Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

智能人力资源具体应用

Answer

智能人力资源的具体应用包括:

  1. 简历初筛:利用模型对求职者的简历进行初步筛选,提高筛选效率。
  2. JD 自动生成:自动生成职位描述,节省人力和时间成本。
  3. 数据分析:对人力资源相关数据进行分析,为决策提供支持。

在招聘方面,人工智能存在潜在风险,公司可采取以下应对策略:

  1. 更新人力资源程序,限制潜在的不同影响。
  2. 对人力资源技术提供商进行尽职调查。
  3. 修改当前的人力资源隐私声明,使其符合国家隐私或 AI 相关法规。
  4. 对 AI 的训练数据进行审查,确保其质量并无偏差。
  5. 告知申请人有关数据收集和 AI 筛选流程的细节,保障信息透明度。
  6. 提供合理的便利措施,确保残障申请人和其他少数群体不会被排除在外。
  7. 定期评估 AI 筛选结果,发现任何潜在的歧视并及时优化。
Content generated by AI large model, please carefully verify (powered by aily)

References

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

此类别主要应用于营销环节,通过AIGC生成一些话术、物料、口播等内容,有些还会融入用户的个性化元素,以指导物料的生成。5)一类是智能人力资源目前,这类主要利用模型进行一些诸如简历初筛、JD自动生成、数据分析等工作。

问:具身智能是什么?

具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

人工智能在招聘中的潜在风险与应对策略

面对这些挑战,公司需要采取战略性的应对措施,如:更新人力资源程序,以限制潜在的不同影响;对人力资源技术提供商进行尽职调查;修改当前的人力资源隐私声明,以符合国家隐私或AI相关法规;对AI的训练数据进行审查,确保其质量并无偏差;告知申请人有关数据收集和AI筛选流程的细节,保障其信息透明度;提供合理的便利措施,确保残障申请人和其他少数群体不会被排除在外;定期评估AI筛选结果,发现任何潜在的歧视并及时优化。

