直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何利用AI做科普视频

回答

以下是利用 AI 做科普视频的一些建议和资源:

  • 入门学习:
    • 您可以观看以下入门视频来获取相关知识:
      • 《ChatGPT 诞生记:先捞钱,再谈理想》,作者/来源为林亦 LYi,该视频介绍了 ChatGPT 背后的 OpenAI 公司的理想、成果与争议。链接:https://www.bilibili.com/video/BV1Te4y1w7D6/,发布日期为 2023 年 2 月 10 日。
      • 《【渐构】万字科普 GPT4 为何会颠覆现有工作流》,作者/来源为 YJango,此视频讲解了 GPT 的底层原理和未来影响,抛开技术细节,少用专业名词,从整体功能上讲解了 ChatGPT 的工作原理、制造过程、涌现的能力、未来的影响以及如何应对。链接:https://www.bilibili.com/video/BV1MY4y1R7EN/,发布日期为 2023 年 3 月 15 日。
      • 《终于有人把 chatGPT 说清楚了——全网最深入浅出的 chatGPT 原理科普》,作者/来源为新石器公园,该视频深入浅出地讲解了 chatGPT 的基本原理和演化过程。
  • 工具推荐:
    • 制作视频的最佳动画工具:用于在视频中为人脸制作动画的D-iD,用于从文本创建视频的Runway v2
    • 最佳语音克隆:ElevenLabs
    • 需注意的问题:深度伪造是一个巨大的问题,这些系统需要合乎道德地使用。

此外,在不同的教学场景中,对于 AI 的使用态度和重点也有所不同。例如在健康课中,重点可能是帮助学生设计健康活动,对于使用生成式 AI 编写代码可能不太在意;在艺术课中可能不希望使用 AI 生成的图像,但在历史课中制作信息图表展示对宏观经济学原理的理解时可能会接受。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

1.1 入门:AI 学习路径

|名称|作者/来源|总结|链接|发布日期|必看星标|图片|<br>|-|-|-|-|-|-|-|<br>|ChatGPT诞生记:先捞钱,再谈理想|OpenAI翻身史|林亦LYi|ChatGPT的背后是OpenAI这家公司,今天我们聊聊它的理想、成果与争议。|[https://www.bilibili.com/video/BV1Te4y1w7D6/](https://www.bilibili.com/video/BV1Te4y1w7D6/)|2023/02/10|👍🏻||<br>|【渐构】万字科普GPT4为何会颠覆现有工作流|YJango|视频是关于GPT的底层原理和未来影响。将抛开技术细节,少用专业名词,在整体功能上讲解ChatGPT的「工作原理」「制造过程」「涌现的能力」「未来的影响」以及「如何应对」|[https://www.bilibili.com/video/BV1MY4y1R7EN/](https://www.bilibili.com/video/BV1MY4y1R7EN/)|2023/03/15|👍🏻||<br>|终于有人把chatGPT说清楚了——全网最深入浅出的chatGPT原理科普|新石器公园|本视频深入浅出的讲解了chatGPT的基本原理和演化过程,让你真正理解这个世界最大的变化。

他山之石|如何防止AI取代人类思考一切?

By contrast,if you’re teaching a health class where a student develops an app,you might not care if they use generative AI to help write the code.Instead,your focus is on helping students design a health campaign based on healthy habits.You might not have time to teach students to code by hand.You might not care about coding by hand.The app is merely a way for students to demonstrate their understanding of a health standard.If you’re teaching an art class,you might not want AI-generated images but you might embrace AI-generated images in a history class where students work on making infographics to demonstrate their understanding of macroeconomics principles.It might feel like cheating for a student in a film class to use AI for video editing but the AI-generated jump cuts might save loads of time in a science class where students demonstrate their learning in a video.In a film class,it’s critical for students to learn how to edit by hand in order to tell a story.In science,AI-generated jump cuts allow students to create videos quickly so they can focus on the science content.I also want to recognize that some of what students learn can and will become obsolete.I’m pretty sure I didn’t actually need to memorize the state capitols,for example.Which leads me to the next question...But What If We Don’t Need That Skill Anymore?I grew up in an era where teachers were moving away from memorization.We still had to memorize math facts and,for some reason,state capitols.I’ve never visited a state and thought,“Man,I really need to see the capitol.” If I’m Nevada,I’m not like,“Screw Vegas,I’m going to Carson City!”

