Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能发展的流程图上面有相关人物与重要时间节点或重大事件

Answer

以下是人工智能发展的流程图相关内容,包含重要人物与重要时间节点或重大事件:

二十世纪中叶,人工智能领域开启。最初符号推理流行,带来专家系统等重要进展,但因提取知识成本高等问题,20 世纪 70 年代出现“人工智能寒冬”。

近现代,计算机科学发展为人工智能研究奠定基础,人们尝试用机器模拟人类思维。

1950 年,英国数学家阿兰·图灵提出著名的“图灵测试”。

1956 年,人工智能一词被提出,达特茅斯会议举行。

1997 年,深蓝在国际象棋比赛中击败卡斯帕罗夫。

2016 年,AlphaGo 在围棋比赛中战胜李世石。

2020 年,GPT-3 发布。

2022 年,DALL-E 发布。

2023 年,GPT-4 发布。

2024 年,预计发布 GPT-5 。

随着时间推移,计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被用作“神经网络”的同义词。

Content generated by AI large model, please carefully verify (powered by aily)

References

融合RL与LLM思想,探寻世界模型以迈向AGI「中·下篇」

接下来,让我们加快点速度,将时间推移到近现代-20世纪40年代和50年代,其中计算机科学的发展为人工智能的研究奠定了基础。随着计算机技术的进步,人们开始尝试使用机器来模拟人类思维和解决问题的能力,并找到了人工智能的真正的机器载体。在近现代几十年中,人工智能发展迅猛,从1950年英国数学家阿兰·图灵(Alan Turing)提出了著名的“图灵测试”算起,到1956年的达特茅斯会议,从符号主义学派的专家系统到链接主义学派的感知机和神经网络,从深度学习的高速发展到当前的大语言模型的爆发式发展,在这短短几十年之间,人工智能发展经历的三起二落,以及技术突破所带来的阶段性不同程度的爆发。在快速发展的过程中,我们当然也无法遗忘在过程中众多巨人所为未来开创的具有重大意义的里程碑事件。在这里我试图列举几个我认为为当下人工智能发展带来重大意义的事件和技术:

当AI走进小学课堂(全套课程设计)

1956年人工智能被提出1997年深蓝击败卡斯帕罗夫2016年AlphaGo击败李世石2020年GPT-3的发布2022年DALL-E的发布2023年GPT-4的发布2024年即将发布GPT-5说明:这里未来可以改进一下,当时匆忙只写了语言模型和DALL-E,绘图的SD和Midjourney等我都没写进去,已经新出的视频和音乐创作工具等,都可以往上写,但也不用太多。只需要让孩子理解,技术的变革已经越来越快了!内容从图灵测试之后,科学家们就开始努力让机器变得更聪明。到了1956年,人工智能这个词首次被提出,从那时起,人们就开始正式研究如何让机器像人一样思考了。重大突破1997年:有一个叫做深蓝的电脑,在国际象棋比赛中战胜了世界冠军。这是第一次机器在这样的智力游戏中击败了顶尖的人类选手。2016年:有一个更聪明的AI叫AlphaGo,它在围棋比赛中战胜了世界冠军李世石。围棋是一个非常复杂的游戏,这次胜利让全世界都很惊讶。

人工智能简介和历史

人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时:

Others are asking
如果用AI来画流程图、结构图的话,应该用哪款产品?
以下是一些可以用于使用 AI 来画流程图、结构图的产品: 1. Lucidchart: 简介:强大的在线图表制作工具,集成了 AI 功能,可自动化绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂的流程图等,AI 功能可帮助自动化布局和优化图表设计。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建多种示意图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需要团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。 示例:假设需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录:https://www.lucidchart.com/ 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-06
可以绘图的AI工具,实现将我的一段话转换成流程图
以下是一些可以将一段话转换成流程图的 AI 绘图工具及使用步骤: 工具: 1. Lucidchart: 注册并登录: 选择模板:在模板库中搜索“项目管理流程图” 编辑图表:根据项目需求添加和编辑图形和流程步骤 优化布局:利用 AI 自动布局功能优化图表外观 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式 2. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用 官网: 3. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作 官网: 4. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成 官网: 使用步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 此外,以下工具可以用于绘制逻辑视图、功能视图、部署视图: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本来自动生成序列图、用例图、类图等,从而帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2024-12-28
流程图生成
生成流程图主要有以下两种方式: 1. 可视化拖拽: 代表产品有:(web 工具)、visio(本地软件)。 优点:直观。 缺点:需要花时间在布局上。 2. 语法渲染成图形: 代表语法:。 优点: 只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,比如在用 tyora、markdown 写文档时。 多样性,不同渲染引擎可渲染成多种样式。 缺点:有点抽象。 使用 ChatGPT 生成流程图的流程如下: 1. 确定制作目标。 2. 通过自然语法描述逻辑,将自然语法转成图形语法。 3. 在线校验测试是否成功。 如果使用 Lucidchart 生成项目管理流程图,可以按照以下步骤: 1. 注册并登录:。 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 利用这些 AI 工具,可以快速、高效地创建专业的流程图,满足各种工作和项目需求。需要注意的是,部分内容由 AI 大模型生成,请仔细甄别。
2024-12-27
流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作流程图的 AI 工具: 1. Lucidchart: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. ChatGPT: 确定制作目标。 通过自然语法描述逻辑,生成 Mermaid 图形语法。 在线校验测试是否成功。
2024-12-19
上面的流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作您所描述的流程图的 AI 工具: Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据您的项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 此外,文中还提到了关于智能体和人工智能在解决科学问题方面的一些相关内容,但未直接涉及流程图制作工具的更多信息。
2024-12-19
有什么工具可以文字专流程图
以下是一些可以将文字转换为流程图的工具: 1. Lucidchart: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. Processon:是可视化拖拽工具,为 web 工具。 3. Visio:可视化拖拽工具,为本地软件。 4. ChatGPT:可以生成各种流程图、时序图等。生成流程图有两种方式: 可视化拖拽:优点是直观,缺点是需要花时间在布局上。 语法渲染成图形:代表语法如。优点包括只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,以及具有多样性,不同渲染引擎可渲染成多种样式;缺点是有点抽象。 利用这些工具,您可以快速、高效地创建专业的流程图,满足各种工作和项目需求。