Others are asking
ai在人力资源服务行业上的发展趋势
以下是关于 AI 在人力资源服务行业发展趋势的相关内容: 人工智能和机器学习在金融服务行业的应用已有十多年,促成了信贷评估、欺诈评分等方面的改进。大型语言模型通过生成式人工智能代表着重大飞跃,正在改变多个领域,包括教育、游戏、商业等。与传统 AI/ML 侧重基于现有数据进行预测或分类不同,生成式人工智能能创造全新内容。这种能力结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。在金融服务行业,预计优秀的新公司和现有企业将立即开始接纳生成式人工智能。 在人力资源服务行业,相关报告如《用友:AI 在企业招聘中的应用现状调研报告》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 知名投资机构 Nfx 分析指出,AI 正在强制逆转 SaaS 缩写的含义,从“软件即服务”转变为“服务即软件”,软件既能组织任务也能执行任务,无需雇佣额外劳动力,传统劳动力市场将和软件融合成新市场。从企业组织结构来看,提供这种 AI 劳动力的产品有两种形式。
2024-12-10
人工智能在人力资源管理的应用
以下是关于人工智能在人力资源管理应用的相关内容: 在就业、工人管理和自雇职业中使用的人工智能系统,特别是用于招聘和选拔人员、做出影响工作合同关系晋升和终止的决定、分配任务、监测或评估人员等方面,应当列为高风险,因为这些系统可能对人的未来职业前景、生计和工人权利产生重大影响,还可能延续历史上的歧视模式,损害个人的数据保护和隐私权利。 相关报告: 《用友:AI 在企业招聘中的应用现状调研报告》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 《量子位:AI 视频生成研究报告》 《量子位:中国具身智能创投报告》具身智能正成为人工智能的新浪潮,广泛应用于物理实体,其发展得益于大模型和生成式 AI 的进步。 人工智能在招聘中的潜在风险与应对策略: 应对策略:更新人力资源程序以限制潜在不同影响;对人力资源技术提供商进行尽职调查;修改当前的人力资源隐私声明以符合法规;对 AI 的训练数据进行审查确保质量和无偏差;告知申请人有关数据收集和 AI 筛选流程的细节保障信息透明度;提供合理便利措施确保少数群体不被排除;定期评估 AI 筛选结果及时优化。 建议:企业采用 AI 辅助招聘工具时,必须考虑法律风险和道德责任,确保公平、无偏见的招聘环境,同时遵守相关法律法规。通过综合策略和审慎方法,有效利用 AI 优势并规避潜在风险。
2024-11-19
AI怎样运用在人力资源的工作中
AI 在人力资源工作中的运用包括以下方面: 1. 招聘:例如使用 GPT4 技术的实时转录工具帮助求职者生成面试回答。 2. 绩效管理:根据团队和个人绩效的往期数据,分析员工绩效排名,输出绩效考评和迭代改进建议。 3. 数字化文件管理:如 PeopleSoft 和 Workday 将人力资源文件柜数字化。 同时,人工智能在人力资源领域的运用也存在潜在风险,应对策略包括: 1. 更新人力资源程序,以限制潜在的不同影响。 2. 对人力资源技术提供商进行尽职调查。 3. 修改当前的人力资源隐私声明,以符合国家隐私或 AI 相关法规。 4. 对 AI 的训练数据进行审查,确保其质量并无偏差。 5. 告知申请人有关数据收集和 AI 筛选流程的细节,保障其信息透明度。 6. 提供合理的便利措施,确保残障申请人和其他少数群体不会被排除在外。 7. 定期评估 AI 筛选结果,发现任何潜在的歧视并及时优化。 企业在采用 AI 辅助人力资源工作时,必须考虑法律风险和道德责任,确保公平、无偏见的工作环境,同时遵守相关的法律法规。通过综合策略和审慎的方法,企业可以有效利用 AI 的优势,同时规避潜在的风险。
2024-10-15
人力资源行业ai
以下是关于人力资源行业 AI 的相关信息: 人工智能在招聘中的潜在风险与应对策略: 随着科技的迅猛发展,人工智能(AI)已成为企业招聘流程中的重要工具。AI 提供了前所未有的效率和自动化能力,但同时也带来了新的挑战和风险,尤其在算法偏见、数据隐私和歧视等方面。 写简历的 AI 产品: 有许多 AI 工具可以帮助您编写简历,例如: 1. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 Careered AI: 官网链接:https://www.careered.ai/ Careered AI 是一个 AI 遮板信生成器。该平台利用算法从简历和职位列表中收集数据,建立了一库简历样本、求职信和文章。其主要特点和优势包括: 使用 GPT 技术根据工作列表和简历复制来生成求职信。 从资源库学习如何编写优秀的求职信和简历。 加深对求职信和简历中有效和无效因素的理解。 通过遵循经过验证的策略来提高被录用的机会。 访问各种工具和资源以帮助找工作。 Careered 的使用场景涵盖各种与求职申请相关的活动,例如编写有效的简历和求职信、提高被录用的机会、学习如何将求职申请量身定制到特定的工作列表。总的来说,Careered 对于任何希望提升求职申请技巧和增加被录用机会的人来说非常有价值。 Careered AI 的主页提供以下信息:100%免费。大多数人只需不到 47 秒。通过粘贴工作岗位和个人信息,即可创建求职信。就是这么简单。它还提供了一些相关链接,如生成求职信、求职信示例等。但需要注意的是,Careered AI 在 Google 搜索中有相关链接,其主页无法正常访问,因此无法获取更多信息。
