直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何让对话几条消息合并意图回复

回答

默认情况下,Cursor Chat 位于 AI 窗格中,与您的主要侧边栏相对。用户消息包含您键入的文本以及您引用的上下文。您可以返回任何以前的用户消息来编辑和重新运行查询,这将覆盖此后的所有消息并重新生成新消息。AI 消息是您选择的 AI 模型生成的响应,它们与前面的用户消息配对,可能包含已解析的代码块,这些代码块可以通过即时应用添加到您的代码库中。同一线程中的所有用户/AI 消息称为聊天线程,每个聊天线程都保存在您的聊天历史记录中。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Chat-Overview 概述

User messages contain the text you type,along with the context you’ve referenced.You can go back to any previous user messages to edit and rerun your queries.This will overwrite any messages after that and regenerate new ones.用户消息包含您键入的文本以及您引用的上下文。您可以返回任何以前的用户消息来编辑和重新运行查询。这将覆盖此后的所有消息并重新生成新消息。AI messages are the responses generated from the AI model you’ve picked.They are paired with the user message before them.AI messages may contain parsed code blocks which can be added to your codebase with[instant apply](https://docs.cursor.com/chat/apply).AI消息是您选择的AI模型生成的响应。它们与前面的用户消息配对。AI消息可能包含已解析的代码块,这些代码块可以通过[即时应用](https://docs.cursor.com/chat/apply)添加到您的代码库中。All user/AI messages together in the same thread are called a chat thread,and each chat thread is saved in your chat history.同一线程中的所有用户/AI消息称为聊天线程,每个聊天线程都保存在您的聊天历史记录中。

其他人在问
你如何使语音助手掌握情感意图
要使语音助手掌握情感意图,可以从以下几个方面考虑: 1. 明确“情绪识别系统”的概念:根据欧洲议会和欧盟理事会的规定,“情绪识别系统”是指根据自然人的生物数据识别或推断其情绪或意图的人工智能系统,例如快乐、悲伤、愤怒等,但不包括身体状态如疼痛或疲劳,也不包括仅仅检测容易察觉的表情、手势或动作,除非用于识别或推断情绪。 2. 借鉴相关研究和观点:如 AI 教父 Hinton 探讨的如果助手具有自我反省的能力,可能会有感觉,以及他提出的新的感觉模型。 3. 理解情感的重要性:情感对人类具有生存、沟通、决策、动机和维系等功能。比如,人类会因适应环境做出有利生存的生理反应,不同情感表达会使相同文字语言内涵不同,大脑决策依赖情感,情感能激发和维持个体行为,也是人类社会化维系的纽带。 4. 以情感计算为目标:情感计算旨在使计算机能够识别、感知、推断和理解人类的情感,最终赋予计算机类似人的情感能力。 总之,使语音助手掌握情感意图需要综合多方面的知识和技术,不断探索和创新。
2024-11-11
意图识别
以下是关于意图识别的全面介绍: 意图识别在自然语言处理领域是常见话题,随着大型模型兴起,其在智能体的 Brain 模块中承担主要工作。 意图识别的定义:当用户输入指令,通过感知模块传递到 Brain 模块,Brain 模块对其做出反应,本质上是一种分类任务,区分用户具体意图,在单一或多智能体系统中都至关重要。 通过常见智能助手如 Siri、小爱同学的例子可更直观理解。 在 AI 搜索中,意图识别的关键作用包括对用户提问进行分类,如导航类(如搜索“ThinkAny”为打开官网)、信息查询类(如搜索“什么是 AI 搜索引擎”为了解行业)、交易类(如搜索“笔记本电脑”为购买)、本地信息类(如搜索“附近的烤肉店”为找附近餐馆)等,还存在其他分类和多级子分类,但面临枚举无法穷尽的问题。 对搜索意图分类可匹配更准的信息源和更好的回复提示词,提升检索召回率,保证搜索结果个性化。目前主流实现方案主要通过提示词请求大模型完成识别,但准确度不够高,大模型的 Function Calling 能力也可理解为一种意图识别。 在提示词中使用意图分类的理论依据是人工智能的意图识别理论,其核心观点包括通过自然语言处理技术从用户查询中识别目的或需求,考虑上下文理解以更全面理解意图,将识别出的意图分类并与预定义指令或操作匹配执行相应任务。具体步骤包括定义意图类别、分析用户输入、进行意图分类和执行相应操作。