如何使用 AI 来做事:一份带有观点的指南

最佳动画工具:用于在视频中为人脸制作动画的[D-iD](https://www.d-id.com/)。用于从文本创建视频的[Runway v2](https://app.runwayml.com/)最佳语音克隆:[ElevenLabs](https://beta.elevenlabs.io/speech-synthesis)现在,生成一个完全由人工智能生成的角色的视频,阅读完全由人工智能编写的脚本,用人工智能制作的声音说话,由人工智能制作动画,这简直是微不足道的。[它也可以深度伪造人,正如你在这个链接中看到的那样,我伪造了自己](https://oneusefulthing.substack.com/p/a-quick-and-sobering-guide-to-cloning),谨慎使用,但这对于制作解释视频和介绍来说可能很棒。最近还发布了第一个商用文本到视频工具Runway v2。它创建了4秒的短剪辑,更像是对未来发展的展示,但如果你想了解这个领域的未来发展,值得一看。一些需要担心的事情:深度伪造是一个巨大的问题,这些系统需要合乎道德地使用。

其他人在问
Function Calling in AI
以下是关于“Function Calling in AI”的相关内容: 函数调用为 AI 系统带来了诸多重要优势。以谷歌 Gemini 为例,它简化了用户体验,使用户无需在模型和应用程序间繁琐地复制粘贴信息,过程更流畅直观;显著减少错误发生的可能性,降低输入不正确信息的风险,提高准确性;为更高级的自动化开辟道路,能处理如酒店预订或制定旅行计划等复杂操作,用户通过简单语音命令即可完成一系列复杂任务,重新定义了人与技术的互动方式。 对于 ChatGPT,为让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 于当地时间 6 月 13 日发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象,这是连接 GPT 能力与外部工具和 API 的新方法。结合函数调用,本地控制返回 JSON 格式,prompt 定制更简单,AI 输出更可控,可根据实际业务需求选择函数查询或 SQL 查询。 在 AI 智能体方面,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新层。工具本质是预先编写的代码组件,执行特定操作,如网页浏览、代码解释和授权认证等。系统向 LLM 呈现可用工具,LLM 选择并构建必要的结构化 JSON 输入触发 API 执行产生最终操作。例如 Omni 的“计算 AI”功能,利用 LLM 直接输出适当的 Excel 函数到电子表格中执行计算并生成复杂查询。但工具使用仅凭自身不能视为“主动性”,逻辑控制流程仍由应用程序预先定义。
2024-11-22
推荐一款国内不错的AI视频生成软件
以下为您推荐几款国内不错的 AI 视频生成软件: 1. 可灵:在 AI 视频生成领域表现出色,具有以下优势: 卓越的视频生成质量,与国际顶级模型相当,能满足普通用户和专业创作者的需求。 生成速度快,处理效率高于国外同类产品,提升用户工作效率。 对国内用户可访问性强,提供便捷、稳定的使用体验。 2. Hidreamai:有免费额度,支持文生视频、图生视频,提示词使用中文、英文均可,文生视频支持多种控制,可生成 5s 和 15s 的视频。网址:https://hidreamai.com//AiVideo 3. ETNA:由七火山科技开发,可根据简短文本描述生成相应视频内容,生成视频长度 8 15 秒,画质可达 4K,最高 38402160,画面细腻逼真,帧率 60fps,支持中文,时空理解。网址:https://etna.7volcanoes.com/ 此外,还有 Pika、SVD、Runway、Kaiber、Sora 等国内外提供此类功能的产品,您可以根据自己的具体情况进行选择。更多的文生视频网站可查看: 需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-22
AI提示词方法
