ControlNet 是一种由斯坦福大学张吕敏发布的神经网络模型,常与预训练的图像扩散模型如 Stable Diffusion 结合使用,用于控制 AI 绘画的生成过程。
其工作原理是将 Stable Diffusion 模型的权重复制到 ControlNet 的可训练副本中,并利用外部条件向量训练副本。条件输入类型多样,如涂鸦、边缘图、姿势关键点、深度图、分割图、法线图等,以此指导生成图像的内容。
ControlNet 具有以下特点和优势:
其应用不仅限于 AI 绘画,还可用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务,展现出在 AIGC 领域的广泛应用潜力。
在使用方面,如在 Stable Diffusion 中,无论是文生图还是图生图,ControlNet 能实现更细化的控制,如构图、轮廓、形象姿态、色彩风格等。使用逻辑是通过预处理器将图片提取特征并转换为 AI 可识别的形式,再通过模型进行图像生成。预处理器如同“翻译软件”。例如绘制女孩模仿库里打篮球的图片,输入关键词和选择相应预处理器、模型等操作后即可生成。
在 Stable Diffusion 中使用 ControlNet 时,要注意一些设置,如确保 ControlNet 设置下的路径与本地 Stable Diffusion 的路径同步。基本流程包括点击 Enable 启用,选择预处理器,调整权重、控制生成步骤、反色模式等,还需根据情况选择合适的模型。
ControlNet是一种神经网络模型,由斯坦福大学张吕敏发布,它与预训练的图像扩散模型(例如Stable Diffusion)结合使用,通过引入额外的条件输入来控制AI绘画的生成过程。ControlNet模型通过在Stable Diffusion模型中添加辅助模块,实现对生成图像的精细控制。这些条件输入可以是多种类型的图像,例如涂鸦、边缘图、姿势关键点、深度图、分割图、法线图等,它们作为条件输入来指导生成图像的内容。ControlNet的工作原理涉及将Stable Diffusion模型的权重复制到ControlNet的可训练副本中,并使用外部条件向量来训练这个副本。这样做的好处是,可以在不破坏Stable Diffusion模型原本能力的前提下,通过小批量数据集对ControlNet进行训练,从而实现对特定条件的学习。ControlNet的设计思想提供了训练过程中的鲁棒性,避免了模型过度拟合,并允许在小规模甚至个人设备上进行训练。此外,ControlNet的架构具有强大的兼容性与迁移能力,可以用于其他扩散模型中,增强了图像生成的多样性和可控性。ControlNet的应用不仅限于AI绘画,它还可以用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务,展现了在AI生成内容(AIGC)领域的广泛应用潜力。内容由AI大模型生成,请仔细甄别类似问题:Transformer是什么?
作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-05-10 20:00原文网址:https://mp.weixin.qq.com/s/6ZKnYF0x6pHo-fWMQ66kiQStable Diffusion一直在致力于更精确地控制出图结果,而在这众多的功能中,最突出的要属ControlNet了。无论是文生图还是图生图,我们更多的是对内容的一个描述,但是如果我们想要更细化一些,比如构图、轮廓、形象姿态、色彩风格等等,单靠文生图或者图生图就不够用了,我们需要一个更强大的控制模块,这时ControlNet也就应运而生。它带来的最大的改变,就是让输出结果能更好的被我们控制了。关于ControlNet插件的安装,如果是用的秋叶大佬的整合包,就会自带这个插件。如果没有,可以去扩展中搜索ControlNet进行安装。安装完成之后,就可以看到ControlNet的使用界面了。ControlNet的使用逻辑是通过预处理器将我们的图片提取特征,并转换为AI可识别的形式,再通过模型将预处理器的结果进行图像生成。说得再直白一点,预处理器就是我们和ControlNet之间的一款翻译软件。比如,我想绘制一张女孩打篮球的图片,并且想让她模仿库里的这个动作。接下来,输入关键词:(最好的质量,杰作),女孩,打篮球,篮球场,认真,球衣,看着观众,受伤,绷带。大模型选择Toonyou的二次元卡通风格,在ControlNet中导入库里的照片,预处理器选择openpose,点击预处理器右侧的爆炸标志,就可以看到提炼出来的骨骼结构。接下来,使用同样名为openpose的模型,调试参数,点击生成。可以看到,这张AI绘图就采用我们提供给它的动作参考画了出来,效果相当不错。
Controlnet允许通过线稿、动作识别、深度信息等对生成的图像进行控制。请注意,在使用前请确保ControlNet设置下的路径与本地Stable Diffusion的路径同步[heading3]基本流程[content]点击Enable启用该项ControlNetPreprocessor指预处理器,它将对输入的图像进行预处理。如果图像已经符合预处理后的结果,请选择None。譬如,图中导入的图像已经是OpenPose需要的骨架图,那么preprocessor选择none即可。在Weight下,可以调整该项ControlNet的在合成中的影响权重,与在prompt中调整的权重类似。Guidance strength用来控制图像生成的前百分之多少步由Controlnet主导生成,这点与[:]语法类似。Invert Input Color表示启动反色模式,如果输入的图片是白色背景,开启它。RGB to BGR表示将输入的色彩通道信息反转,即RGB信息当做BGR信息解析,只是因为OpenCV中使用的是BGR格式。如果输入的图是法线贴图,开启它。Low VRAM表示开启低显存优化,需要配合启动参数“--lowvram”。Guess Mode表示无提示词模式,需要在设置中启用基于CFG的引导。Model中请选择想要使用解析模型,应该与输入的图像或者预处理器对应。请注意,预处理器可以为空,但模型不能为空。