2024-12-17
人工智能设计拜年PPT的软件
以下是一些可以用于人工智能设计拜年 PPT 的软件: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包含互动元素和动画效果,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 此外,还有以下相关内容: 1. 2024 年 6 月 22 日更新的一批研究报告,如《》等。 2. 熊猫 Jay 编写的超全的 AI 工具生成 PPT 的思路和使用指南,介绍了 MindShow、爱设计、闪击、Process ON、WPS AI 等工具,并因该培训获得 1000 元奖励。原文:https://mp.weixin.qq.com/s/uVoIIcePa7WTx7GNqkAPA 公众号:熊猫 Jay 字节之旅
2025-01-28
快速好用的人工智能网页翻译AI
以下为您推荐快速好用的人工智能网页翻译 AI: Open AI Translator(强烈推荐) 推荐指数:🌟🌟🌟🌟🌟 功能:是一款接入了 GPT 能力的文本翻译、总结、分析类产品。适合在浏览网页时查询个别单词、句子,能得到等同词典的体验。也可用于分析代码,搭配 Chat GPT 使用效果佳。 优势:可以在脱离只提供产品内 AI 能力的场景使用,可用于任何 web 场景。强烈推荐配合 Arc Browser 而非 Chrome 使用。 调用方式:选中页面中的文本后,会悬浮该插件,点击即可翻译,速度极快,摆脱“复制打开翻译软件粘贴翻译”的流程。 注意事项:安装后需要获取 Open AI 的 API Key,首次打开插件设置好 Open AI Key 地址,可找个地方保存好 API Key,方便在体验产品时复制粘贴。 下载地址: 此外,10 月盘点中还有一些相关的 AI 应用: 用自然语言对网页编程,实现各种操作: 浏览器插件→ 安装向导→https://yiu45q2746h.feishu.cn/docx/UM5Idb3AVo5cQXxgu09cTCAOnye 把输入文字自动翻译成多种语言后进行搜索(沉浸式翻译团队的新产品):网页应用→https://bilin.ai🔮 AI Youtube 搜索和总结,并支持播放 Youtube 视频,突然走红:网页应用→https://www.jenova.ai🔮 302.ai:汇集全球顶级品牌的 AI 超市,网页应用→https://302.ai,AI 播客生成器、AI 视频生成器、AI 网页生成器等 30+生产级应用,GitHub→https://github.com/302ai 另外,如果您想在网站上增加一个 AI 助手,只需 4 步: 1. 创建大模型问答应用:通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算,来快速搭建一个网站,模拟您的企业官网或者其他站点。 3. 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 4. 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助您更好的应对客户咨询。
2025-01-26
2030年前全国中小学普及人工智能是哪发布 的
目前没有明确的权威信息表明“2030 年前全国中小学普及人工智能”这一具体说法的发布来源。但以下信息可能对您有所帮助: 美国第 116 届国会第二次会议提到,国家科学基金会主任应授予 K12 等教育阶段的教育项目资助,以支持人工智能系统相关的多样化劳动力培养、提高对其伦理、社会、安全等影响的认识,并促进对人工智能原理和方法的广泛理解。 北京市大中小学推广了 AI 学伴和 AI 导学应用。
2025-01-24
如何学习好人工智能
以下是关于如何学习好人工智能的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、中学生学习 AI 的特别建议 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的发展做好准备。 七、在医疗保健领域的 AI 学习 为了在医疗保健中让 AI 产生真正的改变,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于 AI 来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。我们应该通过使用彼此堆叠的模型来训练 AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。
2025-01-23
人工智能的场景应用及其对社会治理的新挑战,注意场景应用和社会治理的对应,同时突出新挑战
