直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

截止今日国内ai性能排名

回答

以下是截至今日国内部分 AI 产品的性能排名情况: |排行|产品名|分类|4 月访问量(万 Visit)|相对 3 月变化| |----|----|----|----|----| |60|文心一格|图像生成|41.5|-0.086| |61|DupDub|文字转音频|41.4|0.107| |62|阿里堆友 AI 反应堆|图像生成|40.7|-0.169| |63|识典古籍|AI 学习|39.2|-0.164| |64|标智客 Ai Logo|图像生成|37.8|-1| |65|笔灵 AI|通用写作|37.4|0.087| |66|Learn Prompting|Prompts|36.1|-0.284| |67|搜韵网|通用写作|36|-0.155| |68|腾讯智影|其他视频生成|35.4|0.131| |69|新片场素材|其他视频生成|35.2|0.128| |70|pebblely.com|图像编辑|35|0.301| |71|彩云小译|翻译|34.3|-0.107| |36|虎课网免费在线视频教程|AI 学习|62.9|-0.005| |37|Glasp|会议总结|60.7|-0.325| |38|aippt|PPT|59.6|0.142| |39|帆软战略|电商|59.5|-0.145| |40|帆软数据|数据分析|59.5|-0.145| |41|讯飞听见|转录|56.2|-0.065| |42|Pixso AI|设计工具|54.9|0.017| |43|ToonMe(卡通头像)|图像生成|53.6|0.993| |44|edrawsoft|思维导图|53.5|-0.14| |45|Dify.ai|AI ChatBots|51.7|0.452| |46|彩云|通用写作|51.5|0.117| |47|360 苏打办公|生产力|50.6|1.269|

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

国内总榜 Top80

|AI产品数据国内总榜_排行|AI产品数据国内总榜_产品名|AI产品数据国内总榜_分类aiwatch.ai|AI产品数据国内总榜_4月访问量(万Visit)|相对3月变化|<br>|-|-|-|-|-|<br>|60|文心一格|图像生成|41.5|-0.086|<br>|61|DupDub|文字转音频|41.4|0.107|<br>|62|阿里堆友AI反应堆|图像生成|40.7|-0.169|<br>|63|识典古籍|AI学习|39.2|-0.164|<br>|64|标智客Ai Logo|图像生成|37.8|-1|<br>|65|笔灵AI|通用写作|37.4|0.087|<br>|66|Learn Prompting|Prompts|36.1|-0.284|<br>|67|搜韵网|通用写作|36|-0.155|<br>|68|腾讯智影|其他视频生成|35.4|0.131|<br>|69|新片场素材|其他视频生成|35.2|0.128|<br>|70|[pebblely.com](http://pebblely.com)|图像编辑|35|0.301|<br>|71|彩云小译|翻译|34.3|-0.107|

AGI万字长文(上)| 2023回顾与反思

从业内人的角度,ChatGPT和GPT4的出现时最令人惊讶的,不是它的能力,而是保密工作做的太好。2023之前国内AI行业还处在沾沾自喜,自认为和美国只有个把月差距,而且还有人口数据优势;这种论调一下子被GPT4打回了原形。OpenAI在国内完全没有预警的情况下,直接拉开2年技术差距。具体原因,可能是国内的骄傲自大,可能是被之前Google主推的T5技术路线带偏,也可能是因为AGI实在是影响过于巨大,FBI、美国国防部这些国家机关不可能没和OpenAI打过招呼。OpenAI的成功是大力出奇迹,所以23年上半年国内也笃信只要有卡有钱就可以“大炼钢铁”。那时不论是纷纷囤卡招人,研究类GPT架构的大厂们,还是讲着中国OpenAI的故事,拿着巨额融资的创业公司们,都想要第一个创造国产AGI。而到了下半年,在试验了一番发现不容易之后,又纷纷转向要做“垂直应用”、“商业化”;反而不提AGI了。这个转向是短视的,甚至是致命的。2023年,中美在AGI技术的差距并没有缩小。现在,国内最领先的模型水平大概在准ChatGPT3.5的水平,和GPT4还有不小差距;甚至还不如临时拼凑的Mistral团队的水平。

