质的学习资源并且有明确的学习计划,通过自学也有可能达到获取证书的要求。最终是否报班取决于您的个人情况和学习偏好。
2024-09-23
微软AI证书考取的流程是什么
考取微软AI证书的流程通常包括以下几个步骤: 1. 选择证书:确定你想要考取的微软AI证书类型,例如"Azure AI Engineer Associate"(AI102)或"Azure AI Fundamentals"(AI900)。 2. 了解考试内容:访问微软官方网站,了解所选证书的考试大纲、测试的技能点以及考试要求。 3. 学习准备:根据考试大纲,通过官方或第三方提供的教材、在线课程、实验室练习和模拟考试进行学习。 4. 获取学习资源:利用微软提供的资源或参加微软官方认证的培训课程来准备考试。 5. 注册考试:在准备好之后,在微软认证的考试平台上注册并安排考试时间。 6. 参加考试:在预定的时间和地点参加考试,考试可能包括多种题型,如单选题、多选题、判断题等。 7. 考试通过:考试合格后,你将获得微软颁发的AI证书。 8. 认证续订:某些微软认证可能需要定期续订,以保持认证的有效性。 具体步骤可能会有所变化,建议访问微软官方认证页面或相关资源获取最新信息。以下是一些微软AI证书的官方链接,你可以访问了解更多详情: 此外,根据搜索结果,还有一些博客和论坛提供了关于微软AI证书考取的经验和指南,你可以作为参考:
2024-06-13
如何训练一个自己的模型用来识别不同的图片类别
训练自己的模型来识别不同的图片类别可以参考以下方法: 对于扩散模型(如 Midjourney): 强大的扩散模型训练往往消耗大量 GPU 资源,推理成本高。在有限计算资源下,可在强大预训练自动编码器的潜在空间中应用扩散模型,以在复杂度降低和细节保留间达到平衡,提高视觉保真度。引入交叉注意力层可使其成为灵活的生成器,支持多种条件输入。 Midjourney 会定期发布新模型版本以提升效率、连贯性和质量。最新的 V5 模型具有更广泛的风格范围、更高的图像质量、更出色的自然语言提示解读能力等。 用 SD 训练贴纸 LoRA 模型: 对于原始形象,可通过 MJ 关键词生成不同风格的贴图,总结其特征。注意关键词中对颜色的限制,保持正面和负面情绪数据比例平衡。若训练 25626 大小的表情包,初始素材可能够用,若训练更高像素图片,可能需进一步使用 MJ 垫图和高清扩展功能。 进行高清化时,从 256 到 1024 分辨率,输入左图并加入内容和风格描述,挑选合适的图片。 多模态模型(以 StableDiffusion 为例): 多模态模型包括文生图、图生图、图生视频、文生视频等,底层逻辑通常从生图片源头开始。 扩散模型(如 StableDiffusion 中使用的)的训练是对图片加减噪点的过程。先对海量带有标注文字描述的图片逐渐加噪点,模型学习每一步图片向量值和文字向量值的数据分布演变规律,完成训练。输入文字后,模型根据文字向量指导充满噪点的图片减噪点生成最终图片。扩散模型加减噪点方式与大脑构思图片方式类似,且多模态模型会关联文字向量值和图片像素点向量值。
2025-01-31
如何对扣子智能体做专属训练
对扣子智能体进行专属训练时,需要注意以下要点: 1. 跳转设置:扣子在节点切换提供了独立和非独立两种识别模式。独立识别模式中每个节点都有一个独立识别模型,非独立模式则直接使用当前智能体模型进行判断,实际使用中推荐独立模式。 2. 独立模式的选择:独立模式有两种选择。第一种是面对通用指令时,选择已经训练好的、专门用于节点切换的大型模型,其优点是经过特定训练,无需额外操心设计。第二种是在遇到非常复杂的情景时,使用自定义的大型模型,可根据需求定制模型和编写特定提示词以适应复杂交互场景,但实际测试效果不理想,所以推荐使用第一种。 3. 关键注意点:在使用专门训练的意图识别模型进行节点切换时,要特别注意两个关键点。一是每个智能体的用途必须清晰明确,在设计和实现时要清楚标注其功能和目的,以确保系统能准确识别和响应用户意图。二是智能体的名称非常重要,应清晰、易于识别,便于系统识别和记忆。
2025-01-27
预训练
以下是关于预训练的相关内容: Atom 系列模型的预训练: Atom 系列模型包含 Atom7B 和 Atom13B,基于 Llama2 做了中文能力的持续优化。Atom 大模型在 Llama2 的基础上,采用大规模的中文数据进行持续预训练,数据来源广泛,包括百科、书籍、博客、新闻、公告、小说、金融数据、法律数据、医疗数据、代码数据、专业论文数据、中文自然语言处理竞赛数据集等。同时对庞大的数据进行了过滤、打分、去重,筛选出超过 1T token 的高质量中文数据,持续不断加入训练迭代中。为了提高中文文本处理的效率,针对 Llama2 模型的词表进行了深度优化,扩展词库至 65,000 个单词,提高了中文编码/解码速度约 350%,还扩大了中文字符集的覆盖范围,包括所有 emoji 符号。Atom 大模型默认支持 4K 上下文,利用位置插值 PI 和 Neural Tangent Kernel(NTK)方法,经过微调可以将上下文长度扩增到 32K。 