以下是关于人工智能的场景应用及其对社会治理新挑战的相关内容: 场景应用: 医疗领域:如利用 AI 技术预测蛋白质结构,加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面取得巨大进展。 气候领域:通过 AI 技术应对气候变化。 对社会治理的新挑战: 可能产生新的风险,如使用 AI 可能带来的未知问题。 复杂的 AI 技术可能引发公众的不安。 涉及数据获取、计算能力、可持续性以及内容生产者和 AI 开发者权利平衡等重要问题,需要综合考虑。 需确保在保护权利持有者和支持 AI 开发者获取所需数据之间保持恰当平衡。
2025-01-23
人工智能的场景应用
人工智能(AI)的应用场景广泛,涵盖以下多个领域: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新疗法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 识别和阻止欺诈行为,降低风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据进行产品推荐。 改善搜索结果和提供个性化购物体验。 实现动态定价。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,避免停机。 检测产品缺陷,提高质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,送达偏远地区。 6. 其他领域: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,AI 绘画在以下场景也有应用: 广告设计:快速生成创意概念图,为广告策划提供灵感和初稿。 游戏开发:创建游戏场景、角色形象,提高开发效率。 影视制作:辅助生成特效场景、概念设计。 建筑设计:帮助构想建筑外观和内部布局。
2025-01-23
近期AI界有什么重大事件吗
以下是 2024 年 AI 界的一些重大事件: 1. 1 月:斯坦福大学 Mobile Aloha、LumaAl Genie 文生 3D、GPT store 上线、MagnificAl 高清放大爆火、苹果 Vision Pro 宣布发售等。 2. 10 月:9 月 27 日 Reecho 睿声●三只羊录音事件涉及 AI 公司出面回应;9 月 28 日 TeleAI●正式开源 TeleChat2115B;10 月 1 日快手●可灵 AI 全面开放 API、OpenAI DevDay;10 月 2 日 Black Forest Labs●发布 FLUX1.1、苹果●推出多模态大模型 MM1.5;10 月 3 日 OpenAI●发布 ChatGPT Canvas;10 月 8 日 2024 年诺贝尔物理学奖;10 月 9 日 2024 年诺贝尔化学奖;10 月 10 日字节●发布首款 AI 智能体耳机 Ola Friend、Vivo●增加蓝心端侧大模型 3B、谷歌●图像生成模型 Imagen 3 开放使用、智源●BGE 登顶 Hugging Face 月榜、State of AI 2024 报告发布;10 月 11 日智谱●GLM4Flash 与「沉浸式翻译」合作、北大&北邮&快手●👑开源高清视频生成模型 Pyramid Flow;10 月 12 日 OpenAI●👑开源多智能体协作框架 Swarm、深势科技●完成数亿元人民币新一轮融资、苹果●质疑当前 LLM 缺乏真正的逻辑推理能力;10 月 14 日。 3. 关于 AI 在未来一年的 10 个预测:一个主权国家向美国大型人工智能实验室投资 100 亿美元以上,需要国家安全审查;没有任何编码能力的人独自创建的应用程序或网站将会迅速走红(例如 App Store Top100);案件开始审理后,前沿实验室对数据收集实践实施有意义的改变;由于立法者担心权力过度,欧盟人工智能法案的早期实施最终比预期更为缓慢;OpenAl o1 的开源替代品在一系列推理基准测试中超越了它;挑战者未能对 NVIDIA 的市场地位造成任何重大打击;由于公司难以实现产品与市场的契合,对人形机器人的投资水平将会下降;苹果设备上研究的强劲成果加速了个人设备上 AI 的发展势头;人工智能科学家撰写的研究论文被大型机器学习会议或研讨会接受;一款以与 GenAI 元素交互为基础的视频游戏将取得突破性进展。
2025-01-17
在comfyUI中可以接入哪些节点
在 ComfyUI 中可以接入以下类型的节点: 1. 输入节点: 文本提示节点:用于输入生成图像的文本描述。 图像输入节点:用于输入基础图像进行二次生成。 噪声节点:用于输入初始噪声图像。 2. 处理节点: 采样器节点:选择图像生成所使用的采样器。 调度器节点:选择图像生成所使用的调度器。 CFG Scale 节点:调整引导式采样的强度。 步数节点:设置图像生成的迭代步数。 3. 输出节点: 图像输出节点:显示生成的最终图像。 4. 辅助节点: 批处理节点:支持批量生成多个图像。 图像变换节点:提供图像旋转、翻转等功能。 图像融合节点:可以将多个图像合并成一个。 此外,还有一些特定的节点插件,如: 1. PuLID 节点插件: model:使用预训练的基础文本到图像扩散模型,如 Stable Diffusion。 pulid:加载的 PuLID 模型权重,定义 ID 信息如何插入基础模型。 