2024-11-07
有没有 AI bot 做意图识别的资料
以下是关于 AI bot 做意图识别的资料: 尽管意图识别在自然语言处理领域已被广泛讨论,且通过各种小规模模型处理过此任务,但随着大型模型兴起,尤其是用作智能体的 Brain 模块时,它们在意图识别方面承担了主要工作。 意图识别的定义是:当用户输入指令,指令通过感知模块传递到 Brain 模块,Brain 模块需对指令做出反应,本质上是一种分类任务,即识别并区分用户的具体意图。在单一智能体架构或复杂的多智能体系统中,意图识别都至关重要。 通过一些常见的例子,如 Siri、小爱同学及其他手机品牌搭载的智能助手,当向它们发出指令时能做出相应反应,此过程中意图识别起到关键作用。大型模型执行意图识别任务时,主要基于前期通过大量数据训练得到的模型,可能是专门针对意图识别任务训练的大型模型,也可能是通过在特定任务中微调来优化的模型,通过微调能使模型更好地适应特定领域的任务需求。
2024-10-21
AI 辅助高中美术学生 进行创意图形的生成
以下是关于如何利用 AI 辅助高中美术学生进行创意图形生成的相关内容: 在不同的教学场景中,对 AI 的应用和态度有所不同。例如在艺术教学中,对于 AI 生成的图像可能有不同的需求。在历史课中,学生制作信息图表展示对宏观经济学原理的理解时,可能会接受 AI 生成的图像;而在美术课上,可能不太希望直接使用 AI 生成的图像。 在学习 AI 绘画方面,其在广告设计、游戏开发、影视制作、建筑设计等领域都有应用。比如在广告设计中可快速生成创意概念图,为策划提供灵感和初稿;在游戏开发中用于创建场景和角色形象,提高开发效率等。 对于小学课堂中的 AI 绘图课程设计,可先准备关键词并输入 Mid Journey 生成图片存下来展示,围绕 AI 绘图的好处展开,如创意增强,像“夜晚的未来城市风景,霓虹灯和飞行汽车”“超现实主义风景,漂浮的岛屿和瀑布云”等能创造独特且富有想象力的场景;效率提升,如“现代智能手机设计的快速草图”“新咖啡机概念的快速原型”能快速生成复杂多变的设计;降低技能门槛,像“简单卡通角色,微笑着,大眼睛”“基础的风景画,夕阳下的宁静湖泊”能帮助非专业者创作;探索新的艺术形式,如“数字抽象艺术,鲜明的色彩和几何形状”“算法生成的艺术作品,具有分形图案”能探索全新艺术形式的潜力。 综合以上,对于高中美术学生进行创意图形的生成,可借鉴上述思路和应用场景,注重培养学生的创意、效率和对新艺术形式的探索。
2024-09-25
AI 意图识别
AI 意图识别是指当用户输入指令时,这些指令通过感知模块传递到 Brain 模块,Brain 模块对其做出反应的过程,本质上是一种分类任务,用于识别并区分用户的具体意图。在单一智能体架构或复杂的多智能体系统中都至关重要。 通过一些常见的智能助手如 Siri、小爱同学等的例子可以更直观地理解,大型模型执行意图识别任务主要基于前期大量数据训练得到的模型,可通过专门训练或在特定任务中微调来优化,以适应特定领域需求。 在 AI 搜索引擎中,提升准确度的关键因素之一是意图识别。在联网检索前先对用户的 query 进行意图识别,目的是对用户的搜索意图进行分类,路由到合适的信息源,召回更精准的参考信息。 搜索意图有多种分类,如交易类(如搜索“笔记本电脑”以进行购买)、本地信息类(如搜索“附近的烤肉店”)等,对搜索意图进行分类可匹配更准的信息源和更好的回复提示词,很大程度提升检索召回率,保证搜索结果的个性化。目前主流的实现方案主要是通过提示词请求大模型完成识别,但准确度不够高,大模型提供的 Function Calling 能力也可理解为一种意图识别。
2024-08-22
有用户行为意图识别相关产品么
用户行为意图识别是一项重要的技术,用于理解用户在互动过程中想要完成的任务或达到的目标。以下是一些相关的产品和工具,能够帮助识别和分析用户行为意图: 商业产品 1. Google Analytics 功能:提供详细的用户行为分析,包括用户访问路径、点击流、转换率等。 使用场景:分析网站或应用的用户行为,识别用户意图,优化用户体验。 2. Hotjar 功能:热图、录屏、用户反馈和调查,帮助了解用户在网站上的行为。 使用场景:通过热图和录屏识别用户意图,发现用户在网站上的行为模式和痛点。 3. Heap 功能:自动捕捉用户行为事件,提供深入的行为分析。 使用场景:无需手动标记事件,Heap自动记录用户行为,帮助识别用户意图和优化转化路径。 4. Mixpanel 功能:用户行为分析、事件跟踪、漏斗分析和用户留存分析。 使用场景:跟踪用户在产品中的行为,识别关键用户意图,优化用户旅程。 5. Crazy Egg 功能:热图、滚动图、点击图和用户录屏。 使用场景:通过可视化工具分析用户在网站上的行为,识别用户意图和行为模式。 开源工具 1. Matomo 功能:用户行为分析、热图、会话录屏和A/B测试。 使用场景:自托管的开源分析平台,提供详细的用户行为数据,帮助识别用户意图。 2. Mouseflow 功能:录屏、热图、漏斗分析、表单分析和用户反馈。 