以下是关于 AI 提示词方法的全面介绍: 优化和润色提示词(Prompt)对于提高文生图、对话等 AI 模型的输出质量非常重要,方法包括: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述想要表达的内容,避免过于笼统。 2. 添加视觉参考:在 Prompt 中插入相关的图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的 Prompt 描述方式。 5. 增加约束条件:为避免 AI 产生意料之外的输出,添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt:将复杂的需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、被证明有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 Prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 编写 prompt 时,还应遵循以下建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,提供足够的上下文。 3. 使用清晰的语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在 prompt 中明确指出。 5. 使用示例:如有特定期望结果,在 prompt 中提供示例。 6. 保持简洁:尽量简洁明了,避免过多信息使 AI 模型困惑。 7. 使用关键词和标签:帮助 AI 模型更好地理解任务的主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整 prompt,可能需要多次迭代。 在星流一站式 AI 设计工具的 prompt 输入框中: 1. 提示词用于描绘画面。 2. 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 3. 写好提示词的方法包括: 预设词组:小白用户可点击提示词上方官方预设词组进行生图,提示词内容应准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。
2024-11-22
小白学习AI怎么开始
对于小白学习 AI,可以从以下几个方面开始: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-22
推荐一款常用的AI画图应用
以下为您推荐一些常用的 AI 画图应用: 1. Creately 简介:是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 2. Whimsical 简介:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 3. Miro 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 4. Lucidchart 简介:强大的在线图表制作工具,集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 5. Microsoft Visio 简介:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 6. Diagrams.net 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 以下是一些可以绘制逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2024-11-22
推荐一款AI制图应用
以下为您推荐几款 AI 制图应用: 1. Lucidchart:这是一个强大的在线图表制作工具,集成了 AI 功能,可自动化绘制流程图、思维导图、网络拓扑图等多种示意图。其具有拖放界面,易于使用,支持团队协作和实时编辑,还有丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ 2. Microsoft Visio:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可帮助自动化布局和优化图表设计,集成 Office 365,方便与其他 Office 应用程序协同工作,有丰富的图表类型和模板,支持自动化和数据驱动的图表更新。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。支持本地和云存储(如 Google Drive、Dropbox),有多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:https://www.diagrams.net/ 此外,在 AI 绘图领域,国外的 Midjourney 也较为知名。它的模型强大,能生成高质量图像,且支持充分的个性化设置,但使用过程不太便捷,需要通过 Discord 应用加入 Midjourney 的频道或创建自己的频道并邀请 Midjourney 机器人才能生成图片。
2024-11-22
如果我需要撰写一个以“AI对音乐行业就业岗位的影响”为主题的约3000字的科普类文章,我应该优先关注WaytoAGI 知识库中的哪些内容?