eva_clip:用于从 ID 参考图像中编码面部特征的 EvaCLIP 模型。 face_analysis:使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部。 image:提供的参考图像用于插入特定 ID。 method:选择 ID 插入方法,如“fidelity”(优先保真度)、“style”(保留生成风格)和“neutral”(平衡两者)。 weight:控制 ID 插入强度,范围为 0 到 5。 start_at 和 end_at:控制在去噪步骤的哪个阶段开始和停止应用 PuLID ID 插入。 attn_mask:此选项用于提供灰度掩码图像,以控制 ID 自定义的应用位置,但并不是必需输入,而是可选输入。 Advanced Node:提供了高级节点,可以通过调整 fidelity 滑块和 projection 选项进行更精细的生成调优。 2. 中文提示词输入相关节点: 安装完成后,在【新建节点】【Alek 节点】下,有【预览文本】、【绘画】、【姿态】、【clip 文本编码器】和【翻译文本】这五个节点。 【clip 文本编码器(翻译)】可代替自带的【clip 文本编码器】,直接输入中文。但引用负向 embedding 时,文件夹路径不能有中文。 【翻译文本】节点可代替【元节点】,在 sdxl 流程中,当需要将文本信息单独列出来时使用。 【预览文本】节点可连接到【翻译文本】检查翻译是否正确。 如果翻译失效,可双击“embedded_instail”进行安装,然后用记事本打开 BaiduTranslate.py,填入在百度翻译开发平台申请的 ID 和密码,即可正常翻译。
2025-01-14
可以把tripo的节点接入comfyui吗
要将 tripo 的节点接入 ComfyUI,您可以参考以下步骤: 1. 确保后面有一个空格。然后将 requirements_win.txt 文件拖到命令提示符中(如果您在 Windows 上;否则,选择另一个文件 requirements.txt)。拖动文件将在命令提示符中复制其路径。 2. 按 Enter 键,这将安装所有所需的依赖项,使其与 ComfyUI 兼容。请注意,如果为 Comfy 使用了虚拟环境,必须首先激活它。 3. 在使用自定义节点之前,有一些要注意的事项: 您的图像必须放在一个以命名的文件夹中。那个数字很重要:LoRA 脚本使用它来创建一些步骤(称为优化步骤…但别问我是什么^^’)。它应该很小,比如 5。然后,下划线是必须的。 对于 data_path,您必须写入包含数据库文件夹的文件夹路径。例如:C:\\database\\5_myimages ,您必须写 C:\\database 。 Python 在这里需要斜杠,但节点会自动将所有反斜杠转换为斜杠。文件夹名称中的空格也不是问题。 4. 参数方面: 在第一行,您可以从 checkpoint 文件夹中选择任何模型。然而,据说您必须选择一个基本模型进行 LoRA 训练。 您选择一个名字为您的 LoRA,如果默认值对您不好,就更改这些值(epochs 数应该接近 40),然后启动工作流程! 5. 一旦您点击 Queue Prompt,所有事情都会在命令提示符中发生。 6. 建议与字幕自定义节点和 WD14 标签一起使用。但请注意,在制作字幕时禁用 LoRA 训练节点。因为 Comfy 可能会在制作字幕之前启动训练。 7. 关于 Tensorboard:训练会在 log 文件夹中创建一个日志文件,该文件夹会在 Comfy 的根文件夹中创建。该日志可能是一个可以在 Tensorboard UI 中加载的文件。 ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点)、处理节点(如采样器节点、调度器节点、CFG Scale 节点、步数节点)、输出节点(如图像输出节点)、辅助节点(如批处理节点、图像变换节点、图像融合节点)。用户可以通过拖放和连接各种节点来创建自定义的图像生成工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes 。ComfyUI 还提供了丰富的节点管理功能,包括保存/加载节点图、复制/粘贴节点、批量编辑等。
2025-01-14
代码节点
以下是关于代码节点的详细介绍: 代码节点支持通过 IDE 编写 Python 或 JavaScript 脚本,用于处理输入参数并返回输出值。代码节点支持 JavaScript 和 Python 运行时。在节点内的代码区域,可以单击“在 IDE 中编辑”来进行代码的编辑和调试。 在使用代码节点时,尽量使用 JavaScript,并且尽量让 AI 去写。原则上能不写就不写,如果不熟悉,容易增加不必要的麻烦。 在一些工作流中,如制作卡片的工作流,会利用代码节点改变 HTML 展示的信息变量。同时,代码节点中的变量用{{}}来包裹,这里的变量就是前面输入的内容,如果变量名正确,会显示成蓝色。 工作流由多个节点构成,代码节点是其中的一种基本单元。扣子为您提供了多种基础节点,包括大语言模型节点、知识库节点、ifelse 逻辑节点等。不同节点可能需要不同的输入参数,输入参数分为引用和输入两类。引用是指引用前面节点的参数值,输入则是支持设定自定义的参数值。工作流默认包含 Start 节点和 End 节点,Start 节点是起始节点,可包含用户输入信息,End 节点是末尾节点,用于返回工作流的运行结果。
