目前,一些大模型具备从给出的视频中精准提取图片的能力。例如,多模态大模型可以实现这一功能。
多模态技术能够从图像中提取文本,理解图像或视频中发生的事情,识别物体、场景甚至情绪。像谷歌的 Gemini 多模态大模型,它可以处理多种不同的任务,应用范围广泛。
在实际应用中,比如有人想为一只猫买新衣服,可以给模型提供两张猫的图片,同时提供一个文本提示,询问什么样的衣服适合这只猫,模型会给出响应。又比如在解决物理问题时,提供包含问题和学生答案的图像以及文本提示,模型能够逐步推理并判断答案是否正确。
但需要注意的是,不同的大模型在具体的提取效果和精度上可能会有所差异,具体的应用效果还需要根据实际情况进行评估和选择。
[title]从原理到应用一次讲清楚 Prompt[heading1] 3、用数学来理解 Prompt[content]传统的机器学习是p(y|x; a)假设a是我们训练出来的模型。【训练】我们用大量人工标志,训练出来一个模型a。给了大量猫的照片,就返回cat。模型里面包含了大量猫照片的特征。【预测】给一个新的照片,根据模型特征按照一定概率返回猫或者其他动物。大模型是p(y|x; a)假设a我们训练出来的通用模型。这个模型没有经过人工的标注,但是他什么都可以学会。我们给出的Prompt其实就是x,然后让大模型基于这个x知道概率最大的y,这样就避免了人工的标注,但是依赖于x给入的信息,去更大概率找到合适的y。我们给一张照片,然后我们输入这是一个动物,这是什么,然后大模型根据这个输入,提取照片的特征和我们的提示作为输入,最终返回猫。
“小模型”确实有其优势,尤其是在特定任务上表现得非常出色。比如,如果你训练了一个专门识别猫🐱或狗🐶的模型,它在这个任务上可能非常精准。然而,这个模型就无法用于其他任务(因为用来训练模型的数据主要是由猫猫狗狗的照片组成的)。而“大模型”则不同,它像一个多功能的基础平台(有时也被称为“基座模型”)。大模型可以处理多种不同的任务,应用范围非常广泛,并且拥有更多的通识知识。这就是为什么尽管“小模型”在某些特定领域内表现优异,我们仍然需要“大模型”的原因:它们能够在更广泛的场景中提供支持和解决问题。
多模态技术可以从图像中提取文本,使从表情包或文档扫描中提取文本成为可能。它还能理解图像或视频中发生的事情,识别物体、场景,甚至情绪。假设有人想为一只猫买新衣服,他可以给模型提供两张猫的图片。同时,他可以提供一个文本提示,询问什么样的衣服适合这只猫。图像和文本将作为模型的输入。模型随后会给出响应,建议最适合这只猫的衣服。基于这两张图片,输入可以是交错的,意味着它可以是文本、图像、音频的混合。在这个例子中,有一个图像,然后是文本提示,接着是另一个图像。这个顺序可以改变,而且顺序很重要。课程稍后会详细讨论这一点。这是一个关于学生解决物理问题答案的例子。有一个包含问题和学生答案的图像,以及一个文本提示。模型被要求逐步推理这个问题,然后判断学生是否给出了正确答案。如果解决方案是错误的,模型需要解释错误之处并解决问题。在这个例子中,提供了一个文本提示和一个图像。在输出部分,可以看到模型的答案。值得注意的是,模型能够跨文本和图像进行推理。图像中包含文字和绘图,而模型的响应既包含文本,又包含一些LaTeX公式。