很抱歉,目前“通往 AGI 之路”知识库中没有与“AI 对音乐行业就业岗位的影响”相关的直接内容。但您可以从以下几个方面入手来撰写这篇文章: 1. 了解 AI 在音乐创作、制作、表演等方面的应用现状和发展趋势。 2. 研究 AI 技术如何改变音乐的生产流程和效率。 3. 分析 AI 对音乐创作者、演奏者、制作人等不同岗位的具体影响,包括可能的岗位替代和新岗位的产生。 4. 探讨 AI 带来的音乐版权和知识产权问题,以及对相关法律和政策的影响。 5. 关注音乐消费者对 AI 参与音乐创作和表演的接受程度和需求变化。
2024-10-19
以图像识别,为小白科普相关知识和交叉领域,并为研究生提供参考选题
图像识别是指利用计算机技术对图像进行处理和分析,以识别和理解图像中的内容。 对于小白来说,图像识别是让计算机像人一样“看懂”图像。它基于深度学习、机器学习等技术,通过对大量图像数据的学习和训练,能够自动提取图像的特征,并进行分类、识别等操作。 图像识别的应用非常广泛,比如在安防领域,用于人脸识别、车牌识别等;在医疗领域,辅助疾病诊断、医学影像分析;在交通领域,实现交通标志识别、车辆检测等。 图像识别与多个领域存在交叉,如计算机视觉,它不仅关注图像的识别,还包括图像的生成、处理等;与人工智能的其他分支如自然语言处理也有结合,实现图文转换等功能;在工业领域,与自动化生产相结合,进行产品质量检测等。 对于研究生来说,以下是一些参考选题: 1. 基于小样本学习的图像识别算法研究。 2. 融合多模态信息的图像识别模型优化。 3. 针对特定场景(如复杂环境、低光照等)的图像识别改进。 4. 图像识别在医疗诊断中的精准度提升策略。 5. 结合深度学习和传统方法的图像识别性能比较。 6. 基于新型神经网络架构的图像识别应用。
2024-10-19
Aigc科普资料
以下是关于 AIGC 的科普资料: AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 GenAI(即生成式 AI)是一种能够从已有数据中学习并生成新的数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC。 相关概念包括: 人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称 AI。 生成式人工智能 GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI 简称 GenAI。 机器学习:一种手段,让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称 LLMs。 ChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT 会通过聊天玩“文字接龙游戏”了。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 ChatGPT 是 AIGC 技术的一个应用实例,它代表了 AIGC 在文本生成领域的进展。AGI、GenAI、AIGC 几个概念存在一定的区别。
2024-09-25
科普性质的介绍下目前大模型的优秀应用案例和实施经验
以下为目前大模型的一些优秀应用案例和实施经验: 在问答行业: Baichuan 借鉴了 Meta 的 CoVe 技术,将复杂 Prompt 拆分为多个独立且可并行检索的搜索友好型查询,使大模型能够对每个子查询进行定向知识库搜索。 利用自研的 TSF(ThinkStep Further)技术来推断和挖掘用户输入背后更深层的问题,以更精准、全面地理解用户意图。 自研 BaichuanTextEmbedding 向量模型,对超过 1.5T tokens 的高质量中文数据进行预训练,并通过自研损失函数解决了对比学习方式依赖 batchsize 的问题。同时引入稀疏检索和 rerank 模型,形成向量检索与稀疏检索并行的混合检索方式,大幅提升了目标文档的召回率,达到 95%。 在医疗行业: 涵盖疾病的诊断与预测、药物研发以及个性化医疗等方向。 例如,麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin。研究者先构建由两千个性能已知的分子组成的训练集,用它们训练 AI 学习分子特点,总结规律,再对美国 FDA 已通过的六万多个分子进行分析,最终成功识别出有效分子,且实验证明效果良好。 在模型架构方面: 包括 encoderonly、encoderdecoder 和 decoderonly 等类型。 如 BERT 是 encoderonly 模型的代表,google 的 T5 是 encoderdecoder 模型的代表,众多熟知的 AI 助手包括 ChatGPT 基本属于 decoderonly 架构。 大模型的特点在于预训练数据量大,往往来自互联网上的多种来源,且参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。