使用场景:通过录屏和热图分析用户行为,识别用户在网站上的意图。 AI 驱动工具 1. IBM Watson Analytics 功能:使用AI和自然语言处理进行数据分析和用户行为意图识别。 使用场景:分析大规模用户数据,识别行为模式和意图,提供智能推荐和优化建议。 2. Microsoft Azure Cognitive Services 功能:提供文本分析、情感分析和意图识别API。 使用场景:集成到应用程序中,自动识别用户文本中的意图,优化用户交互。 3. Dialogflow 功能:自然语言理解和对话管理,识别用户意图并生成响应。 使用场景:构建聊天机器人和语音助手,识别和响应用户意图。 自定义解决方案 如果现有产品和工具无法完全满足需求,可以考虑构建自定义解决方案: 1. 数据收集 使用Google Analytics、Mixpanel等工具收集用户行为数据。 通过日志文件、数据库等方式收集用户交互数据。 2. 数据预处理 清洗和整理数据,去除噪音和无关数据。 使用Python的pandas、numpy等库进行数据预处理。 3. 模型训练 使用机器学习算法(如随机森林、支持向量机、神经网络)训练用户意图识别模型。 使用深度学习框架(如TensorFlow、PyTorch)构建和训练复杂的神经网络模型。 ```python from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score 假设我们有一个用户行为数据集 X = user_behavior_data.drop y = user_behavior_data X_train, X_test, y_train, y_test = train_test_split model = RandomForestClassifier model.fit y_pred = model.predict print ``` 4. 模型部署 将训练好的模型部署到服务器,使用Flask或FastAPI提供API接口。 ```python from flask import Flask, request, jsonify import joblib app = Flask model = joblib.load @app.route def predict: data = request.json prediction = model.predict return jsonify if __name__ == "__main__": app.run ``` 5. 实时监控和优化 监控模型的性能和用户行为数据,定期更新和优化模型。 通过这些工具和方法,你可以有效地识别用户行为意图,提高产品的用户体验和转化率。如果有具体的需求或问题,请告诉我,我可以提供更详细的建议和指导。
2024-07-11
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
与PDF对话
以下是关于与 PDF 对话的相关内容: AIGC 落地应用中,有 ChatWithPDF 官方 Pulgin 可解决 Chat GPT 无法阅读、解析 PDF 的问题,推荐指数为🌟🌟🌟🌟。还有 Voice control for ChatGPT Chrome 插件用于和 ChatGPT 语音对话,支持多种语言,可当英语口语/听力老师,但 TTS 效果生硬,期待改善,推荐指数🌟🌟🌟,下载地址: 增强的 PDF 结构识别框架(pdflux.com)应用于 ChatDOC(海外官网:chatdoc.com),它是 AI 文档阅读助手,能在数秒内总结长文档、解释复杂概念和查找关键信息,在可靠性和准确性方面居所有 ChatPDF 类产品之首。其优势包括精通表格理解、多文档对话、每个回答均可溯源至原文、支持多种文档类型。 阅读书籍、论文的互动式问答场景对应的关键词库有 15 个,如书籍、报告、文件等。ChatGPT 知识库截止于 2021 年 9 月,对于新数据或最新出版的内容无法提供答案,如有现成 PDF,建议通过 CHATDOC 网站进行互动式问答,并提供了输入信息和提出问题的步骤及模板,还有相关案例。
2024-11-13
多轮对话训练中你如何训练模型掌握情感需求
在多轮对话训练中,让模型掌握情感需求可以通过以下几种方式: 1. 利用相关数据集进行训练,例如: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 2. 在创建提示时采用结构化模式,为模型提供一些情感需求的示例,如: |输入|输出| ||| |一部制作精良且有趣的电影|积极的| |10 分钟后我睡着了|消极的| |电影还行|中性的| 然后单击页面右侧的提交按钮。该模型现在可为输入文本提供情绪。还可以保存新设计的提示。 3. 在多轮次对话中,定期总结关键信息,重申对话的目标和指令,有助于模型刷新记忆,确保准确把握对话的进展和要点。 4. 进行意图识别和分类,特别关注在单一模型或情境中处理多个小逻辑分支的情况。例如在客户服务场景中,快速确定用户提出咨询、投诉、建议等多种类型请求的意图,并分类到相应处理流程中。