国内总榜 Top80

|AI产品数据国内总榜_排行|AI产品数据国内总榜_产品名|AI产品数据国内总榜_分类aiwatch.ai|AI产品数据国内总榜_4月访问量(万Visit)|相对3月变化|<br>|-|-|-|-|-|<br>|36|虎课网免费在线视频教程|AI学习|62.9|-0.005|<br>|37|Glasp|会议总结|60.7|-0.325|<br>|38|aippt|PPT|59.6|0.142|<br>|39|帆软战略|电商|59.5|-0.145|<br>|40|帆软数据|数据分析|59.5|-0.145|<br>|41|讯飞听见|转录|56.2|-0.065|<br>|42|Pixso AI|设计工具|54.9|0.017|<br>|43|ToonMe(卡通头像)|图像生成|53.6|0.993|<br>|44|edrawsoft|思维导图|53.5|-0.14|<br>|45|Dify.ai|AI ChatBots|51.7|0.452|<br>|46|彩云|通用写作|51.5|0.117|<br>|47|360苏打办公|生产力|50.6|1.269|

其他人在问
360AI搜索
以下是关于 360AI 搜索的相关信息: 360AI 搜索是 360 公司推出的 AI 搜索引擎,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 其定位是新一代答案引擎,在传统搜索的网页检索能力基础上,结合大型语言模型意图识别、信息提炼、归纳整理、生成文案等一系列技术能力,学习人类的思维和语言组织模式,生成有理有据、逻辑清晰的优质答案。 具有以下特点: 针对模糊问题,可通过反问和几轮交互理解问题,给出答案。 搜索全网上万条相关内容,深度阅读 20+网页,生成的答案非常丰富。 对比大模型产品特别是聊天机器人,回答更具时效性。 通过主动追问帮助用户延展学习,了解更多周边信息。 功能包括阅读提炼全网内容,并归纳总结,相当于替用户读了几十个精选网页,并进行归纳总结。其工作流程为:分析问题语义→提炼搜索关键词→查询全网相关内容→精选出参考价值较高的网页→进行结构化总结,重点突出,详略得当。 在国内总榜中排名第 3,4 月访问量为 1134 万次,相对 3 月变化为 13。 Web 端和 H5 端的网址为: ,手机端可扫码下载 360 AI 搜索 APP。
2024-11-21
我想写旅游攻略。请问有什么ai合适?
以下是一些适合用于写旅游攻略的 AI 工具和相关建议: 1. Bot 智能体:它自带的插件可以根据您想去的地方做出合适的规划,比如路线规划、周边规划等。您可以通过输入一定的 Prompt 描述,利用官方的优化功能获得不错的效果。 当您询问关于爬山的问题时,它会根据您的情况给出相应建议,如身体状况、路线和装备选择等。 当您询问登山路线时,它会为初学者推荐合适的线路。 当您询问登山装备时,它会告知必备的物品。 当您询问登山安全时,它会强调相关注意事项。 当您询问登山技巧时,它会提供提高技巧的方法。 2. 穷游网社区:这是一个 AI 旅游体验分享平台,利用自然语言处理和图像识别技术。它可以让用户分享旅游体验,发现更多美好。例如,当用户分享自己的欧洲之旅,APP 会根据照片的内容和文字描述,推荐相关的旅游攻略和景点。
2024-11-21
学习AI
以下是为新手和中学生提供的学习 AI 的建议: 新手学习 AI: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 中学生学习 AI: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-21
我想从0开始学习AI
以下是为您提供的从 0 开始学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-21
ai选股
很抱歉,上述提供的内容中没有关于“AI 选股”的直接相关信息。如果您对 AI 选股感兴趣,建议您考虑以下方面: 1. 数据收集与分析:利用 AI 处理大量的金融数据,包括公司财务报表、市场趋势、宏观经济指标等。 2. 模型构建:例如使用机器学习算法构建预测模型,以预测股票的走势。 3. 风险评估:通过 AI 评估投资的风险水平。 但需要注意的是,AI 选股并非绝对准确,仍需结合专业的金融知识和个人的判断。
2024-11-21
免费实用的ai PPT制作生成工具
以下为您介绍一些免费实用的 AI PPT 制作生成工具: 歌者 PPT(gezhe.com):是一款永久免费的智能 PPT 生成工具。具有话题生成、资料转换、多语言支持、海量模板和案例库、在线编辑和分享、增值服务等功能。其产品优势包括免费使用、智能易用、海量案例、资料转 PPT 专业、AI 翻译等。推荐理由为完全免费、智能化程度高、模板和案例丰富、支持多语言、几乎无需学习成本就能上手使用。 MindShow、爱设计、闪击、Process ON、WPS AI:这些工具各具独特优势,能助您快速、高效地完成 PPT 设计。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 此外,为您推荐 2 篇市场分析的文章供参考: 《》 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-21
截止目前,国内聊天AI排名