2024-09-13
人工智能科普
以下是关于人工智能的科普内容: 一、人工智能简介 人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情的科学。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。然而,像“根据照片判断一个人的年龄”这类任务,由于我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,这类任务正是人工智能感兴趣的。 二、人工智能简史 早期的程序如,基于简单语法规则,将输入句子重新表述为问题。现代助手如 Cortana、Siri 或谷歌助手等是混合系统,使用神经网络将语音转换成文本并识别意图,再采用推理或明确算法执行操作。未来有望出现完整基于神经网络的模型独立处理对话,如最近的 GPT 和 TuringNLG 系列神经网络在这方面取得了巨大成功。 三、新手学习 AI 的方法 学习人工智能是既刺激又富有挑战的旅程。 1. 了解 AI 基本概念: 阅读「」部分,熟悉术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解历史、应用和发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),可根据兴趣选择特定模块深入学习。
2024-09-10
AI儿童科普演讲大纲
很抱歉,目前知识库中没有关于 AI 儿童科普演讲大纲的相关内容。但我可以为您提供一个大致的框架以供参考: 一、引言 1. 用有趣的故事或现象引入 AI 的概念 2. 提问引发孩子们的兴趣 二、什么是 AI 1. 简单解释 AI 的定义 2. 举例说明 AI 在日常生活中的应用,如语音助手、智能家电等 三、AI 的工作原理 1. 以简单易懂的方式讲解数据输入、算法处理和结果输出 2. 用形象的比喻帮助孩子们理解 四、AI 的优点 1. 提高效率、准确性 2. 解决一些复杂的问题 3. 为人们的生活带来便利 五、AI 的挑战与担忧 1. 可能导致的就业变化 2. 数据隐私和安全问题 六、未来的 AI 1. 鼓励孩子们想象未来 AI 的发展 2. 激发他们对科技的兴趣和探索精神 七、总结 1. 回顾重点内容 2. 鼓励孩子们学习科学知识,为未来做好准备 您可以根据实际情况和孩子们的年龄特点对内容进行调整和丰富。
2024-09-09
如何做一个我自己的AI数字人进行短视频出镜主播
以下是制作您自己的 AI 数字人进行短视频出镜主播的方法: 一、准备视频内容 1. 准备一段视频中播放的文字内容,可以是产品介绍、课程讲解、游戏攻略等。您也可以利用 AI 来生成这段文字。 2. 使用剪映 App 对视频进行处理。电脑端打开剪映 App,点击“开始创作”。选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道,然后将准备好的文字内容替换默认文本内容。这将为数字人提供语音播放的内容以及生成相对应的口型。 二、生成数字人 1. 在剪映右侧窗口顶部,打开“数字人”选项,选取一位免费且适合的数字人形象,例如“婉婉青春”。选择数字人形象时,软件会播放其声音,您可判断是否需要,点击右下角的“添加数字人”,将其添加到当前视频中。 2. 剪映 App 会根据提供的内容生成对应音视频,并添加到当前视频文件的轨道中。左下角会提示渲染完成时间,您可点击预览按钮查看生成的数字人效果。 三、增加背景图片 1. 直接删除先前导入的文本内容,因为视频中的音频已包含文字内容。 2. 为视频增加背景图片。点击左上角的“媒体”菜单,并点击“导入”按钮,选择本地的一张图片上传。 3. 点击图片右下角的加号,将图片添加到视频的轨道上(会覆盖数字人)。 4. 点击轨道最右侧的竖线,向右拖拽直到与视频对齐。 5. 选中背景图片所在的轨道,在显示区域拖动背景图的一个角,将图片放大到适合尺寸,并将数字人拖动到合适位置。 另外,您还可以通过以下网站生成虚拟数字人短视频: 1. 打开网站(要科学):https://studio.did.com/editor 2. 输入内容选项,在右侧的文字框里面输入从 ChatGPT 产生的内容,还可以更换想要的头像,选择不同的国家和声音。 3. 内容和人像都选择好之后,点击右上角的 Create Video,等待一段时间生成。生成好数字人视频后,结合产品做讲解即可发布去做视频带货。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
我想要能够爬取我想要的视频的工作流有吗