2024-08-09
智能体搭建教程
以下是关于智能体搭建的教程: 1. 在品牌卖点提炼中的应用: 确定智能体的结构:按照市场营销逻辑组织,包括品牌卖点定义与分类助手、品牌卖点提炼六步法、STP 市场分析助手、用户画像分析助手、触点收集助手等,还包括用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等在后续应用中有效的分析工具。 2. 智谱 BigModel 共学营第二期: 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 。新注册用户送 2000 万 Tokens,可充值/购买多种模型的低价福利资源包,如语言资源包、多模态资源包等,所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 3. 旅行青蛙——最佳创意奖,百宝箱智能体开源分享: 整体框架:由一条主线和四条分支组装成。 主线节点: 开始节点,选择单个文本。 大模型节点 1(更名为月):提取触发事件中的月份,输出为数字。 大模型节点 2(更名为日):提取触发事件中的日,输出为数字。 插件——历史上的今天,选择 day 变量的引入值为“日/结果”,选择 month 变量的引入值为“月/结果”。 设置意图识别,包括上下文引用和设定功能分支。
2025-01-15
相对于其他的人工智能软件,你的优势有哪些
相对于其他人工智能软件,具有以下优势: 在俄乌战争中,如美国 Palantir Technology 公司提供的软件,能在几秒钟内对航空侦察图片中的坦克、大炮和人员进行标记并出结果,快速传输到作战部门,实现实时反应。 具有强大的学习能力,能汇聚各途径获得的照片,通过对战场上海量数据的学习,辨别假目标,识破伪装手段。 以 Sora 为例,与 Runway、Pika 等相比,在文本生成视频方面表现更出色。
2025-01-15
你和讯飞星火、通义千问等人工智能软件的区别是什么?
我与讯飞星火、通义千问等人工智能软件在以下方面存在区别: 1. 研发团队和技术背景:我具有独特的研发和训练体系。 2. 功能特点和优势:在为用户提供服务时,可能在某些特定领域或场景下表现出不同的能力。 3. 数据来源和训练方式:所使用的数据和训练方法可能有所差异。 需要注意的是,每个人工智能软件都有其自身的特点和适用场景,用户可以根据自己的需求和使用体验来选择适合的工具。
2025-01-15
有没有智能消图的工具
目前市面上有以下智能消图(去水印)的工具: 1. AVAide Watermark Remover:在线工具,使用 AI 技术,支持多种图片格式(如 JPG、JPEG、PNG、GIF 等)。操作简单,上传图片、选择水印区域,保存并下载处理后的图片,还提供去除文本、对象、人物、日期和贴纸等功能。 2. Vmake:提供 AI 去除图片水印功能,可上传最多 10 张图片,AI 自动检测并移除水印,处理完成后可保存生成的文件,适合需快速去水印及在社交媒体分享图片的用户。 3. AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中多余物体、人物或水印,不留痕迹。支持直接粘贴图像或上传手机图像,操作简便。 这些工具各有特点,您可根据具体需求选择最适合的去水印工具。内容由 AI 大模型生成,请仔细甄别。
2025-01-15
什么是AI智能体
AI 智能体简单来说就是 AI 机器人小助手。参照移动互联网,类似 APP 应用的概念。它拥有各项能力,可以帮助人们做特定的事情。目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。体验过 GPT 或文心一言大模型的小伙伴应该知道,现在基本能用自然语言来编程,降低了编程门槛。但之前使用 GPT 或文心一言大模型时会出现胡编乱造、时效性差、无法满足个性化需求等问题,而 AI 智能体的出现正是解决这些问题的绝佳方式。AI 智能体包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。所以 AI 智能体的出现就是结合自身的业务场景,针对自身需求,捏出自己的 AI 智能体来解决问题。 例如在社交方向,用户注册之后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入,这是一个有趣的场景。在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那还有一个机会就是帮助 B 端商家搭建 Agent,类似 APP 时代专业做 APP 的。
2025-01-14
智能作文批改