截至 2023 年 9 月,在国内聊天 AI 方面: ChatGPT 遥遥领先,占整个前 50 名列表每月流量的 60%,估计每月访问量为 16 亿次,每月用户数为 2 亿(截至 2023 年 6 月),成为全球访问量排名第 24 的网站。在移动领域,ChatGPT 同样占据榜首位置,其规模大约是排名紧随其后第二名微软 Edge 和第三名 Photomath 的 2.5 倍。 CharacterAI 已成为第二大产品,其规模约为 ChatGPT 的 21%。在移动领域,CharacterAI 是最强大的早期参与者之一,其 DAU 可以与 ChatGPT 相媲美,并且留存率明显更高。 除了 ChatGPT 之外,位列前 5 名的还有 Google 的 Bard 和 Quora 的 Poe。 有五家 AI 公司实现了“双线作战”,它们的网页端、移动端应用双双跻身前 50 强榜单,分别是 ChatGPT、Character.AI、chatbot 平台 Poe,以及图片编辑应用 Photoroom、Pixelcut。
2024-10-26
大模型排名
以下是关于大模型排名的相关信息: 斯坦福发布了大模型排行榜 AlpacaEval,这是一种基于 LLM 的全自动评估基准,更加快速、廉价和可靠。项目链接:https://github.com/tatsulab/alpaca_eval ,排行榜链接:https://tatsulab.github.io/alpaca_eval/ 。 该排行榜分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在 GPT4 评估榜单中,GPT4 稳居第一,胜率超过 95%;Claude 和 ChatGPT 胜率都在 80%以上,分别排名第二和第三,Claude 以不到 3%的优势超越 ChatGPT。 开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco;Vicuna 发挥稳定,胜率超过 70%排在第六,紧追 Guanaco 65B;Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 团队已开源所有模型评估代码和分析数据,以及支持未来新模型榜单更新的测试工具,但它仍不是一个全面的模型能力评测系统,存在指令比较简单、评分可能更偏向风格而非事实、没有衡量模型可能造成的危害等局限性。 中国国内的大模型排名可能在短时间内会有变化,作为 AI 机器人无法提供最新的信息。要获取最新的中国国内大模型排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,在会定期更新相关的排名报告,可以供您查阅。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13
大模型排名以及排名的评测标准维度是什么
以下是一些常见的大模型排名及评测标准维度: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb: 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 斯坦福发布的大模型排行榜 AlpacaEval: 项目链接:https://github.com/tatsulab/alpaca_eval 排行榜链接:https://tatsulab.github.io/alpaca_eval/ 该研究团队选择了目前在开源社区很火的开源模型,还有 GPT4、PaLM 2 等众多「闭源」模型,甚至还开设了一个「准中文」排行榜。 AlpacaEval 分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在斯坦福的这个 GPT4 评估榜单中: GPT4 稳居第一,胜率超过了 95%;胜率都在 80%以上的 Claude 和 ChatGPT 分别排名第二和第三,其中 Claude 以不到 3%的优势超越 ChatGPT。 值得关注的是,获得第四名的是一位排位赛新人——微软华人团队发布的 WizardLM。在所有开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco。 而在开源模型中的佼佼者 Vicuna 发挥依然稳定,凭借着超过 70%的胜率排在第六,胜率紧追 Guanaco 65B。 最近大火的 Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 的技术细节: 人类一致性:标注者与交叉标注集中人类多数票之间的一致性。 价格:每 1000 个标注的平均价格。 时间:计算 1000 个标注所需的平均时间。相对于人工标注,全自动化的 AlpacaEval 仅需花费约 1/22 的经济成本和 1/25 的时间成本。 AlpacaEval 评估模型的方式: alpaca_eval:直接根据目标模型输出的响应来评估模型。 alpaca_eval evaluate_from_model:根据 HuggingFace 已注册模型或这 API 提供商来端到端评测模型。 评测过程分为以下 3 步: 1. 选择一个评估集,并计算指定为 model_outputs 的输出。默认情况下,使用来自 AlpacaEval 的 805 个示例。 2. 计算 golden 输出 reference_outputs。默认情况下,在 AlpacaEval 上使用 textdavinci003 的输出。 3. 通过 annotators_config 选择指定的自动标注器,它将根据 model_outputs 和 reference_outputs 计算胜率。这里建议使用 alpaca_eval_gpt4 或 claude。根据不同的标注器,使用者还需要在环境配置中设定 API_KEY。
