直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

什么是controlnet? controlnet有什么重要作用

回答

ControlNet 是一种由斯坦福大学张吕敏发布的神经网络模型,常与预训练的图像扩散模型(如 Stable Diffusion)结合使用。

其重要作用包括:

  1. 实现对 AI 绘画生成过程的精细控制,通过引入如涂鸦、边缘图、姿势关键点、深度图、分割图、法线图等多种类型的额外条件输入来指导生成图像的内容。
  2. 工作原理是将 Stable Diffusion 模型的权重复制到 ControlNet 的可训练副本中,并使用外部条件向量训练副本,在不破坏原模型能力的前提下,通过小批量数据集训练实现对特定条件的学习。
  3. 设计思想提供了训练过程的鲁棒性,避免过度拟合,允许在小规模甚至个人设备上训练,架构具有强大的兼容性与迁移能力,可用于其他扩散模型,增强图像生成的多样性和可控性。
  4. 应用不限于 AI 绘画,还可用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务,展现了在 AIGC 领域的广泛应用潜力。

在 Stable Diffusion 中,ControlNet 带来的最大改变是让输出结果能更好地被控制。其使用逻辑是通过预处理器将图片提取特征并转换为 AI 可识别的形式,再通过模型进行图像生成。在使用时,如启用 ControlNet 需点击 Enable,Preprocessor 指预处理器,Weight 可调整其在合成中的影响权重,Guidance strength 控制图像生成的前百分之多少步由 ControlNet 主导生成,Invert Input Color 可启动反色模式,RGB to BGR 可反转输入色彩通道信息,Low VRAM 为低显存优化,Guess Mode 为无提示词模式。同时,Model 中选择的解析模型应与输入图像或预处理器对应。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:ControlNet 是什么?

ControlNet是一种神经网络模型,由斯坦福大学张吕敏发布,它与预训练的图像扩散模型(例如Stable Diffusion)结合使用,通过引入额外的条件输入来控制AI绘画的生成过程。ControlNet模型通过在Stable Diffusion模型中添加辅助模块,实现对生成图像的精细控制。这些条件输入可以是多种类型的图像,例如涂鸦、边缘图、姿势关键点、深度图、分割图、法线图等,它们作为条件输入来指导生成图像的内容。ControlNet的工作原理涉及将Stable Diffusion模型的权重复制到ControlNet的可训练副本中,并使用外部条件向量来训练这个副本。这样做的好处是,可以在不破坏Stable Diffusion模型原本能力的前提下,通过小批量数据集对ControlNet进行训练,从而实现对特定条件的学习。ControlNet的设计思想提供了训练过程中的鲁棒性,避免了模型过度拟合,并允许在小规模甚至个人设备上进行训练。此外,ControlNet的架构具有强大的兼容性与迁移能力,可以用于其他扩散模型中,增强了图像生成的多样性和可控性。ControlNet的应用不仅限于AI绘画,它还可以用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务,展现了在AI生成内容(AIGC)领域的广泛应用潜力。内容由AI大模型生成,请仔细甄别类似问题:Transformer是什么?

【SD】最强控制插件ControlNet(1)附模型下载

Stable Diffusion一直在致力于更精确地控制出图结果,而在这众多的功能中,最突出的要属ControlNet了。无论是文生图还是图生图,我们更多的是对内容的一个描述,但是如果我们想要更细化一些,比如构图、轮廓、形象姿态、色彩风格等等,单靠文生图或者图生图就不够用了,我们需要一个更强大的控制模块,这时ControlNet也就应运而生。它带来的最大的改变,就是让输出结果能更好的被我们控制了。关于ControlNet插件的安装,如果是用的秋叶大佬的整合包,就会自带这个插件。如果没有,可以去扩展中搜索ControlNet进行安装。安装完成之后,就可以看到ControlNet的使用界面了。ControlNet的使用逻辑是通过预处理器将我们的图片提取特征,并转换为AI可识别的形式,再通过模型将预处理器的结果进行图像生成。说得再直白一点,预处理器就是我们和ControlNet之间的一款翻译软件。比如,我想绘制一张女孩打篮球的图片,并且想让她模仿库里的这个动作。接下来,输入关键词:(最好的质量,杰作),女孩,打篮球,篮球场,认真,球衣,看着观众,受伤,绷带。