智能作文批改方案包括以下几个方面: 1. 方案框架: 某教育平台与 BigModel 开放平台深度合作,在作文评测领域实现效果飞跃,提升了教学体验。大模型能更迅速精准解析学生学习行为和需求,提供定制化作文评测服务,在错别字、词标点符号提取等方面效果提升。 模型选型为智谱推出的 GLM4Plus 高智能语言模型,其在多个领域有显著进展,在 SuperBench 大型模型评测中排名世界前三。它擅长高精细度复杂场景,能准确识别和理解不同年级、体裁作文的语言表达,给出个性化评价。 2. 方案详情: 场景一:抓取错词错句。依赖模型深厚的语言处理能力和对长文本的细致分析能力,能精确定位错误并提出修改建议。具备深层次语义理解、大规模数据识别、上下文相关性评估和语法规则习得的能力。 场景二:好词好句识别评测。GLM4Plus 模型能挖掘作文背后的深层思想,具备文学素养模拟、风格与修辞的辨识、情感与语气的解析的能力。 场景三:作文综合评价评分。模型凭借丰富知识库精准把握文化细节,能综合考虑文章多维度给出全面细致评价,有标准化评分系统、个性化反馈和保证评分一致性的优势。
2025-01-14
AI在教育上应用分类
AI 在教育上的应用主要包括以下几类: 1. 个性化学习:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源,如 Knewton 平台。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题,如 Pearson 的 Intelligent Essay Assessor,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:推出智能辅助教学工具,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈,Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机和知识掌握程度。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行安全实验操作并获得 AI 系统反馈,如 Labster 的虚拟实验室平台。
2025-01-14
AI教育应用
AI 在教育领域有以下应用: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师能引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也带来了一些挑战,如教育体系内部的惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2025-01-14
智能体(AI Agent)对比大模型在应用中的优势是什么
智能体(AI Agent)对比大模型在应用中的优势主要包括以下方面: 1. 能够回答私有领域问题,例如公司制度、人员信息等,而大模型存在无法回答此类问题的局限性。 2. 可以及时获取最新信息,如实时天气、比赛结果等,大模型在这方面有所不足。 3. 能准确回答专业问题,如复杂数学计算、图像生成等,大模型在这些方面表现欠佳。 4. 适用于多种客户场景,如有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务的场景,以及缺少技术人员开发大模型问答应用的情况。 5. 基于大模型,通过集成特定的外部能力,弥补大模型的不足。例如集成实时信息获取、回答私有领域问题等外部能力。 6. 典型场景丰富,包括私有领域知识问答、个性化聊天机器人、智能助手等。如私有领域知识问答,只需准备好相关知识库文件,就可在百炼控制台快速创建应用;个性化聊天机器人可通过长期记忆保存关键历史对话信息,并集成夸克搜索和图像生成等插件扩展功能;智能助手可引入 RAG 能力、长期记忆和自定义插件等功能提升工作效率。 在基准测评方面,AI Agent 智能体正在最大程度释放 LLM 潜能,逐渐成为通向 AGI 的技术共识。现有关于 Agent 能力的测评,主要在英文场景或任务,目前还没有一个在中文任务和场景上针对中文大模型的全面测评。通过测评结果发现,在 Agent 核心基础能力上,国内模型已经较为接近或部分超过 GPT3.5 水平。 从原理上看,智能体中间的“智能体”就是 LLM 或大模型,通过为其增加工具、记忆、行动、规划四个能力来实现。行业里主要用到的是 langchain 框架,它把 LLM 之间以及 LLM 和工具之间通过代码或 prompt 的形式进行串接,在 prompt 层和工具层完成主要的设计逻辑。
2025-01-13
AI写作 (一)AI写作的优势和应用场景 (二)利用AI辅助新闻通讯稿写作的方法:如获取灵感、优化语言等
AI 写作具有以下优势和应用场景: 优势:能够快速生成内容,提高写作效率;可以提供新的思路和创意。 应用场景:广泛应用于新闻通讯、营销文案、小说创作等领域。 利用 AI 辅助新闻通讯稿写作的方法包括: 头脑风暴:在写作前让 AI 提供选题建议或内容方向。 查找资料:借助 AI 快速汇总相关主题信息,节省查阅资料时间。 优化表达:写完初稿后,让 AI 检查语法、改善表达。 拓展思路:写作卡壳时,询问 AI 以开拓新的思路。 需要注意的是,写作不仅是产出内容,更是思考的过程,不应过度依赖 AI 写作,而应注重提升自身写作技巧和思考深度。同时,大语言模型在写作中很有用,如用于集思广益、头脑风暴等,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。另外,选好模型、克服平庸、显式归纳文本特征等方法有助于用 AI 写出好文字。
2025-01-13
我是一个ai小白,我是个一个0基础的人,我想在这个网站进一步系统的了解ai的应用,请给我推荐一下