GPT 助手的预训练: 预训练阶段是 GPT 训练中计算工作基本发生的地方,占用了训练计算时间和浮点运算的 99%。在这个阶段,需要收集大量的数据,如 Common Crawl、C4、GitHub、维基百科、图书、ArXiv、StackExchange 等,并按照一定比例采样形成训练集。在实际训练前,需要进行预处理步骤 Tokenization(分词/标记化),将原始文本翻译成整数序列。 OpenAI o1 的预训练: GPT 4 等 LLM 模型训练一般由“预训练”和“后训练”两个阶段组成。“预训练”通过 Next Token Prediction 从海量数据吸收语言、世界知识、逻辑推理、代码等基础能力,模型规模越大、训练数据量越多,则模型能力越强。
2025-01-24
怎么做tts模型训练
以下是关于 TTS 模型训练的相关内容: 使用 GPTSoVITS 进行 TTS 模型训练: GPTSoVITS 是一个声音克隆和文本到语音转换的开源 Python RAG 框架。 只需 1 分钟语音即可训练一个自己的 TTS 模型。5 秒数据就能模仿您,1 分钟的声音数据就能训练出一个高质量的 TTS 模型,完美克隆您的声音。 主要特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。模仿出来的声音会更加接近原声,听起来更自然。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,您可以直接下载使用。 GitHub: 视频教程: TTS 模型训练的音库制作和文本前端: 音频录制: 音频的录制对合成语音的表现较为重要,较差的语音甚至会导致端到端声学模型无法正常收敛。 用于训练的录音至少要保证录音环境和设备始终保持一致,无混响、背景噪音;原始录音不可截幅。 如果希望合成出来的语音干净,则要删除含口水音、呼吸音、杂音、模糊等,但对于目前的端到端合成模型,有时会学习到在合适的位置合成呼吸音、口水音,反而会增加语音自然度。 录音尽可能不要事先处理,语速的调节尚可,但调节音效等有时会造成奇怪的问题,甚至导致声学模型无法收敛。 音频的录制可以参考录音公司的标准,购买专业麦克风,并保持录音环境安静即可。 在音库录制过程中,可尽早提前尝试声学模型,比如音库录制 2 个小时语音后,就可尝试训练基线语音合成系统,以防止录音不符合最终的需求。 语料整理: 检查文本和录制的语音是否一一对应,录制的音频本身一句话是否能量渐弱,参与训练的语音前后静音段要保持一致,能量要进行规范化。 可使用预训练的语音活动检测(Voice Activity Detection,VAD)工具,或者直接根据语音起止的电平值确定前后静音段。 可以使用一些开源的工具,比如统一所有语音的整体能量,这将有助于声学模型的收敛。当然,在声学模型模型训练时,首先就要对所有语料计算均值方差,进行统一的规范化,但是这里最好实现统一能量水平,防止一句话前后能量不一致。 GPTSoVITS 实现 AIyoyo 声音克隆的步骤: 前置数据获取处理: 选择音频,开启切割。 有噪音时,进行降噪处理。 降噪处理完成,开启离线 ASR。 GPTSowitsTTS: 训练集格式化:开启一键三连,耐心等待即可。 微调训练:开启 SoVITS 训练和 GPT 训练。 推理:开始推理 刷新模型 选择微调后的模型 yoyo。 成功:出现新的 URL,说明您自己的声音微调完毕,然后可以进行使用。 声音复刻:开启声音复刻之旅,实现跨多语种语言的声音。 希望以上内容对您有所帮助。
2025-01-24
如何用最简单的方法,训练一个自有数据的大模型
训练自有数据的大模型可以通过以下步骤实现: 1. 了解大模型的概念:大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用上学参加工作来类比大模型的训练、使用过程,包括找学校(需要大量 GPU 等计算资源)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(进行微调)、搬砖(推导)。在 LLM 中,Token 被视为模型处理和生成的文本单位,会对输入进行分词并形成词汇表。 2. 基础训练步骤: 进入厚德云模型训练数据集,如 https://portal.houdeyun.cn/sd/dataset 。 创建数据集:在数据集一栏中,点击右上角创建数据集,输入数据集名称。可以上传包含图片+标签的 zip 文件,也可单独上传照片,但建议提前打包。Zip 文件里图片名称与标签文件应当匹配,上传后等待一段时间确认创建,返回上一个页面等待上传成功并可点击详情检查,能预览数据集的图片及对应的标签。 Lora 训练:点击 Flux,基础模型会默认是 FLUX 1.0D 版本。选择数据集,触发词可有可无,模型效果预览提示词随机抽取数据集里的标签填入。训练参数可调节重复次数与训练轮数,厚德云会自动计算训练步数,可默认 20 重复次数和 10 轮训练轮数,按需求选择是否加速,点击开始训练,会显示所需消耗的算力,等待训练完成,会显示每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有生图,点击可自动跳转到使用此 lora 生图的界面,点击下方下载按钮可自动下载到本地。 