2024-11-11
在车载语音多轮对话训练中你如何训练模型掌握情感需求
目前知识库中暂时没有关于在车载语音多轮对话训练中如何训练模型掌握情感需求的相关内容。但一般来说,要训练模型掌握情感需求,可以从以下几个方面考虑: 1. 数据收集:收集包含丰富情感表达的车载语音对话数据,包括不同情感状态下的语音样本和对应的文本描述。 2. 特征提取:从语音和文本数据中提取能够反映情感的特征,如语音的语调、语速、音量,文本中的词汇、句式、语义等。 3. 模型选择:选择适合处理情感分析任务的模型架构,如基于深度学习的循环神经网络(RNN)、长短时记忆网络(LSTM)或门控循环单元(GRU)等。 4. 情感标注:对收集的数据进行准确的情感标注,以便模型学习不同情感的模式。 5. 多模态融合:结合语音和文本等多模态信息,提高情感识别的准确性。 6. 优化算法:采用合适的优化算法来训练模型,调整模型的参数,以提高模型的性能。 7. 模型评估:使用合适的评估指标来评估模型在情感需求掌握方面的性能,并根据评估结果进行调整和改进。
2024-11-11
提供“与知识库对话”的产品服务
以下是关于“与知识库对话”的产品服务相关内容: 如果想要对知识库进行更加灵活的掌控,可以使用额外的软件 AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。构建本地知识库时,首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,接着选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。 在商业化问答场景中,以一个问答机器人界面为例,其配置包括 AI 模型、提示词和知识库。模型好比是学习过无数知识的人,提示词是告诉模型扮演的角色和专注的技能,知识库则是给模型的工作手册。例如设定 AI 模型为阿里千问模型,提示词设定角色为“美嘉”,知识库放置《爱情公寓》全季剧情。 看十遍不如实操一遍,实操十遍不如分享一遍。如果对 AI Agent 技术感兴趣,可以联系相关人员或者加入免费知识星球(备注 AGI 知识库)。
2024-11-08
提供“与知识库对话”的产品服务
以下是关于“与知识库对话”的产品服务相关内容: 如果想要对知识库进行更加灵活的掌控,需要使用额外的软件 AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 AnythingLLM 中有 Workspace 的概念,可以创建独有的 Workspace 与其他项目数据隔离。构建本地知识库时,首先创建工作空间,然后上传文档并进行文本嵌入,接着选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。 在商业化问答场景中,以一个问答机器人界面为例,其左侧有三处配置:AI 模型、提示词、知识库。模型可以想象成学习过无数知识的人;提示词是告诉模型扮演的角色和专注的技能;知识库则相当于给模型发放的工作手册。例如设定 AI 模型为阿里千问模型,提示词设定角色为“美嘉”,知识库为《爱情公寓》全季剧情。
2024-11-08
智能客服系统实现回复图片,不只是回复文字
以下为您介绍一个基于 COW 框架的 ChatBot 实现步骤,其最新版本支持的功能包括: 1. 多端部署:可接入个人微信、微信公众号、企业微信应用。 2. 基础对话:私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT3、GPT3.5、GPT4、文心一言模型。 3. 语音识别:可识别语音消息,通过文字或语音回复,支持 azure、baidu、google、openai 等多种语音模型。 4. 图片生成:支持图片生成和图生图(如照片修复),可选择 DellE、stable diffusion、replicate、Midjourney 模型。 5. 丰富插件:支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结等插件。 6. Tool 工具:与操作系统和互联网交互,支持最新信息搜索、数学计算、天气和资讯查询、网页总结,基于实现。 7. 知识库:通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用,基于 LinkAI 实现。 项目地址 项目地址 该项目的图片生成功能或许能满足您智能客服系统实现回复图片的需求。
2024-11-22
我想根据提问的问题关键词设置自动回复
以下是关于根据提问的问题关键词设置自动回复的相关内容: Apple Intelligence 中各种智能应用的提示词已曝光,存在“/System/Library/AssetsV2/com_apple_MobileAsset_UAF_FM_GenerativeModels”目录下。作为邮件助理,可识别邮件中的相关问题并提供简短回复片段,以 JSON 格式呈现输出,包含问题和答案的字典列表。若邮件无提问则返回空列表。 安仔:Coze AI 机器人对接微信群的疑问解答,包括放行端口、Bot ID、微信账号被封、服务器是否需一直开着、不懂编程能否配置好、配置中遇到问题、为何配置多个前缀触发回复等问题及相应答案。 飞书 5000 人大群内置智能机器人“waytoAGI 知识库智能问答”,基于飞书 aily 搭建。使用时在群里发起话题时,它能自动问答、知识搜索、文档引用、互动教学、更新最新动态、促进社区互动、资源共享、支持多语言问答。