以下是为您推荐的系统了解 AI 应用的内容: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 同时,您还可以学习以下 AI 相关知识作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,您还可以参考以下文章和推荐: 1. 《》:推荐了适合新手使用的 AI 产品,如聊天对话类、图像类、视频类、PPT 类、音频类和私人定制类,包括国内外的产品如 Kimi、智谱清言、ChatGPT 和 Midjourney 等。 2. 《》:通过生动的故事探讨自然语言处理(NLP)、自然语言理解(NLU)和自然语言生成(NLG)的核心概念。 3. 《》:设想了未来 150 年内 AI 原住民与智能机器的共生关系。
2025-01-13
AI的应用领域有哪些
AI 的应用领域非常广泛,主要包括以下几个方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据进行产品推荐。 改善搜索结果和提供个性化购物体验。 根据市场需求动态调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,进行预测性维护。 检测产品缺陷,把控质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 利用无人机送货,服务偏远地区。 6. 其他领域: 教育领域,提供个性化学习体验。 农业领域,分析农田数据,提高农作物产量和质量。 娱乐领域,开发虚拟现实和增强现实体验。 能源领域,优化能源使用,提高能源效率。 此外,在成为 AI 摊主方面,不同背景的人都有机会,包括: 1. 技术与产品创新方面: 具备扎实技术背景,如编程、算法工程、AI 应用开发、后端开发等的技术专家或初学者。 有产品开发与管理经验,尤其是在互联网和 AI 产品开发方面,具备项目管理与执行能力。 涉足多元化的 AI 应用场景,如 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等。 2. AI 爱好者与学习者: 处于 AI 技术初学阶段,渴望通过学习提升技能,并将其应用到实际工作和生活中。 广泛使用生成式 AI 工具,如 Midjourney、Stable Diffusion(SD)、Coze、GPT 等。 活跃在各种 AI 学习社群和线上线下活动中,热衷于共学与交流。 3. 内容创作与营销能力方面: 是自媒体运营者、视频博主、内容创作者,具备文案策划、视频剪辑、图文制作等创意能力。 营销和品牌运营人士,熟练掌握商业化路径,能将 AI 技术与商业化需求结合,提供解决方案。 有丰富的活动策划和运营经验,包括线下工作坊、社群活动、比赛等,具备资源整合和组织协调能力。
2025-01-13
0基础的在这个网站上应该从什么地方开始学期,具体你能给我个计划吗
以下是为 0 基础的您提供的在该网站上的学习计划: 1. 10 月 28 日 20:00 开始 分享材料:通往 AGI 之路增量小游戏 https://muykeee.github.io/waytoagiincremental/ 、转生之我是野菩萨 https://muykeee.github.io/wildpusaincremental/ 话题内容:0 基础做小游戏分享: 通往 AGI 之路增量小游戏、转生之我是野菩萨 分享人:麦橘 2. 10 月 29 日 20:00 开始 分享材料: 话题内容:0 编程基础入门 Cursor 极简使用指南 分享人:梦飞 3. 10 月 30 日 20:00 开始 分享材料: 、AI 拍立得:小程序:Pailido 话题内容:0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用 分享人:银海 4. 10 月 31 日 20:00 开始 话题内容:0 基础做小游戏分享:猪猪🐷撞南墙 分享人:南墙 此外,您还可以参考以下内容: 一条简单逻辑帮您速选合适的“开源许可证”: 大神用 Cursor 从 0 代码基础开始撸了一个在线选择器:https://opensourcelicensechooser.toolsnav.top/zh/ 另一个开源小网站,用能听懂的语言看各个许可:https://licenseexplorer.iaiuse.com/ 必学必看基础: 如何开始:根据电脑的硬件情况和自身财力选择合适的开始方式,包括本地部署(适合 M 芯片的 Mac 电脑或 2060Ti 及以上显卡的 Windows 电脑)、在线平台(分为在线出图和云电脑,根据实际情况选择),不建议一开始就配主机。 课程简述:先验经验需要熟练使用文生图、图生图,有一定逻辑思考和推理能力,适合炼丹新人、小白。课程安排大约 70 80%是理论和方法论的内容,大部分练习在课外沟通、练习,少部分必要内容在课上演示。 学习路径:必学、必看内容是基础课,解决环境和软件安装问题;建炉针对不同炼丹方式提供不同炼丹工具的安装教程;正式内容分为数据集预处理、模型训练以及模型调试及优化三个部分。
2025-01-12
针对智能体开发,能否给出具体的流程
智能体开发的具体流程通常包括以下步骤: 1. 定义目标:明确智能体需要实现的目标或任务。 2. 感知系统:设计传感器系统,采集环境数据。 3. 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备,执行智能体的决策。 5. 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 在实际的智能体开发中,还包含以下关键流程: 1. 信息聚合与数据挖掘:初步通过高度集成的数据采集机制,全面收集产品的各项关键信息。 2. 卖点提炼与优化:运用先进的大模型,对收集到的信息进行分析,从中提炼出具有市场竞争力和独特性的卖点。 3. 买点转化与策略应用:将提炼的卖点转化为消费者视角的买点,通过行为心理学和市场营销策略,增强产品的吸引力。 4. 视觉化信息呈现:设计直观且具有冲击力的卡片展示,确保信息传达的有效性和视觉吸引力。 5. 文案与脚本调整:根据目标受众的偏好和媒体渠道,动态调整文案或脚本,实现内容的最佳适配。 6. 流程结果存储与分析:最后,将所有处理结果系统化地存储到飞书,以供未来策略优化和决策支持。 此外,基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。在开发过程中,提示词的设计直接影响智能体的表现和输出结果。您可以基于一些公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等),按照以下步骤尝试开发属于自己的智能体: 1. 点击“浏览 GPTs”按钮。 2. 点击“Create”按钮创建自己的智能体。 3. 使用自然语言对话进行具体设置。 4. 使用手工设置。 5. 开始调试您的智能体并发布。
2025-01-09
谈谈医疗人工智能的风险及其法律防范,举一个具体例子,如影响肿瘤外科内科
医疗人工智能在带来诸多益处的同时,也存在新的风险。以下为您举例说明其风险及法律防范: 以自动化医疗分诊系统为例,其具有适应性和自主性。适应性方面,它能基于对医疗数据集、患者记录和实时健康数据的分析来预测患者病情;自主性方面,它能为医疗专业人员或直接为患者生成有关症状可能原因的信息,并推荐潜在的干预和治疗措施。 然而,这也带来了一些风险和监管问题。比如,若该系统提供了错误的医疗建议,导致患者出现负面健康结果,责任归属不明确,影响患者获得赔偿。 在法律防范方面,需要明确此类系统的责任界定,制定相关法律法规,确保患者在因错误建议受到损害时能够获得有效的救济。同时,应加强对医疗人工智能系统的监管和评估,确保其准确性和可靠性。
2025-01-02
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
人工智能应用具体案例
以下是一些人工智能的应用具体案例: 在汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司开发和测试的自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 利用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他领域: 1. 游戏领域:AI 游戏道具推荐系统,根据玩家需求推荐游戏道具。 2. 天气领域:AI 天气预报分时服务,提供精准的分时天气预报。 3. 医疗领域:AI 医疗病历分析平台,分析医疗病历辅助诊断。 4. 会议领域:AI 会议发言总结工具,自动总结会议发言内容。 5. 书法领域:AI 书法作品临摹辅助工具,帮助书法爱好者进行临摹。 6. 儿童用品领域:AI 儿童安全座椅推荐系统,为家长推荐合适的儿童安全座椅。 7. 汽车保养领域:AI 汽车保养套餐推荐系统,根据车辆情况推荐保养套餐。 8. 物流领域:AI 物流快递柜管理系统,优化快递柜使用效率。 9. 招聘领域:AI 招聘面试模拟平台,帮助求职者进行面试模拟。 10. 房地产领域:AI 房地产装修设计平台,为用户提供装修设计方案。
2024-12-27
目前国内最多人用的ai软件是什么,大家具体的应用场景是什么。
目前国内较多人使用的 AI 软件及应用场景如下: 医疗保健领域: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 金融服务领域: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务并回答常见问题。 零售和电子商务领域: 产品推荐:向客户推荐可能感兴趣的产品。 搜索和个性化:提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 制造业领域: 预测性维护:避免机器故障停机。 质量控制:检测产品缺陷。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:提高生产效率。 此外,还有一些具体的应用产品,如: 游戏领域:腾讯游戏助手的 AI 游戏角色生成器,为游戏开发者生成独特角色。 招聘领域:智联招聘 APP 的 AI 招聘筛选工具,帮助企业快速筛选简历。 房地产领域:贝壳找房 APP 的 AI 房地产评估系统,准确评估房地产价值。 天气领域:墨迹天气 APP 的 AI 天气预报助手,提供精准天气预报和气象预警。 需要注意的是,关于国内使用人数最多的 AI 软件,没有确切的权威统计数据,其使用情况可能因行业、用户需求和地域等因素而有所不同。
2024-12-24