3. 部署和训练自己的 AI 开源模型的主要步骤: 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署,根据自身资源、安全和性能需求选择。 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 选择合适的预训练模型作为基础,如开源的预训练模型 BERT、GPT 等,也可自行训练基础模型。 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 总的来说,训练自有数据的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-01-24
如何训练自己的ai
训练自己的 AI 可以从以下几个方面考虑: 1. 像在医疗保健领域一样,创建模型生态系统,让 AI 像优秀的从业者那样学习。顶尖人才的培养通常从多年的密集信息输入和正规教育开始,再通过学徒实践从出色的实践者那里学习,获取书本外的信息。对于 AI ,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练基础学科模型,再添加特定领域数据点。 2. 部署和训练自己的 AI 开源模型的主要步骤: 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身资源、安全和性能需求选择。 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 选择合适的预训练模型作为基础,如开源的 BERT、GPT 等,也可自行训练基础模型。 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调,优化模型结构和训练过程以提高性能。 部署和调试模型,将训练好的模型部署到生产环境,并进行在线调试和性能优化。 注意安全性和隐私保护,重视大模型涉及的大量数据和隐私信息的安全性和合规性。 3. 学习拆解复杂任务,先想清楚如何拆解: 一步步思考,包括自我反省,检查答案是否正确、是否符合法律/道德等。 运用组合拳,如 Tree of Thoughts、Algorithm of Thoughts、Graph of Thoughts 等。 学会使用工具,如搜索引擎(警惕“幻觉”)、RAG(提供资料库/让其上网搜)、写公式 Program of Thought 、上千个工具等,并自己学习使用工具。
2025-01-23
帮我想想三年内有争议有公众性时效性的新闻评议选题,关于无人驾驶的,贴近生活,有新意。 例子:《强制加班不应该成为企业文化》《不敢看体检报告,是我们这一代人的命吗》《理发师因听得懂话爆火,这份作业值得抄》《“网红探墓”别“自挖坟墓”》《大学生挂科8门后离奇失踪,学校有责任吗》《不招疫情班应届生,一种赤裸裸的求职歧视》
以下是为您提供的一些关于无人驾驶三年内有争议、有公众性时效性且贴近生活、有新意的新闻评议选题: 1. 《无人驾驶汽车事故频发,谁来负责?》 2. 《无人驾驶能否解决城市交通拥堵难题?》 3. 《无人驾驶普及,传统司机将何去何从?》 4. 《无人驾驶技术,是便利还是安全隐患?》 5. 《无人驾驶车辆的隐私保护,你放心吗?》 6. 《无人驾驶时代,驾照是否会成为历史?》 7. 《无人驾驶汽车的保险政策,公平吗?》 8. 《无人驾驶上路,行人安全如何保障?》 9. 《无人驾驶出租车,你敢坐吗?》 10. 《无人驾驶公交,能否改变城市出行方式?》
2024-12-05
目前有哪些值得关注的AIGC短片
以下是一些值得关注的 AIGC 短片: AIGC Weekly 76 中: Luma AI 发布的 Dream Machine 视频生成模型,图生视频表现惊艳,如美少女混剪(https://x.com/KakuDrop/status/1800928377693687890)和可爱怪物动画(https://x.com/LumaLabsAI/status/1800921393321934915)。 用已有的表情包图片生成的视频也生动搞笑,如奥斯卡合影图片(https://x.com/fofrAI/status/1801198998289608925)。 作者自己跑的测试(https://x.com/op7418/status/1801138865224454480)总结了一些要点。 Luma 官方发布的视频(https://x.com/op7418/status/1801828221996122144)介绍了模型特点和擅长内容。 AIGC Weekly 95 中: 将视频拆分为各个层级的 Demo(https://x.com/dmvrg/status/1851480809477455899)。 Midjourney 的图片编辑加上 C4D 渲染的 Framer LOGO(https://x.com/andyorsow/status/1851771716852420632)。 两个同事计划午餐约会的短片(https://x.com/iamneubert/status/1851615112878076164)。 Nicolas 这段 AI 视频素材混剪(https://x.com/iamneubert/status/1851256571856052467)。 此外,浙江在线报道了 AI 春晚,如《10 万人观看的这场 AI 春晚,有何不同》(https://china.zjol.com.cn/pinglun/202402/t20240212_26647577.shtml)提到了 Way to AGI 社区组织的相关情况。