以下为您提供两种关于视频爬取工作流的信息: 1. Stable Video Diffusion 模型的 ComfyUI 部署实战: 完成准备工作后运行 ComfyUI。 安装 ComfyUI Manager 插件。 下载工作流,使用 ComfyUI 菜单的 load 功能加载。 点击菜单栏「Queue Prompt」开始视频生成,可通过工作流上的绿色框查看运行进度。 生成的视频可在 ComfyUI 目录下的 output 文件夹查看。若出现显存溢出问题,请另行处理。工作流可关注公众号「魔方 AI 空间」,回复【SVD】获取。 2. 来来的 AI 视频短片工作流: 完整文档: 工作流概述: 概念设定:MJ 剧本+分镜:ChatGPT AI 出图:MJ,SD,D3 AI 视频:Runway,pika,PixVerse,Morph Studio 对白+旁白:11labs,睿声 音效+音乐:SUNO,UDIO,AUDIOGEN 视频高清化:Topaz Video 字幕+剪辑:CapCut,剪映 直播回放:
2024-11-21
文字转视频
以下是关于文字转视频的相关信息: 文字生成视频的 AI 产品有: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:可在 Stable Diffusion 图片基础上直接生成视频,是 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多的文生视频的网站可查看: 腾讯运营使用 ChatGPT 实现文字转视频的方法:通过 ChatGPT 生成文案,将文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类工具操作相对简单,让大众生产视频更轻松。 Adobe Firefly 也有 TexttoVideo 功能,您可以使用文本提示、各种摄像机控制和参考图像来生成 B 卷,无缝填补时间线中的空白。通过详细的提示,还能生成引人注目的插入镜头以在最终项目中使用。例如:“Cinematic closeup and detailed portrait of an elderly man in the middle of a street at night. the lighting is moody and dramatic. The color grade is blue shadows and orange highlights. the man has extremely realistic detailed skin texture and visible pores. movement is subtle and soft. the camera doesn't move. film grain. vintage anamorphic lens.”
2024-11-21
我需要能够帮我找到能根据字幕对应视频剪辑到内容的工具
以下为您推荐一些能够根据字幕对应视频剪辑内容的工具: 1. 剪映:有很多人性化设计和简单的音效库、小特效。但无法协同工作和导出工程文件,难以达到更好的商业化效果。其剪辑流程包括视频粗剪、定剪、音效/音乐、特效、包装(如字幕)等环节。 2. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能翻译字幕并生成双语字幕,处理视频数量多,识别准确率高。 3. 绘影字幕:一站式专业视频自动字幕编辑器,提供字幕制作和翻译服务,支持多种语言,准确率高,可自定义字幕样式。 4. Arctime:能对视频语音自动识别并转换为字幕,支持自动打轴,支持主流平台和多种字幕功能。 5. 网易见外:国内知名语音平台,支持视频智能字幕功能和音频转写,转换正确率较高。 您可以根据自身需求选择适合的工具。
2024-11-21
利用Ai诈骗的多个具体案例
以下是一些与利用 AI 诈骗相关的案例: 在网络诈骗案件中,犯罪分子可能利用 AI 模拟不同辩护策略下的量刑结果,包括认罪协商和无罪辩护的可能性,以此误导受害者。 有虚构的公司利用 AI 驱动的算法设置保险费价格,可能存在违反相关法律法规和最佳实践的风险,如数据保护、平等和一般消费者保护法等。 拜登签署的 AI 行政命令中提到要保护美国人免受利用 AI 进行的欺诈和欺骗,例如建立检测 AI 生成内容和验证官方内容的标准和最佳实践,商务部将为内容认证和水印制定指导方针,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。
2024-11-20
利用Ai诈骗的具体案例
以下是一起利用 AI 诈骗的具体案例: 2019 年 3 月,某国际能源公司首席执行官接到一个未知来电,电话那头是其德国母公司的 CEO(通过“AI 换脸”技术伪装)。对方称公司出现运营危机,要求其向一个匈牙利银行账户紧急提供 220000 欧元或 243000 美元资金支援,并表示资金将在周转后报销。尽管指令不合规且涉及大额资金流转,但因声音与老板无异,被害人最终转账。资金从匈牙利流向墨西哥后分散,截至 2023 年 5 月仍未追回。
2024-11-20
利用ai编写h5比较优秀的工具有那些?
