直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI基础名词和知识

回答

以下是关于 AI 基础名词和知识的介绍:

Python 相关

  • 属性和方法:学习为类定义属性和方法,并通过对象调用。
  • 继承和多态:了解类之间的继承关系及多态的实现。
  • 异常处理:包括理解异常的概念及在 Python 中的工作方式,学会使用 try 和 except 语句处理错误。
  • 文件操作:掌握文件的读写,以及文件路径的处理和目录下文件的列举。

AI 背景知识

  • 基础理论:明晰人工智能、机器学习、深度学习的定义及相互关系。
  • 历史发展:简要回顾 AI 的发展历程和重要里程碑。

数学基础

  • 统计学基础:熟悉均值、中位数、方差等统计概念。
  • 线性代数:了解向量、矩阵等基本概念。
  • 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。

算法和模型

  • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
  • 无监督学习:熟悉聚类、降维等算法。
  • 强化学习:了解其基本概念。

评估和调优

  • 性能评估:知道如何评估模型性能,如交叉验证、精确度、召回率等。
  • 模型调优:学习使用网格搜索等技术优化模型参数。

对于新手学习 AI,建议:

  • 了解 AI 基本概念:阅读相关资料熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。
  • 开始 AI 学习之旅:在特定的学习路径中找到为初学者设计的课程,通过在线教育平台按自己节奏学习,可获取证书。
  • 选择感兴趣的模块深入学习:根据自身兴趣选择特定领域(如图像、音乐、视频等)深入钻研。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

写给不会代码的你:20分钟上手 Python + AI

继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础

写给不会代码的你:20分钟上手 Python + AI

属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。

其他人在问
ai是大发展趋势吗
AI 是大发展趋势。以下是一些支持这一观点的理由: 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注该领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入相关社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 金融服务业将比想象得更快地接纳生成式 AI:人工智能和机器学习在金融服务行业已有十多年应用历史,促成了一系列改进。大型语言模型通过生成式人工智能代表重大飞跃,正在改变多个领域,这种能力结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。 红杉资本观点:AI 正处于重要发展阶段,一年内实现了与 SaaS 行业十年相同的收入。产业变革规模大,相关行业的 TAM 将扩展到几乎所有人类参与的行业。应用层大量创新,重点将转移到更高层次认知任务。拥抱 AI 的公司竞争优势将因成本降低、投资成本降低、收入增长及创新传统行业而上升。 综上所述,AI 具有巨大的发展潜力和趋势。
2024-11-22
如何做一个我自己的AI数字人进行短视频出镜主播
以下是制作您自己的 AI 数字人进行短视频出镜主播的方法: 一、准备视频内容 1. 准备一段视频中播放的文字内容,可以是产品介绍、课程讲解、游戏攻略等。您也可以利用 AI 来生成这段文字。 2. 使用剪映 App 对视频进行处理。电脑端打开剪映 App,点击“开始创作”。选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道,然后将准备好的文字内容替换默认文本内容。这将为数字人提供语音播放的内容以及生成相对应的口型。 二、生成数字人 1. 在剪映右侧窗口顶部,打开“数字人”选项,选取一位免费且适合的数字人形象,例如“婉婉青春”。选择数字人形象时,软件会播放其声音,您可判断是否需要,点击右下角的“添加数字人”,将其添加到当前视频中。 2. 剪映 App 会根据提供的内容生成对应音视频,并添加到当前视频文件的轨道中。左下角会提示渲染完成时间,您可点击预览按钮查看生成的数字人效果。 三、增加背景图片 1. 直接删除先前导入的文本内容,因为视频中的音频已包含文字内容。 2. 为视频增加背景图片。点击左上角的“媒体”菜单,并点击“导入”按钮,选择本地的一张图片上传。 3. 点击图片右下角的加号,将图片添加到视频的轨道上(会覆盖数字人)。 4. 点击轨道最右侧的竖线,向右拖拽直到与视频对齐。 5. 选中背景图片所在的轨道,在显示区域拖动背景图的一个角,将图片放大到适合尺寸,并将数字人拖动到合适位置。 另外,您还可以通过以下网站生成虚拟数字人短视频: 1. 打开网站(要科学):https://studio.did.com/editor 2. 输入内容选项,在右侧的文字框里面输入从 ChatGPT 产生的内容,还可以更换想要的头像,选择不同的国家和声音。 3. 内容和人像都选择好之后,点击右上角的 Create Video,等待一段时间生成。生成好数字人视频后,结合产品做讲解即可发布去做视频带货。
2024-11-22
AI读研报
AI Review(测试版)是一项允许您查看代码库中近期更改以捕获潜在错误的功能。您可以单击各个审阅项在编辑器中查看完整上下文,并与 AI 聊天获取更多信息。 为使 AI Review 发挥有利作用,您可为 AI 提供自定义说明以使其专注于特定方面。例如,若希望 AI 专注于性能相关问题,可输入相关指令,这样 AI Review 在扫描更改时会专注于代码性能。 目前,您有以下几个审核选项可供选择: 1. 查看工作状态:将查看您未提交的更改。 2. 查看与主分支的差异:将查看当前工作状态与主分支之间的差异。 3. 查看上次提交:将审查您所做的最后一次提交。
2024-11-22
AI在制造业的应用
在制造业领域,AI 有以下应用: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能自动生成个性化的客户回复,提升客户体验。 此外,AI 在制造业还包括以下方面的应用: 1. 预测性维护:可预测机器故障,帮助工厂避免停机。 2. 质量控制:能够检测产品缺陷,提高产品质量。 3. 供应链管理:优化供应链,提高效率和降低成本。 4. 机器人自动化:用于控制工业机器人,提高生产效率。
2024-11-22
我想要学习AI提示词的使用方法
以下是关于 AI 提示词使用方法的详细介绍: 一、什么是提示词 提示词用于描绘您想要的画面。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),并且支持中英文输入。启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 二、如何写好提示词 1. 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 2. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 3. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 4. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可以对已有的提示词权重进行编辑。 三、辅助功能 1. 翻译功能:一键将提示词翻译成英文。 2. 删除所有提示词:清空提示词框。 3. 会员加速:加速图像生图速度,提升效率。 四、关于 Prompt 的语法规则 1. Prompt 是一段指令,用于指挥 AI 生成您所需要的内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言为英语(不用担心英语不好的问题,),另外 emoji 也可以用。 3. 语法规则:用英文半角符号逗号,来分隔 tag。注意逗号前后有空格或者换行都不影响效果。改变 tag 权重有两种写法:括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。还可以进行 tag 的步数控制。 如果您是新手学习 AI,建议先了解 AI 基本概念,阅读「」中找到适合初学者的课程。选择感兴趣的模块深入学习,掌握提示词技巧,通过实践和尝试巩固知识,体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 产品。
2024-11-22
哪些AI软件可以设计提示词和优化提示词
以下是一些可以设计和优化提示词的 AI 软件: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 写好提示词的方法包括使用预设词组、保证内容准确(包含人物主体、风格、场景特点、环境光照、画面构图、画质等)、调整负面提示词、利用“加权重”功能突出重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt 网站精选: :AI 艺术提示词生成器。 :通过玩游戏练习 Prompt 书写。 NovelAI tag 生成器:设计类 Prompt 提词生成器,地址为。 魔咒百科词典:简单易用的 AI 绘画 tag 生成器,地址为。 KREA:设计 AI 的 Prompt 集合站,create better prompts,网址为。 Public Prompts:免费的 prompt 合集,收集高质量的提示词,网址为。 AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,网址为。 3. OpenAI API: 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。 模型通过将文本分解为标记(Token)来理解和处理文本,可通过分词器工具了解更多。 需要注意的是,在给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2024-11-22
Aigc 常见名词解释
以下是一些 AIGC 常见名词的解释: AIGC:AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介众多,包括语言文字类(如 OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM)、语音声音类(如 Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits)、图片美术类(如早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion)。 SD:是 Stable Diffusion 的简称。是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model; LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 AI:人工智能(Artificial Intelligence)。 AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。 此外,还有一些相对较难的名词解释: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用
2024-11-08
Ai名词解释
以下是关于 AI 的一些名词解释和相关信息: 名词解释: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理,包括认知、理解、生成等部分 LLM:大型语言模型(Large Language Model),数据规模很大,耗费资金多 机器学习:是人工智能的一个分支,是以机器学习为手段,解决人工智能中的部分问题,涉及多门学科 推理:指利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断 训练:通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未详细说明具体应用)
2024-10-29
AI名词解释
以下是关于 AI 的一些名词解释、相关概念及应用场景: 名词解释: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),即让电脑处理和理解人类语言 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多 机器学习:是人工智能的一个分支,是实现人工智能的途径之一,涉及多门学科,近 30 多年已发展为多领域科际集成。 推理:指利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断。 训练:通过大数据训练出复杂的神经网络模型,用大量标记过的数据训练系统以适应特定功能。 自然语言:自然语言(NLP)的认知和理解是让电脑把输入的语言变成有意义的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。 应用场景: 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未详细说明具体应用)
2024-10-29
AI 常见名词 有哪些
以下是一些 AI 常见名词: chatGPT:由致力于 AGI 的 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,目前使用的是 GPT4 的 LLM。 AI:人工智能(Artificial Intelligence)。 AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),即让电脑处理和理解人类语言。 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多。 机器学习:人工智能的一个分支,是实现人工智能的途径之一,涉及多门学科,近 30 多年已发展为多领域科际集成。 自然语言:是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。 推理:利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断。 训练:通过大数据训练出复杂的神经网络模型,用大量标记过的数据训练系统以适应特定功能。 以下是一些 AI 绘画常用的画面光线提示词: 情绪照明(mood lighting) 柔和的照明/柔光(Soft illuminaotion/ soft lights) 荧光灯(fluorescent lighting) 微光/晨光(rays of shimmering light/ morning light) 黄昏射线(Crepuscular Ray) 外太空观(outer space view) 电影灯光/戏剧灯光(cinematic lighting/ Dramatic lighting) 双性照明(bisexual lighting) 伦勃朗照明(Rembrandt Lighting) 分体照明(Split Lighting) 前照灯(front lighting) 背光照明(Back lighting) 干净的背景趋势(clean background trending) 边缘灯(rim lights) 全局照明(global illuminations) 霓虹灯冷光(neon cold lighting) 强光(hard lighting) 自上而下的光(god rays) 荧光(glowing light) 闪耀效果(sparkle) 模糊的(blurry) 镜头光晕(lens flare) 过曝(overexposure) 光线追踪(ray tracing)
2024-10-07
ai 各种名词的关系图
以下是 AI 相关名词的关系和解释: 人工智能(Artificial Intelligence,简称 AI)是一种目标,让机器展现智慧。 生成式人工智能(Generative AI,简称 GenAI)是一种目标,让机器产生复杂有结构的内容。 机器学习是一种手段,让机器自动从资料中找到公式。 深度学习是一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型(Large Language Models,简称 LLMs)是一类具有大量参数的“深度学习”模型。 ChatGPT 是一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 AIGC(Artificial Intelligence Generated Content)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。ChatGPT 是 AIGC 技术的一个应用实例。 AGI 是通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP 是自然语言处理(Natural Language Processing),就是处理人类语言。 LLM 是大型语言模型,数据规模很大,需要大量资金投入。
2024-09-18
必须知道的最常用的名词解释比如GPU、AGI等等、列举出来按照重点排序
以下是按照重点排序的一些常用名词解释: 1. 算力:字面意思是计算能力,可简单理解为 GPU,即电脑里的显卡,购买云服务时,服务商也是购买显卡“租”给用户使用。一张显卡除了 GPU 外,显存也是重要参数。 2. GPU:图形处理器,又称显示核心、视觉处理器、显示芯片,是在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器。 3. CPU:中央处理器,作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。 4. 显存:也被叫做帧缓存,作用是存储显卡芯片处理过或者即将提取的渲染数据,如同计算机的内存,是用来存储要处理图形信息的部件。
2024-09-13
有什么知识库的应用推荐?
以下是为您推荐的知识库应用: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库。其中提到大模型存在不准确和数据限制的问题,知识库可解决这些问题,典型应用如客服系统,公司可将用户问题及答案记录在文档中以知识库形式投喂给大模型,使大模型更准确回复用户。 01通往 AGI 之路知识库使用指南。涵盖智能纪要、总结等内容,包括关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。 张梦飞:【知识库】FastGPT + OneAPI + COW 带有知识库的机器人完整教程。包括创建知识库应用的步骤,如地址输入、模型选择、创建和上传文件等,以及安装并接入 cow 的操作流程。
2024-11-22
本群怎么实现的调用知识库
要实现本群对知识库的调用,可以通过以下两种方式: 1. 在 Bot 内使用知识库: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项说明如下: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:您需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 2. 在工作流内使用 Knowledge 节点: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。
2024-11-21
AI知识库有什么
AI 知识库主要包括以下内容: 通往 AGI 之路:这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。在这里,用户既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 特点: 由一群热爱 AI 的专家和爱好者共同建设。 大家贡献并整合各种 AI 资源,使大家可以轻松学习各种 AI 知识,应用各类 AI 工具和实战案例等。 提供一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽的教程。 追踪 AI 领域最新的进展,时刻更新,让用户每次访问都能有新的收获。 链接: https://waytoagi.com/ 即刻体验:https://waytoagi.com/ 此外,还有关于 Coze 的知识库相关内容,如大圣撰写的文章,帮助非编程人士理解 AI 时代的知识库,包括其概念、实现原理、能力边界,以及在通往 AGI 之路大群中通过对话获取知识库中资料的原理,还有如何更好地使用 Coze 等 AI Agent 平台中的知识库组件来打造更加强大的智能体。
2024-11-21
如何将知识库里的文件进行分类清晰数据,使其变得更加智能化
以下是关于如何将知识库里的文件进行分类清晰数据,使其变得更加智能化的方法: 1. 在线知识库 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 飞书在线文档中每个问题和答案以分割,可点击编辑修改和删除。 点击添加 Bot,并在调试区测试效果。 2. 本地文档 注意拆分内容,提高训练数据准确度,将海报的内容训练到知识库里面。 对于画小二这个课程,80 节课程分为 11 个章节,不能一股脑全部放进去训练。 首先将 11 章的大的章节名称内容放进来,章节内详细内容依次按固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用 点击发布,确保在 Bot 商店中能够搜到。 4. 飞书知识库 在飞书里面选择对应的文件夹,一次最多智能选择 20 个文件(若文件大于 20 个可多建几个知识库)。 可以选择自动进行数据清洗,数据清洗是把数据进行类结构化整理,内容中的图片资料也会保留。 测试对话,基本反馈正常,目前 coze 存在不稳定版本,需要不断调试完善。 5. Excel 知识库 可以增加其他形式的知识库。 上传表格的知识库不要过于复杂,不要有合并表格情况,同时系统不认不同的 Sheet。 数据处理完成会显示 100%进度,加工出来的数据,点击添加 Bot,就增加到知识库中,然后测试发布和返回。 6. 网页知识库 有自动采集和手动采集两种方式,手动采集需要安装插件,操作稍微有点小复杂。 选择批量添加,写入画小二官网的地址,可根据需求添加自己的网站。 将网站所有的页面都扫描出来,点击确认,将全站数据解析并保存到知识库里面,按照默认自动清洗数据。 7. 创建知识库并上传文本内容 本地文档:在文本格式页签下,选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。选择内容分段方式,包括自动分段与清洗(系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据)和自定义(手动设置分段规则和预处理规则,包括分段标识符、分段最大长度、文本预处理规则,如替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址)。单击下一步完成内容上传和分片。
2024-11-21
如何做好中国市场的知识库可以让ai学习并给出详细的三年计划
很抱歉,目前知识库中没有关于如何做好中国市场的知识库让 AI 学习并给出详细三年计划的相关内容。但一般来说,要做好这个计划,您可以从以下几个方面考虑: 1. 市场调研:深入了解中国市场的特点、需求、竞争态势等,为 AI 提供丰富准确的数据。 2. 数据整理:将收集到的市场信息进行分类、清洗和标注,以便 AI 能够有效学习。 3. 设定目标:明确三年中在市场份额、客户满意度、品牌知名度等方面的具体目标。 4. 阶段规划:第一年着重基础建设,如数据积累和模型训练;第二年优化模型,拓展应用场景;第三年实现规模化应用和持续优化。 5. 技术支持:确保有足够的技术团队来维护和更新 AI 系统。 6. 反馈机制:建立有效的反馈渠道,根据市场变化和用户反馈及时调整 AI 的学习方向。 以上只是一个初步的框架,您还需要根据具体的行业和市场情况进行进一步的细化和完善。
2024-11-20
你现在是一个学习AI 方面的小白,你下定决心要去学习AI的相关知识。你应该从哪入手
对于决心学习 AI 相关知识的新手,建议从以下方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于不会代码的新手,若希望继续精进 AI 学习,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-19
如何学习AI的基础到高深的用法
以下是从基础到高深学习 AI 用法的建议: 基础阶段: 1. 了解 AI 基本概念:阅读「」,熟悉 AI 术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)及它们的联系。同时,浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 深入阶段: 1. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块。掌握提示词技巧,因其上手容易且实用。 2. 实践和尝试:理论学习后,实践是巩固知识的关键。尝试使用各种产品创作作品,知识库中有相关作品和文章分享,欢迎实践后分享。 3. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的第一手体验。 精进阶段(针对不会代码但希望深入的情况): 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等基本数据类型。 控制流:学习使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 函数:包括定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块,使用包扩展程序功能。 面向对象编程(OOP):了解类和对象的定义与实例化,以及属性和方法,还有继承和多态。 异常处理:理解异常及其工作原理,学会使用 try 和 except 语句处理错误。 文件操作:掌握文件读写,处理文件与路径。
2024-11-13
零基础学习AI,需要报名学习,还是先免费网站开始
对于零基础学习 AI,您可以先从以下几个方面入手: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 至于是否需要报名学习还是先从免费网站开始,这取决于您的个人情况和学习习惯。如果您希望有系统的指导和监督,并且经济条件允许,报名学习可能更适合您。但如果您想先初步了解和尝试,从免费网站开始也是一个不错的选择。
2024-11-13
0基础学习AI
以下是为 0 基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI 的建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-11-13
0基础怎么快速学会做AI
对于 0 基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下具体的学习活动: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 对于技术纯小白,您可以: 从一个最最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,让 AI 帮助您梳理出产品需求文档。
2024-11-12
我想要了解AI在高校基础医学教学中的应用案例
以下是一些 AI 在高校基础医学教学中的应用案例: 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用特定 prompt ,2 小时帮同学干完 3 篇调研报告。 做调研:用 ChatGPT 做调研。 医疗:健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等研究应用中起重要作用。 此外,为了在医疗保健中产生真正的改变,AI 应像人类一样学习,例如成为顶尖医疗人才需要多年密集信息输入、正规学校教育和学徒实践,AI 也应通过合理的模型训练方式而非仅依靠大量数据来提升。 对于中学生学习 AI ,有以下建议: 从编程语言如 Python 、JavaScript 入手,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT 、Midjourney 等 AI 生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等教育平台。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试解决实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。
2024-11-07
AI基础
以下是关于 AI 基础的相关内容: 一、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz):让您系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。 七、新手学习 AI 的方法 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2024-10-31