2024-11-08
最近有什么值得关注的AI公司
以下是一些值得关注的 AI 公司: 在移动应用领域,ChatGPT 占据榜首位置,其月活跃用户数大幅领先。此外,微软 Edge、Photomath、微软基于 AI 技术全新打造的搜索引擎 Bing 以及照片美化和虚拟形象制作工具 Remini 也在移动应用前五强中。同时,有五家 AI 公司实现了“双线作战”,其网页端、移动端应用双双跻身前 50 强榜单,分别是 ChatGPT、Character.AI、chatbot 平台 Poe、图片编辑应用 Photoroom 和 Pixelcut。 AI Friendship 是令人惊讶的应用之一,其用户和使用指标显示出强烈的用户喜爱。 工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist 实现了近 20%的事件避免率。Palo Alto Networks 利用 AI 降低了处理费用的成本。Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。
2024-10-29
有哪些ai课程值得学习?
以下是一些值得学习的 AI 课程: 【野菩萨】的预习周课程,包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课,涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影穿越的大门等内容。 核心范式课程,涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程,包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程,有 ChatGPT 基础、核心文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程,包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程,涉及通识欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。
2024-09-19
我想学习AI,x上哪些博主值得我关注
以下是一些值得您关注的 AI 领域博主: 只剩一瓶辣椒酱:b 站大 up 主,SD 的 ComfyUI 推广者,比现在的 webUI 更稳定,辣椒制作了 ComfyUI 的多语言翻译插件,实现了常驻菜单栏/搜索栏/右键上下文菜单/节点等的翻译 SD,blender 教程炉火纯青。相关链接: 歸藏:产品设计师、AI 画图工具操作员、AI 课程撰写与信息收集整理者,致力于发掘借助 AI 工具改善设计与产品开发流程的各种可能性。相关链接: 莱森:B站喂饭 up 主,制作 Midjourney 注册教程教学(保姆级全系列课程合集)。相关链接: 墨幽:大模型制作者,墨幽人造人。相关链接: Nenly:B站喂饭 up 主,SD 入门到入神。相关链接: 此外,为您推荐以下 AI 学习资源: 陆奇:未来,唯一有价值的是你有多大见解
2024-09-11
stable diffusion值得学吗
Stable Diffusion 值得学习。以下是一些原因和相关介绍: Stable Diffusion 是一个 AI 自动生成图片的软件,通过输入文字就能生成对应的图片,无需像传统方式那样画图或拍照。 对于大多数人来说,能够熟练使用即可,无需深入研究其原理。学习它非常简单,通过实际案例上手操作能快速入门。 相关教程丰富,例如: 有超详细的教程,会带大家通过案例实际操作生成各种照片。 还有深入浅出完整解析其核心基础知识的教程,包括系列资源、核心基础原理(如模型工作流程、核心基础原理、训练全过程等)、核心网络结构解析、搭建使用模型进行 AI 绘画的流程(如使用多种工具搭建推理流程)、经典应用场景(如文本生成图像、图片生成图片、图像 inpainting 等)以及训练自己的 AI 绘画模型等内容。 整个训练过程在最高维度上可以看成是加噪声和去噪声的过程,并在针对噪声的“对抗与攻防”中学习到生成图片的能力,训练逻辑清晰,包括从数据集中随机选择样本、抽样噪声量级、添加噪声、预测噪声、计算损失、更新模型参数等步骤。
2024-08-29