2024-11-12
国内ai产品排名
以下是国内部分 AI 产品的排名情况: |排行|产品名|分类|6 月 APP 下载量(k)|相对 5 月变化| |||||| |1|抖音豆包 AI|通用 Chatbot|16924|1.01| |2|CapCut Dreamina|视频编辑|11540|0.005| |3|星野|虚拟角色|1934|0.458| |4|百度网盘云一朵|其他|1797|0.041| |5|Kimi 智能助手|通用 Chatbot|1404|0.109| |6|作业帮|教育|1038|0.17| |7|文心一言|通用 Chatbot|941|0.061| |8|百度文库文档助手|通用 Chatbot|929|0.228| |9|AnyDoor|通用 Chatbot|804|0.844| |10|大学搜题酱|教育|777|0.151| |11|美图证件照|图像生成|621|0.192| |12|小猿搜题|教育|589|0.048| |13|天工 AI 助手|通用 Chatbot|517|0.27| |14|美图设计室|图像生成|465|0.151| |15|讯飞星火|通用 Chatbot|360|0.18| |16|通义千问|通用 Chatbot|337|0.286| |17|佐糖|图像编辑|239|0.077| |18|智谱清言|通用 Chatbot|210|0.106| |19|TalkAI 练口语|教育|201|0.047| |20|海螺 AI|通用 Chatbot|188|0.099| |21|腾讯元宝|其他|163|2.075| |22|ProKnockOut|图像编辑|154|0.115| |23|讯飞听见|其他|140|0.125| |24|开拍|图像编辑|137|0.074| |25|脸猫|图像生成|131|0.598| |26|流利说|教育|123|0.054| |27|千颜|图像编辑|95|6.917| |28|妙鸭相机|图像生成|85|0.063| |29|说得相机|图像编辑|63|0.1| |30|河马爱学|教育|54|0.019| |31|剪同款|图像生成|50|0.138| |32|Unidream|图像生成|47|0.892| |33|SuperAI|通用 Chatbot|44|0.375| |34|智能口语大师|教育|38|0.664| |35|创意喵|视频编辑|35|0.079| |36|我在 AI|通用 Chatbot|29|0.381| |37|MJ 中文极速版|图像生成|28|0.3| 此外,在图像类 AI 产品方面,为您推荐以下两款: 可灵:由快手团队开发,主要用于生成高质量的图像和视频。图像质量高,但价格相对较高,重度用户年费最高可达几千元,平均每月 400 600 元,临时或轻度使用有每日免费点数和 60 多元单月的最便宜包月选项。 通义万相:在中文理解和处理方面表现出色,用户可选择多种艺术和图像风格,生成图像质量高、细节丰富,操作界面简洁直观、用户友好度高,且目前免费,每天签到获取灵感值即可。但存在一定局限性,如某些类型图像因国内监管要求无法生成,处理非中文语言或国际化内容可能不如国际工具出色,处理多元文化内容可能存在偏差。
2024-11-08
销售排名海报相关的 AI 工具推荐
以下是一些与销售排名海报相关的 AI 工具推荐: 1. Canva(可画):https://www.canva.cn/ 是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户可通过简单拖放操作创建海报,其 AI 功能可帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,简化设计流程。 此外,如果您想快速用 AI 做一张满意的海报,可使用无界 AI:https://www.wujieai.cc/ 其做图逻辑类似于 SD,优势在于国内网络即可稳定使用,有免费出图点数,支持中文关键词输入,无需额外下载风格模型,可直接取用。在使用时,例如制作朋友圈 po 图,可选择画幅比例 1:1,选择皮克斯卡通模型,关键词可包含场景(如向日葵花田、面包店等)、氛围(如温馨、温暖等)、人物(如父亲和女儿、父亲和儿子)、造型(如发型、发色、服饰、配饰)、情绪(如笑得很开心、大笑、对视等)、道具(如童话书等)、构图(如半身、中景等)、画面(如色彩明艳)等。 与销售工作有关的 AI 工具还有: 1. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,可通过分析大量数据集识别潜在客户,生成预测性潜在客户评分,还能自动化执行日常或耗时任务。 2. Clari:专门从事智能收入运营的软件,能统一各种来源数据并以易于理解的方式呈现,简化财务预测过程。 3. Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-04
目前国内ai大模型排名