SD新手:入门图文教程

点击Enable启用该项ControlNetPreprocessor指预处理器,它将对输入的图像进行预处理。如果图像已经符合预处理后的结果,请选择None。譬如,图中导入的图像已经是OpenPose需要的骨架图,那么preprocessor选择none即可。在Weight下,可以调整该项ControlNet的在合成中的影响权重,与在prompt中调整的权重类似。Guidance strength用来控制图像生成的前百分之多少步由Controlnet主导生成,这点与[:]语法类似。Invert Input Color表示启动反色模式,如果输入的图片是白色背景,开启它。RGB to BGR表示将输入的色彩通道信息反转,即RGB信息当做BGR信息解析,只是因为OpenCV中使用的是BGR格式。如果输入的图是法线贴图,开启它。Low VRAM表示开启低显存优化,需要配合启动参数“--lowvram”。Guess Mode表示无提示词模式,需要在设置中启用基于CFG的引导。Model中请选择想要使用解析模型,应该与输入的图像或者预处理器对应。请注意,预处理器可以为空,但模型不能为空。

其他人在问
controlnet教程
以下是关于 ControlNet 的教程: ControlNet 是 Stable Diffusion 中的一个功能,能够让用户更精确地控制出图结果。比如可以控制人物的动作、建筑物的线条等。 在使用时,大模型和关键词正常填写生成所需照片。然后鼠标滑到最下面点击“ControlNet”: 1. 点击空白处上传指定姿势的照片。 2. 点击“启用”。 3. 在“预处理器”和“模型”里选择“openpose”,这用于让计算机识别人物姿势。 接着点击“预览预处理结果”,原照片右边会出现人物姿势的线条,最后点击生成照片即可得到指定姿势的图片。 另外,如果是用秋叶大佬的整合包,会自带 ControlNet 插件。若没有,可去扩展中搜索安装。 其使用逻辑是通过预处理器将图片提取特征并转换为 AI 可识别的形式,再通过模型进行图像生成。例如绘制女孩打篮球模仿库里动作的图片,输入相关关键词,选择大模型,在 ControlNet 中导入库里照片,选择合适的预处理器和模型,调试参数后生成。 在 ControlNet 中还可以尝试不同的预处理器,如 softedge_pidinet、depth、canny、tile 等,可能会得到不错的效果。同时要注意电脑配置,避免出现显存不足等问题。
2024-10-18
controlnet一直加载怎么办
ControlNet 一直加载可能由以下原因导致及对应的解决方法: 1. 模型版本问题:确保 checkpoint、ContalNet 等所有需要加载模型的版本均基于 SD1.5,否则可能会报“超出索引”的错误。 2. 节点未安装完全:载入工作流后若出现爆红部分,可能是节点没下好、没下全。此时可以先全部更新,让所缺节点“显露出来”,然后安装好缺失的节点。 3. 参数设置问题:假如右下角的区域报红,那么就得根据报错信息相应调整一下左上角蓝色区域的 h、w 参数。 此外,ControlNet 还有一些新的功能和应用,例如: 1. 1.1 版本新出的 lineart 线稿提取功能,可先通过 invert 预处理将白底黑线处理成黑底白线,然后切换到 lineart 预处理器和模型进行生成。 2. mlsd 直线线条检测功能,一般用在建筑或者室内设计上,预处理器可提炼出室内的结构线。 ComfyUI 中的 ControlNet 高级控件: 在时间步和批处理潜变量之间调度 ControlNet 强度的节点,以及应用自定义权重和注意力掩码。这里的 ControlNet 节点完全支持滑动上下文采样。输入包括 positive(提示词(正面))、negative(提示词(负面))、control_net(加载了控制网络)、image(用于指导控制网络的图像)、mask_optional(应用于控制网络的注意力掩码)、timestep_kf(时间步关键帧)、latent_kf_override(潜在关键帧的覆盖)。
2024-08-29
ControlNet是什么?
ControlNet是一种神经网络模型,由斯坦福大学张吕敏发布,它与预训练的图像扩散模型(例如Stable Diffusion)结合使用,通过引入额外的条件输入来控制AI绘画的生成过程。ControlNet模型通过在Stable Diffusion模型中添加辅助模块,实现对生成图像的精细控制。这些条件输入可以是多种类型的图像,例如涂鸦、边缘图、姿势关键点、深度图、分割图、法线图等,它们作为条件输入来指导生成图像的内容。 ControlNet的工作原理涉及将Stable Diffusion模型的权重复制到ControlNet的可训练副本中,并使用外部条件向量来训练这个副本。这样做的好处是,可以在不破坏Stable Diffusion模型原本能力的前提下,通过小批量数据集对ControlNet进行训练,从而实现对特定条件的学习。 ControlNet的设计思想提供了训练过程中的鲁棒性,避免了模型过度拟合,并允许在小规模甚至个人设备上进行训练。此外,ControlNet的架构具有强大的兼容性与迁移能力,可以用于其他扩散模型中,增强了图像生成的多样性和可控性。 ControlNet的应用不仅限于AI绘画,它还可以用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务,展现了在AI生成内容(AIGC)领域的广泛应用潜力。