2024-11-18
ai能够回复多少内容和它的上下文限制有关吗
AI 能够回复的内容与其上下文限制有关。 首先,上下文在英文中通常翻译为“context”,指的是对话聊天内容前、后的信息。使用时,上下文长度和上下文窗口都会影响 AI 大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 不同的 AI 平台有不同的限制方式。例如,Claude 基于 token 限制上下文,简单理解就是每次和 AI 对话,所有内容字数加起来不能太多,如果超过了,它就会忘记一些内容,甚至直接提示要另起一个对话。ChatGPT 则限制会话轮数,比如在一天之中,和它会话的次数有限制,可能 4 个小时只能说 50 句话。 应对这些限制的策略包括将复杂任务分解为小模块、定期总结关键信息以及在新会话中重新引入重要上下文。
2024-11-15
回复限制和上下文限制是一样的吗
回复限制和上下文限制不是一样的概念。 上下文(英文通常翻译为 context)指对话聊天内容前、后的内容信息。使用时,上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 回复限制通常是指对模型生成回复内容的各种约束条件,例如让模型基于一个固定知识片段去回复内容,为避免模型产生幻觉而对提示词进行优化,将 Constraints 前置以更好地控制模型行为。例如在一些测试中,会出现模型在没有上下文时不回复,按照提供的知识准确回复但透露原文,知识片段大小影响回复,以及有错误知识片段时不回复等情况,这表明模型在处理用户输入时会进行一定程度的推理和验证,生成回复时会考虑多种因素,包括上下文的准确性、问题的合理性以及模型内部的约束机制等。
2024-11-15
如何让ai一次回复两条信息
要让 AI 一次回复两条信息,可以从以下几个方面考虑: 1. 检索原理: 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时验证信息的来源、时效性和相关性。 消除冗余:识别并去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾。 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架。 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 语义融合:在必要时合并意义相近但表达不同的信息片段,增强信息表达力。 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式。 2. 聊天机器人场景: 明确告诉助手如何行事,在每次交互中提供所有相关信息作为上下文,若想让模型从先前对话中获取信息,需将之前对话作为输入。 3. 设定回复逻辑: 对于不同的 AI 产品,大都支持自定义 AI 的回复方式。如在 ChatGPT/GPTs 里是“Instructions”,在 Coze 里是“人设与回复逻辑”,设定方式类似 Prompt,可根据需求灵活编写,但由于 AI 特性,可能无法完全按需求返回,可通过重试、优化 Prompt 或使用 Workflow 等方法处理。
2024-11-09
如何让微信bot以语音条格式回复消息?
要让微信 bot 以语音条格式回复消息,您可以参考以下步骤: 1. 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题。 2. 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 3. 添加语音选择:让 Bot 不仅会写,还会通过语音跟您交流。 4. 点击“发布”,选择发布平台,其中包括 Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金等。微信客服是重点部分,相比其他平台发布到微信客服稍微复杂一些。 另外,对于零基础模板化搭建 AI 微信聊天机器人,还需注意: 1. 配置腾讯云轻量应用服务器。 2. 登录微信绑定 COW 组件,建议使用闲置微信号,避免使用日常使用的微信号,以免造成不必要的麻烦。按照以下操作进行登录:找到刚刚部署成功的 COW 服务对应的容器,点击日志按钮进入日志界面,将日志输出的界面滚动到最下面的位置,会看到登录微信的二维码,用闲置微信号扫码登录。若扫描二维码出现问题,可退回到容器配置处重启容器服务,再重新扫码登录。若想修改 COW 组件的配置,进入对应的编排模板的配置界面,点击模板编辑,修改对应的配置参数,保存后回到容器编排界面重新部署新的容器编排。
2024-10-22