国内的大模型排名可能会随时间变化。要获取最新排名,您可以通过以下途径: 1. 查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台。 2. 在通往 AGI 之路的知识库里,会定期更新相关排名报告。 以下是部分大模型信息: 8 月正式上线的国内大模型: 北京:百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ 上海:商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 目前不能进行自然语言交流的:昇思(可以对文本进行是否由 AI 生成的检测,类似论文查重,准确度不错)、书生 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 特色功能:昇思——生图,MiniMax——语音合成 阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中。据悉,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。 在中文大模型基准测评 2023 年度报告的专项基准 SuperCLUE 基准 工具使用能力测评中: GPT4 Turbo 取得满分。 国内大模型中智谱清言表现不俗,取得 83.78 的高分,排名国内模型第一。 紧随其后的是文心一言 4.0、通义千问 2.0、Yi34BChat、AndesGPT 均有超过 70 分的表现。 超过 GPT3.5 的国内模型有 12 个。 在开源模型中,Baichuan213BChat、Xverse13B2Caht 的表现可圈可点,均超过 GPT3.5 以及众多闭源模型。总体来看,在工具使用能力上,国内大模型的表现优异,与国内大模型厂商积极落地应用密不可分。 内容由 AI 大模型生成,请仔细甄别。
2024-10-26
文生图模型性能排行
以下是一些文生图模型的性能排行相关信息: Kolors 是最近开源的文生图模型中表现出色的一个。它具有更强的中文文本编码器、高质量的文本描述、人标的高质量图片、强大的中文渲染能力以及巧妙解决高分辨率图加噪问题的 noise schedule,实测效果不错。 PIKA1.0 是一个全新的模型,文生视频和文生图的质量都有大幅度提升。在文生图方面稳定得令人惊讶,3D 和 2D 的动画效果出色。 为全面比较 Kolors 与其他模型的生成能力,构建了包含人工评估、机器评估的全面评测内容。在 KolorsPrompts 评估集中,Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体的平均分数如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。
2024-11-18
现在有哪些大模型效果与性能的对齐工具
目前对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的理解程度,涵盖语法、语义、上下文和隐含意义。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:衡量对广泛主题的知识掌握及特定领域的理解深度。 4. 泛化能力:测试处理未见过任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊指令的能力。 6. 偏见和伦理:评估生成文本是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,对用户反馈的适应和持续对话能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务,提供的 API 和工具的易用性。 为进行有效比较,可采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准评估基准。 2. 自定义任务:根据特定需求设计任务评估特定领域表现。 3. 人类评估:结合人类评估者的主观评价,尤其在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中比较不同模型表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等量化比较。 对于大模型的安全对齐,通过对齐(指令调优)能使语言模型更好理解人类意图并增加安全保障,避免输出有害内容。对齐任务可拆解为监督微调及获取 reward model 与进行强化学习调整输出分布两部分。LLAMA2 专门使用安全有监督微调确保安全。强化学习能根据人类反馈调整分布,使模型面对训练分布外数据时能拒绝不当回答。但 Alignment 并非能防护所有安全问题,存在越狱情况使模型对齐失效。 Qwen 2 开源后模型性能超越目前所有开源模型和国内闭源模型。玉宝搞过的 LLM 在线评估中可看到国内闭源大模型的 HUMANEVAL 测评得分,可与 Qwen 2 对比,参考网址:https://www.llmrank.cn/ 。2023 年 8 月起,通义千问推出 Qwen 系列,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen 2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,也已上线中国大语言模型评测竞技场 Compass Arena,测评地址:https://opencompass.org.cn/arena 。Compass Arena 集齐了国内主流的 20 多款大模型,用户可选择两两“对战”。
2024-11-14
现在性能最强的模型是?
目前性能较强的模型包括: Databricks 发布的 DBRX 是新的可能是现在最强的开源模型。它是拥有 132B 参数的 MoE 模型,一共拥有 16 个专家,每个 Token 激活 4 个专家,意味着有 36B 的活跃参数,Mixtral 只有 13B 的活跃参数(少了近 3 倍)。在语言理解、编程、数学和逻辑方面轻松击败了开源模型,如 LLaMA270B、Mixtral 和 Grok1,在大多数基准测试中超过了 GPT3.5。该模型以 12 万亿 Token 的文本和代码进行预训练,支持的最大上下文长度为 32k Tokens。 Llama 3 也是性能较强的开源模型,被认为是目前最强的开源大模型之一。 OpenAI 的 GPT4 是最先进和广泛使用的大型语言模型之一,在多种任务上展示了卓越的性能,包括文本生成、理解、翻译以及各种专业和创意写作任务。 此外,还有其他一些重要的大型语言模型,如 Anthropic 公司的 Claude 3、谷歌的 Gemini、百度的文心一言、阿里巴巴的通义大模型等,它们在特定领域和任务上也表现出了卓越的能力。
2024-08-13
我在学习VASP运算,想用它来计算材料的热电性能,第一步需要结构优化,最重要的是INCAR文件,能帮我写一个INCAR文件吗
VASP(Vienna Ab initio Simulation Package)是一款基于密度泛函理论(DFT)的第一性原理计算软件,广泛应用于材料科学中的电子结构计算和分子动力学模拟。使用VASP进行材料的热电性能计算时,确实需要对晶体结构进行优化,并且正确设置`INCAR`文件是至关重要的。 `INCAR`文件包含了VASP运行时的所有输入参数。一个基本的结构优化`INCAR`文件可能包含如下参数: ```plaintext 基本参数 PREC = Accurate 计算精度 ENCUT = 450 截断能,根据具体元素调整 ISMEAR = 1 采用Gaussian smearing方法 SIGMA = 0.2 用于ISMEAR的高斯宽度 NBANDS = 40 带数 EDIFF = 1e6 能量的收敛标准 EDIFFG = 0.02 离子的收敛标准 IBRION = 2 使用快速离子弛豫算法 EDIFF = 1e5 控制总能量的收敛 NSW = 50 最大离子步数 动力学计算参数(如果需要) LEPSILON = .TRUE. 计算宏观介电常数 KPOINTS = 自定义 K点设置,根据实际体系大小和对称性调整 其他可能需要的参数 LPEAD = .TRUE. 计算极化电荷 DIPOL = 自定义 电偶极子设置,用于分子动力学 NWRITE = 0 控制输出信息量 LCHARG = .TRUE. 计算并输出电荷密度 ``` 请注意,这只是一个示例文件,实际的`INCAR`文件需要根据你的具体体系和计算目标进行调整。例如,`ENCUT`需要根据你体系中元素的电子数来设定,`ISMEAR`和`SIGMA`的值可能需要根据费米能级的位置进行调整,`NBANDS`和`EDIFF`也需要根据计算的精度要求来设定。 对于热电性能的计算,你可能还需要考虑额外的参数,比如`LEPSILON`来计算介电常数,或者`DIPOL`来计算电偶极矩等。 在开始计算之前,强烈建议阅读VASP手册和相关文献,以确保正确设置所有参数,并理解每个参数的物理意义。此外,对于热电性能的计算,可能还需要进行额外的热力学和动力学分析,这通常涉及到更复杂的`INCAR`文件设置和后处理步骤。
2024-05-25
如何对比不同大语言模型的性能
对比不同大型语言模型的性能需要考虑多个维度,包括但不限于以下几个方面: 1. 理解能力:评估模型对语言的理解程度,包括对语法、语义、上下文和隐含意义的理解。 2. 生成质量:检查模型生成的文本的质量,包括文本的流畅性、相关性和准确性。 3. 知识广度和深度:评估模型对广泛主题的知识掌握程度,以及它对特定领域或话题的理解深度。 4. 泛化能力:测试模型在处理未见过的任务或数据时的表现,这反映了模型的泛化能力。 5. 鲁棒性:检查模型对错误输入、对抗性输入或模糊不清的指令的应对能力。 6. 偏见和伦理:评估模型生成文本时是否存在偏见,以及模型是否遵循伦理标准。 7. 交互性和适应性:评估模型在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型的大小、训练和运行所需的计算资源。 9. 易用性和集成性:评估模型是否易于集成到不同的应用和服务中,以及提供的API和工具的易用性。 为了进行有效的比较,可以采用以下方法: 标准基准测试:使用标准的语言模型评估基准,如GLUE、SuperGLUE、SQuAD等,这些基准提供了统一的测试环境和评分标准。 自定义任务:根据特定需求设计任务,以评估模型在特定领域的表现。 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 A/B测试:在实际应用场景中,通过A/B测试比较不同模型的表现。 性能指标:使用包括准确率、召回率、F1分数、BLEU分数等在内的性能指标来量化比较。 通过这些方法,可以全面地评估和对比不同大型语言模型的性能,从而选择最适合特定需求的模型。
2024-04-17