2024-04-28
中文短篇小说创作用的最多的ai app
目前在中文短篇小说创作方面,以下是一些常见的 AI 应用: 1. Grammarly、秘塔写作猫:属于 AI 智能写作助手,运用自然语言处理技术,可辅助检查语法、拼写错误并提供改进建议,进行智能润色和内容创作辅助。 2. 小爱同学、Siri:作为 AI 语音助手定制开发产品,采用语音识别和自然语言理解技术,能控制智能家居、回答问题等进行语音交互和任务处理。 如果您想用 AI 把小说做成视频,通常包括文本分析、角色与场景生成、视频编辑与合成等步骤。以下是一些可用的工具及网址: 1. Stable Diffusion(SD):AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/
2024-11-05
短篇小说创作用什么ai辅助
以下是一些在短篇小说创作中可以使用的 AI 辅助方式: 1. 草拟初稿:您可以让 AI 为您生成短篇小说的初稿,包括博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等。但要注意基本提示可能导致无聊的写作,通过与系统互动提高提示效果。 2. 改进内容:将您的文本粘贴到 AI 中,要求它改进内容,或就如何为特定受众提供更好的建议。还可以要求它以截然不同的风格创建多个草稿,使事物更生动,或者添加例子,以激发您创作出更好的作品。 3. 完成任务:AI 可以帮助您完成一些没有时间做的事情,例如写邮件、创建销售模板、提供商业计划的下一步等。 4. 增强记忆和稳定输出:Code Interpreter 可以用来增强记忆、通过代码让 AI 完成一些需要稳定输出的事情。 需要注意的是,整个小说创作过程可能较为繁琐,可能需要多次尝试和相互复制粘贴内容。此外,在使用 AI 辅助创作时,agent 框架需要能非常灵活地让人工干预。
2024-11-05
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
有了AI后,教师会发生什么变化,还能发挥什么作用?
有了 AI 后,教师会发生以下变化并发挥相应作用: 教育方式的转变:不再局限于传统模式,可借助 AI 实现大规模的个性化学习计划部署,为每个学生提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。 教育资源的优化:AI 生成的数字教师能够不受时空限制地传授知识,如让牛顿亲自授课《牛顿运动定律》,让白居易讲述《长恨歌》背后的故事。个性化的数字教师还能根据学生情况提供定制化学习计划和资源,缓解教育资源不平等问题。 教育角色的拓展:AI 可能超越领域专家的角色,成为下一代专家(包括人类和 AI)的教师。教师则需要与 AI 协作,更好地引导学生。 总之,AI 为教育带来了新的可能性,但教师在引导学生、培养情感和价值观等方面仍具有不可替代的作用。
2024-09-26
AI对教学的影响和作用
AI 对教学具有多方面的影响和作用,主要体现在以下几个方面: 1. 辅助获取信息和学习:可以帮助解释概念,用于自学,但要注意其可能产生的幻觉,关键数据需依据其他来源仔细核查。 2. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断难点,提供个性化建议和资源。 3. 自动评估:利用自然语言处理技术,如 Pearson 的 Intelligent Essay Assessor,自动批改作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 4. 智能辅助教学:如 AI 教师能引导对话学习、解答疑问并提供即时反馈,Google 的 AutoML 用于创建定制学习内容。 5. 虚拟现实和增强现实:在 VR 和 AR 方面,如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生安全进行实验操作并获得即时反馈。 然而,AI 技术在教育领域的广泛应用也对传统教育体系带来了冲击,如教育体系内部的惯性、教师的技能更新、课程内容的适时调整、评估和认证机制的改革等都是面临的重要挑战。
2024-09-25
ai大模型对亚马逊商家有什么作用
AI 大模型对亚马逊商家的作用主要体现在以下几个方面: 1. 营销活动分析:可以帮助分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 2. 库存管理:能够预测需求,优化库存管理,减少积压和缺货情况。 3. 支付和交易优化:分析不同支付方式对交易成功率的影响,优化支付流程。 4. 客户服务:通过驱动聊天机器人提供 24/7 的服务,解答疑问,提高客户满意度。 5. 市场分析:分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-05
2023年大模型发展有什么重要技术