目前在利用 AI 编写 H5 方面,以下是一些较为优秀的工具: 1. Adobe Spark:提供了易于使用的模板和设计工具,结合 AI 辅助功能,可帮助您快速创建吸引人的 H5 页面。 2. Canva:拥有丰富的模板和元素库,其 AI 功能可以为您的设计提供创意和布局建议。 3. Wix:具有强大的自定义功能,部分 AI 特性能够协助您优化页面内容和布局。 但需要注意的是,AI 在编写 H5 中的应用仍在不断发展和完善,不同工具的性能和适用场景可能会有所差异,您可以根据具体需求进行选择和尝试。
2024-11-20
教培舞蹈机构如何利用人工智能ai获客引流?
对于教培舞蹈机构利用人工智能 AI 获客引流,以下是一些建议: 1. 利用 AI 驱动的客户关系管理(CRM)系统:通过分析潜在客户的行为数据和偏好,实现精准营销和个性化的服务推荐。 2. 借助 AI 聊天机器人:在网站或社交媒体平台上提供即时的咨询服务,解答潜在客户关于课程、师资、价格等常见问题,提高客户满意度和参与度。 3. 运用 AI 进行市场分析:了解市场趋势、竞争对手动态以及潜在客户的需求,从而优化课程设置和营销策略。 4. 利用 AI 生成个性化的营销内容:例如宣传文案、海报设计等,吸引潜在客户的注意力。 5. 基于 AI 的社交媒体管理工具:帮助机构更有效地发布内容、选择发布时间,并监测社交媒体上的用户反馈,及时调整营销策略。
2024-11-20
如何利用飞书构建RAG系统
以下是关于如何利用飞书构建 RAG 系统的相关内容: RAG 的常见误区: 随意输入任何文档就能得到准确回答:这是常见误区,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,需要专业知识和持续优化。 RAG 完全消除了 AI 的幻觉:虽然 RAG 可以显著减少幻觉,但并不能完全消除,只要有大模型参与,就有可能产生幻觉。 RAG 不消耗大模型的 Token 了:从大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出,所以 RAG 仍然消耗大模型的 Token。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 RAG 性能提升策略和评估方法(产品视角): 前言:RAG 是检索增强生成的缩写,是结合检索模型和生成模型的技术,核心目的是把知识告诉给 AI 大模型,让其“懂”我们,核心流程是根据用户提问从私有知识中检索相关内容,与用户提问一起放入 prompt 中提交给大模型,常见应用场景如知识问答系统。
2024-11-20
利用哪个AI可以快速了解一个领域的发展方向
以下是关于您问题的回答: 要快速了解一个领域的发展方向,可以从以下几个方面入手: 技术研究方向: 1. 数学基础:包括线性代数、概率论、优化理论等。 2. 机器学习基础:如监督学习、无监督学习、强化学习等。 3. 深度学习:涵盖神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:包含语言模型、文本分类、机器翻译等。 5. 计算机视觉:有图像分类、目标检测、语义分割等。 6. 前沿领域:例如大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 1. 编程基础:如 Python、C++等。 2. 机器学习基础:像监督学习、无监督学习等。 3. 深度学习框架:例如 TensorFlow、PyTorch 等。 4. 应用领域:如自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:涉及数据采集、清洗、特征工程等。 6. 模型部署:包含模型优化、模型服务等。 7. 行业实践:比如项目实战、案例分析等。 AI 技术的发展历程和前沿技术点概括如下: AI 技术发展历程: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:像视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:包括自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包括量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,AI 在医疗药品零售领域也有广泛的应用,例如: 1. 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 2. 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 3. 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 4. 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 5. 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 6. 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 7. 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。
2024-11-18