2025-01-10
在coze工作流中,怎样利用下一个代码节点合并前两个代码节点的输出,并以正确的格式输入传入飞书多维表格插件节点
在 Coze 工作流中利用下一个代码节点合并前两个代码节点的输出并以正确格式传入飞书多维表格插件节点的步骤如下: 1. 搭建整理入库工作流: 3.4 大模型节点:提取稍后读元数据。根据对稍后读阅读清单的元数据期望设置大模型节点,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以完整解析长内容网页,用户提示词需相应设置。 3.5 日期转时间戳。后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需使用「日期转时间戳time_stamp_13」插件进行格式转化,具体设置明确。 3.6 大模型节点:把稍后读元数据转换为飞书多维表格插件可用的格式。飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以要将之前得到的元数据数组进行格式转换,大模型节点配置及用户提示词需相应设置。 3.7 插件节点:将元数据写入飞书表格。添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 3.8 结束节点:返回入库结果。「飞书多维表格add_records」插件会返回入库结果,直接引用该信息用于通知外层 bot 工作流的入库是否成功。 2. 搭建选择内容推荐流: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令开始流程,无需额外配置。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:从飞书多维表格查询收藏记录。添加「飞书多维表格search_records」插件,设置{{app_token}}参数,并在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回需要的查询结果,也可在这一步定向检索未读状态的收藏记录。 4.4 大模型节点:匹配相关内容。为处理稳定采用批处理,对检索出来的收藏记录逐个进行相关性匹配,用户提示词可优化以提升匹配精准度。 搭到这里,别忘了对整个工作流进行测试。
2025-01-09
coze合并代码节点
以下是关于 Coze 合并代码节点的相关内容: 在 Coze 上搭建工作流框架时,设定每个节点的逻辑关系很重要。对于「分段」、「拼合」代码节点设计,实际测试表明由于 LLM 的上下文长度有限,通常一次性输入输出的文本越长,生成时间越长,结果稳定性越低,特别是对生成结果格式要求较高时问题更突出。考虑到对照精读环节本身是逐段生成的,适合批处理形式,所以需要用「分段输入正文」,分割正文后用 LLM 节点批处理每一段的对照精读,最终「拼合精读结果」以输出完整文本。如果觉得编写代码脚本繁琐且仅进行文本处理,也可使用 LLM 节点配合适当 prompt 临时验证整个工作流。 在插件中心确定需要的插件时,先用关键词尝试性搜索,根据插件名称、介绍页、描述、参数、示例判断是否可能满足需求。有多个插件可选时,一般优选官方/高收藏/高成功率的插件以提升使用效果。若实际试用效果不行,则换用其他插件或自己编写上架插件。例如 TTS 文字转语音插件可通过搜索“语音”“文字转语音”“TTS”等相关关键词找到“英文文本转语音”插件;思维导图插件可通过搜索“脑图”“树图”“导图”“mindmap”等关键词找到“TreeMind 树图”插件。 Coze 工作流节点还包括大模型节点、代码节点和选择器节点。大模型节点可利用大语言模型生成文本内容,能选择所用大语言模型、设置生成内容随机度并编写提示词,提示词中支持使用{{variable}}引用输入参数。代码节点通过 IDE 编写 Python 或 JavaScript 脚本处理输入参数并返回输出值,支持 JavaScript 和 Python 运行时,尽量使用 JavaScript,尽量让 AI 去写,不熟悉时易增加麻烦。选择器节点是一个 ifelse 节点,用于设计工作流内的分支流程,每增加一个条件右边会多出一个点,点中拖到对应的下一级节点,输入参数时节点会判断是否符合“如果”区域条件,符合则执行对应分支,否则执行“否则”分支。
2025-01-09
请你给我提供一段coze工作流节点中,代码示例
以下是 Coze 工作流节点中的一些代码示例: 把段落按换行符(/n)拆分成数组的代码示例。 在大模型节点通过提示词和示例,让大模型直接输出数组。 使用文本处理(文本分隔)。 在 Coze 工作流中搭建框架时,首先进入 Coze,点击「个人空间工作流创建工作流」打开弹窗,根据弹窗要求自定义工作流信息,点击确认完成新建。左侧「选择节点」模块中,根据子任务需要,实际用到的有插件(提供能力工具)、大模型(实现文本内容生成)、代码(支持编写简单脚本处理数据)。按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成框架搭建。
2025-01-07