2023 年大模型发展的重要技术包括以下方面: 模型发布:百川智能发布 Baichuan2—Turbo,字节云雀大模型等。 涉及领域:涵盖通用、医疗、汽车、教育、金融、工业、文化/零售/交通等多个行业。 关键进展:从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,再到 23 年末多模态大模型的全面爆发。 多模态大模型的应用: 优点:适应性极好,方便适应各种奇葩需求;对算法要求降低,大部分功能由大模型提供,特别是非结构化信息处理;API 访问方式简化了边缘设备要求,方便在多种设备适配。 缺点:推理时长是最大障碍,传统目标检测或人脸识别优化后能达到 100 300ms,而大模型动则需要 10 秒的延时,限制了许多场景;模型的幻象和错误率较高,在多链路复杂应用中迅速变得不可行;在大多数生产模式下,仍需使用云服务数据中心,存在隐私问题;商业私有化部署是刚需,当下开源模型与 GPT4 有代差。
2024-11-14
帮我写一段120字的英文短文,回答这个问题:讨论终身学习的重要性
Lifelong learning is of great significance. It enables us to keep up with the everchanging world and acquire new skills and knowledge. It broadens our horizons, enhances our adaptability, and enriches our lives. It also helps us stay mentally active and engaged, promoting personal growth and development throughout our lives.
2024-11-04
近几个月,中国AI行业有什么重要进展?
以下是近几个月中国 AI 行业的一些重要进展: 过去 12 个月,人工智能行业流量增长显著。2022 年 9 月研究起始时,分析的工具产生 2.418 亿次访问,到 2023 年 8 月达到 28 亿次访问量。 从去年 11 月 ChatGPT 成为最快达到 100 万用户的平台后,行业热度持续攀升,2023 年 5 月访问量达到约 41 亿的峰值。 2023 年上半年国内笃信靠资金和卡能发展类 GPT 架构,但下半年纷纷转向“垂直应用”“商业化”,不提 AGI。目前国内最领先的模型水平大概在准 ChatGPT3.5 水平,和 GPT4 有差距。 百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”。 中国开源项目在今年赢得全球粉丝,成为积极开源贡献者。DeepSeek 在编码任务中表现出色,阿里巴巴发布的 Qwen2 系列视觉能力令人印象深刻,清华大学的自然语言处理实验室资助的 OpenBMB 项目催生了 MiniCPM 项目。
2024-11-04
对于AI小白,学习第一步是什么,最重要的是什么,能给个学习计划吗
对于 AI 小白,以下是学习 AI 的建议和学习计划: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果您想快速掌握 Python,可参考:,结合 ChatGPT,不懂的地方都可以提问。
2024-10-16
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源
在人工智能时代,最重要的三个基石通常包括以下方面: 1. 架构:如 Transformer 和 Diffusion 这两种核心架构,分别在数据转换和数据向图像转换方面发挥关键作用,构成了当前 AI 技术的重要基础。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术的进步提供强大支持。 3. 人才网络:AI 领域的关键人才网络起到不可忽视的作用,例如 Google 及其相关实验室和收购的公司培养和汇聚了众多杰出人才,他们的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,您可以通过以下途径获取: 1. 科技类的专业网站和论坛,如一些知名的技术社区和学术网站。 2. 相关的学术研究报告和论文,可在学术数据库中查找。 3. 行业内的权威专家和学者的讲座、演讲等。 4. 科技公司发布的技术文档和报告。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的提升,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自于 Google,特别是其在加拿大多伦多和蒙特利尔成立的两个实验室,以及收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的领军人物。人才在不同公司之间的流动和合作也促进了 AI 技术的快速进步。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,如知网、Web of Science 等,以获取关于架构、算力和人才网络的学术研究成果。 2. 科技行业的专业论坛和社区,与同行交流和分享资源。 3. 关注知名科技公司和研究机构的官方网站和社交媒体账号,获取最新的研究动态和资源。
2024-10-10