以下是人工智能发展的流程图相关内容,包含重要人物与重要时间节点或重大事件:
二十世纪中叶,人工智能领域开启。最初符号推理流行,带来专家系统等重要进展,但因提取知识成本高等问题,20 世纪 70 年代出现“人工智能寒冬”。
近现代,计算机科学发展为人工智能研究奠定基础,人们尝试用机器模拟人类思维。
1950 年,英国数学家阿兰·图灵提出著名的“图灵测试”。
1956 年,人工智能一词被提出,达特茅斯会议举行。
1997 年,深蓝在国际象棋比赛中击败卡斯帕罗夫。
2016 年,AlphaGo 在围棋比赛中战胜李世石。
2020 年,GPT-3 发布。
2022 年,DALL-E 发布。
2023 年,GPT-4 发布。
2024 年,预计发布 GPT-5 。
随着时间推移,计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被用作“神经网络”的同义词。
接下来,让我们加快点速度,将时间推移到近现代-20世纪40年代和50年代,其中计算机科学的发展为人工智能的研究奠定了基础。随着计算机技术的进步,人们开始尝试使用机器来模拟人类思维和解决问题的能力,并找到了人工智能的真正的机器载体。在近现代几十年中,人工智能发展迅猛,从1950年英国数学家阿兰·图灵(Alan Turing)提出了著名的“图灵测试”算起,到1956年的达特茅斯会议,从符号主义学派的专家系统到链接主义学派的感知机和神经网络,从深度学习的高速发展到当前的大语言模型的爆发式发展,在这短短几十年之间,人工智能发展经历的三起二落,以及技术突破所带来的阶段性不同程度的爆发。在快速发展的过程中,我们当然也无法遗忘在过程中众多巨人所为未来开创的具有重大意义的里程碑事件。在这里我试图列举几个我认为为当下人工智能发展带来重大意义的事件和技术:
1956年人工智能被提出1997年深蓝击败卡斯帕罗夫2016年AlphaGo击败李世石2020年GPT-3的发布2022年DALL-E的发布2023年GPT-4的发布2024年即将发布GPT-5说明:这里未来可以改进一下,当时匆忙只写了语言模型和DALL-E,绘图的SD和Midjourney等我都没写进去,已经新出的视频和音乐创作工具等,都可以往上写,但也不用太多。只需要让孩子理解,技术的变革已经越来越快了!内容从图灵测试之后,科学家们就开始努力让机器变得更聪明。到了1956年,人工智能这个词首次被提出,从那时起,人们就开始正式研究如何让机器像人一样思考了。重大突破1997年:有一个叫做深蓝的电脑,在国际象棋比赛中战胜了世界冠军。这是第一次机器在这样的智力游戏中击败了顶尖的人类选手。2016年:有一个更聪明的AI叫AlphaGo,它在围棋比赛中战胜了世界冠军李世石。围棋是一个非常复杂的游戏,这次胜利让全世界都很惊讶。
人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时: