直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

建筑师要学stablrdiffusion吗

回答

建筑师是否要学习 Stable Diffusion 取决于个人需求和兴趣。

Stable Diffusion 是一个 AI 自动生成图片的软件。学习它有以下一些方面需要了解:

  1. 学习目的:大多数人只是要能够熟练使用它,而不是深入研究其原理。目的是花更少的时间快速入门。
  2. 软件原理:虽然原理复杂,但不影响使用。
  3. 提示词学习:这是一个系统性的过程,包括学习基本概念,如了解工作原理和模型架构、掌握提示词组成部分;研究官方文档和教程;学习常见术语和范例;掌握关键技巧,如组合词条、控制生成权重、处理抽象概念描述;通过实践和反馈总结经验,创建提示词库,并持续跟进前沿。

总之,学习 Stable Diffusion 对于建筑师来说并非必需,但如果对通过 AI 辅助设计、获取灵感等方面有需求,学习它可能会带来一定的帮助。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

教程:超详细的Stable Diffusion教程

简单来说,Stable Diffusion(简称SD)就是一个AI自动生成图片的软件通过我们输入文字,SD就能生成对应的一张图片,不再需要像以前一样要把图片“画”出来,或者是“拍”出有的人说,我学习一个软件之前是不是要先知道它的原理呢?我的回答是:不需要!下面这张图就是我在网上保存的SD的原理图看得懂吗?看不懂,我也看不懂影响使用吗?完全不影响!很多人想学习stable diffusion,上网一搜,大多数教程都先告诉你SD的原理是什么但偏偏就是这一步就劝退了很多人继续学习因为这看起来真的好像很复杂很难但事实是:大多数的我们只是要能够熟练使用SD而不是要深入研究它我们还有自己的学习和工作因此,我们的目的就是花更少的时间快速入门Stable Diffusion当然了,如果你的时间比较充裕,去把SD的原理也了解了也是可以的跟大家说这些是想告诉大家学习SD真的非常简单!!这篇文章就会带大家通过一个个案例,实际上手操作生成各种照片我相信在你看完这篇文章并且自己去尝试过之后你就已经可以快速上手stable diffusion了!!接下来我们就正式开始去使用stable diffusion!!

【SD】软件原理傻瓜级理解

首先是关于Stable Diffusion的工作原理,就好比你现在想学画画,学梵高的风格,那么你肯定要先去看梵高的画,然后一幅幅的临摹。一幅画起码要临摹个一百遍吧,从一开始完全不像,到慢慢找到要领,要想画到出神入化以假乱真的地步,一个月的时间够短了吧。梵高一生有接近500幅画,全部学完大概四十年吧,然后你就可以开始接单画梵高风格的画了。当然,客户的要求肯定不是让你画一模一样的梵高《向日葵》,而是说我要一幅梵高的《西瓜》,并且考虑到你已经很熟练了,给你半个小时的时间画出来,应该不难吧。于是,你吭哧吭哧地画完,客户看完之后立马给了你一个大嘴巴子,说你这个画的是神马东西,立马再给我画一幅。然后你强忍着泪水继续画,好不容易画完了,客户看完之后略有所思,说这一稿还行,但是这个颜色不太好,你再用黄色、紫色、粉红色各微调一版给我。于是,你又花了两个小时,改了三稿给客户,客户看完沉吟了许久,说我可能不太喜欢梵高了,你给我来一幅毕加索风格的吧。。。。。。于是,我打开了AI,花了一分钟的时间画完了这两幅画。

问:如何系统学习 SD 的提示词

学习Stable Diffusion的提示词是一个系统性的过程,需要理论知识和实践经验的相互结合。以下是一些建议的步骤:1.学习基本概念-了解Stable Diffusion的工作原理和模型架构-理解提示词如何影响生成结果-掌握提示词的组成部分(主题词、修饰词、反面词等)2.研究官方文档和教程-通读Stable Diffusion官方文档,了解提示词相关指南-研究来自开发团队和专家的教程和技巧分享3.学习常见术语和范例-熟悉UI、艺术、摄影等相关领域的专业术语和概念-研究优秀的图像标题和描述,作为提示词范例4.掌握关键技巧-学习如何组合多个词条来精确描述想要的效果-掌握使用"()"、""等符号来控制生成权重的技巧-了解如何处理抽象概念、情感等无形事物的描述5.实践和反馈-使用不同的提示词尝试生成各种风格和主题的图像-对比提示词和实际结果,分析原因,总结经验教训-在社区内分享结果,请教高手,获取反馈和建议6.创建提示词库-根据主题、风格等维度,建立自己的高质量提示词库-将成功案例和总结记录在案,方便后续参考和复用7.持续跟进前沿-关注Stable Diffusion的最新更新和社区分享-及时掌握提示词的新技术、新范式、新趋势

其他人在问
我想要学习AI提示词的使用方法
以下是关于 AI 提示词使用方法的详细介绍: 一、什么是提示词 提示词用于描绘您想要的画面。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),并且支持中英文输入。启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 二、如何写好提示词 1. 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 2. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 3. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 4. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可以对已有的提示词权重进行编辑。 三、辅助功能 1. 翻译功能:一键将提示词翻译成英文。 2. 删除所有提示词:清空提示词框。 3. 会员加速:加速图像生图速度,提升效率。 四、关于 Prompt 的语法规则 1. Prompt 是一段指令,用于指挥 AI 生成您所需要的内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言为英语(不用担心英语不好的问题,),另外 emoji 也可以用。 3. 语法规则:用英文半角符号逗号,来分隔 tag。注意逗号前后有空格或者换行都不影响效果。改变 tag 权重有两种写法:括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。还可以进行 tag 的步数控制。 如果您是新手学习 AI,建议先了解 AI 基本概念,阅读「」中找到适合初学者的课程。选择感兴趣的模块深入学习,掌握提示词技巧,通过实践和尝试巩固知识,体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 产品。
2024-11-22
我要学习prompt,给我指定一个学习计划
以下是为您制定的学习 prompt 的计划: 一、准备阶段 首先,您需要拥有一个大模型账号,并熟悉与它们对话的方式。推荐使用性能较强的 ChatGPT4 ,国产平替有 。 二、基础学习 1. 阅读 OpenAI 的官方文档,包括: 同时,也可以参考我和熊猫 Jay 在 AGI 分享的中文精读版官方 Cookbook: 三、深入学习与实践 1. 学习 Claude 官方提示词,中文版(含 API Prompt),包括为给定主题创建全面的课程计划,如: 明确课程目标,使其清晰、可衡量,并与教育标准一致。 提供详细大纲,分为介绍、主要活动和总结,描述教学方法、学习活动和资源。 采用差异化策略适应不同学习需求和风格。 确定评估方法以评估学生的理解和掌握程度。 2. 进行苏格拉底式对话,就给定话题通过反复询问激发更深层次的思考和反思。 3. 针对给定主题生成同音连绵的词语和句子。 4. 掌握 Prompt 句式,例如: 对于“我想了解xxxx,我应该向你问哪些问题?”等句式,明确哪些是您不知道而 GPT 知道的。 对于“我理解的 xxx 是这样的,你觉得我的理解对吗?”等句式,进行认知的检验。 对于“我在 xxx 问题上遇到困难,你能提供一些可能的解决方案或建议吗?”等句式,实现认知的扩充。 希望这个学习计划对您有所帮助,祝您学习顺利!
2024-11-07
语音开发,都要学哪个技术,可以举个案例吗
语音开发需要学习以下技术: 1. 深度学习和自然语言处理基础: 机器学习、深度学习、神经网络等基础理论。 自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: Transformer 模型架构及自注意力机制原理。 BERT 的预训练和微调方法。 掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 大规模文本语料预处理。 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 模型压缩、蒸馏、并行等优化技术。 模型评估和可解释性。 模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 以下是一个语音开发的案例: 要开发一个网页,一个页面可以承载离谱生物档案的网站,每个页面都是一个离谱生物的介绍,图片,头像,文字介绍,可以跟他打字和语音对话。以及展示跟他相关的离谱事件。 1. 项目初始化与配置: 选择编程语言和技术栈: 前端:React.js 或 Vue.js,适合构建动态的用户界面,有丰富的组件库支持多媒体内容展示。 后端:Node.js 加上 Express.js,可使用 JavaScript 同时开发前端和后端,简化开发过程,其非阻塞 IO 特性适合处理实时通讯需求。 数据库:MongoDB,适合存储文档形式的数据,如离谱生物档案和相关事件。 语音处理:使用 Google Cloud SpeechtoText 和 TexttoSpeech API 实现语音与文本的相互转换,支持语音对话。 开发环境配置: IDE:Visual Studio Code,免费、开源,支持大量插件,适用于前端和 Node.js 开发。 Node.js 和 NPM:安装 Node.js 时会一并安装 npm,用于管理项目依赖。 项目结构模板:项目目录可能如下所示。 此外,为您列举一些人工智能音频初创公司: 将书面内容转化为引人入胜的音频,并实现无缝分发。 专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购) 提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 利用合成媒体生成和检测,带来无限可能。 一键使您的内容多语言化,触及更多人群。 生成听起来真实的 AI 声音。 为游戏、电影和元宇宙提供 AI 语音演员。 为内容创作者提供语音克隆服务。 超逼真的文本转语音引擎。 使用单一 AI 驱动的 API 进行音频转录和理解。 听起来像真人的新声音。 从真实人的声音创建逼真的合成语音的文本转语音技术。 生成听起来完全像你的音频内容。 为所有人提供开放的语音技术。
2024-10-28
入门大模型的简要学习书籍清单
以下是为您推荐的入门大模型的简要学习书籍清单: 1. 《大模型入门指南》: 通俗解释了大模型,即通过输入大量语料让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 用上学参加工作类比大模型的训练和使用过程,包括找学校(训练所需的大量计算和 GPU)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 介绍了 Token 作为模型处理和生成的文本单位,以及其在数字化和形成词汇表中的作用。 2. 《从 0 到 1 了解大模型安全,看这篇就够了》: 介绍了不同类型的模型架构,如 encoderonly 适用于自然语言理解任务,encoderdecoder 用于理解和生成内容,decoderonly 更擅长自然语言生成任务。 指出目前大型语言模型多为只使用 Decoder 的 Decoderonly 架构,其预训练数据量大,参数多。 提到了大模型在安全性方面的差别。 3. 《走入 AI 的世界》: 以 GPT3 为例,说明了预训练阶段大模型学习的内容和数量,如使用了 4990 亿 token 的数据集,相当于 86 万本《西游记》。 介绍了 Transformer 模型,这是一种处理文本内容的经典架构,不清楚其具体细节不影响使用大模型,感兴趣可通过相关链接深入了解。
2024-10-28
入门大模型的简要学习清单
以下是一份大模型入门的简要学习清单: 1. 理解大模型的底层原理: 了解预训练阶段大模型的学习内容和数据量,例如以 GPT3 为例,其训练使用了约 4990 亿 token 的数据集,相当于 86 万本《西游记》。 熟悉 Transformer 模型架构,这是处理文本内容的经典架构,虽然具体细节不清楚不影响使用大模型,但感兴趣可通过相关链接深入了解。 2. 掌握大模型的概念: 通俗地说,大模型通过输入大量语料让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 3. 类比学习大模型的训练和使用过程: 找学校:训练大模型需要大量计算,GPU 更合适,只有有资本购买大量 GPU 的才有能力训练自己的大模型。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:选择合适的算法让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称为推导(infer)。 4. 了解 Token: Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词等,在将输入进行分词时会对其数字化,形成词汇表。
2024-10-28
如果我要学习使用AI,怎么开始呢
以下是新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生学习 AI 的建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-10-25
建筑师要会的AI软件
以下是一些建筑师可能会用到的 AI 软件: 1. 对于审核规划平面图: HDAidMaster:云端工具,建筑师可使用主流 AIGC 功能进行集卡式方案创作,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:主要面向住宅行业,能根据输入的房间面积需求和土地约束自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内信息集成,实现数据汇总与管理。 2. 对于绘制逻辑视图、功能视图、部署视图: Lucidchart:流行的在线绘图工具,支持多种图表创建。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合支持逻辑视图创建。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 draw.io(现 diagrams.net):免费在线图表软件,支持多种类型图表创建。 每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-08-29