Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有哪些企业级的AI agent产品

Answer

以下是一些企业级的 AI agent 产品:

  1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。
  2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。
  3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。
  4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。
  5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。
  6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景表现出色。
  7. MiniAGI:基于 GPT-3.5-Turbo/4 的最小通用自主代理,保留简单实用功能,但无长时记忆,可执行多种任务。
  8. Embra AI Agents:面向企业和个人,首个可通过 Mac App 访问的 AI 代理中心。
  9. Height Copilot by Height:使工作流管理更自动化,帮助团队构建更好的产品。
  10. Aomni:专用于信息检索而非内容生成的 AI 代理,能在互联网上找、提取和处理数据,无需 API,采用 AutoGPT 架构智能规划查询。

您可以根据自己的需求选择适合的平台进行进一步探索和应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:有哪些好的Agent构建平台

以下是一些Agent构建平台:1.Coze:Coze是一个新一代的一站式AI Bot开发平台,适用于构建基于AI模型的各类问答Bot。它集成了丰富的插件工具,可以极大地拓展Bot的能力边界。2.Mircosoft的Copilot Studio:这个平台的主要功能包括外挂数据、定义流程、调用API和操作,以及将Copilot部署到各种渠道。3.文心智能体:这是百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。4.MindOS的Agent平台:允许用户定义Agent的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。5.斑头雁:这是一个2B基于企业知识库构建专属AI Agent的平台,适用于客服、营销、销售等多种场景。它提供了多种成熟模板,功能强大且开箱即用。6.钉钉AI超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。这使得它在处理高频工作场景如销售、客服、行程安排等方面表现更加出色。以上信息提供了关于6个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。内容由AI大模型生成,请仔细甄别

我用扣子做一个简单的智能体——竖起耳朵听

AI Agent也就是我们所说的AI智能体,那什么是AI智能体呢?简单来说就是拥有各项能力的打工人来帮我们做特定的事情。目前有不少大厂推出自己的AI智能体平台,像字节的扣子,阿里的魔搭社区等等,体验过GPT或者文心一言大模型的小伙伴应该都知道,现在基本可以用自然语言来编程了,相当于降低了编程的门槛,另外之前在使用GPT或者文心一言大模型的时候会出现胡编乱造的情况以及时效性、无法满足个性化需求等问题,如果这些不解决的话,AI很难被真正广泛应用,而AI智能体的出现正是解决这些问题的绝佳方式,AI智能体包含了自己的知识库、工作流、还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。所以AI智能体的出现就是结合自己的业务场景,针对自己的需求,捏出自己的AI智能体来解决自己的事情。

4月动态|78个AI新产品

🍕 MiniAGI基于GPT-3.5-Turbo/4的最小通用自主代理,只保留了最简单实用的功能,但缺点是没有长时记忆(即不能通过长时间使用成为更个性化的工具),目前可以执行的任务包括但不限于创建游戏、分析股票价格、进行网络安全测试、创作艺术品、总结文档和...订比萨。另外,MiniAGI还可以开启批评(critic)模式,额外请求API以提高任务完成的准确性。🔗 https://github.com/muellerberndt/mini-agi🧑💻 Embra AI Agents面向企业和个人的,也是首个可以通过Mac App访问的AI代理中心,随时随地创建和访问AI代理。🔗 https://embra.app/🔗 Demo - https://twitter.com/zachtratar/status/1649130015093841921🪜Height Copilot by HeightHeight本身是一家项目管理SaaS初创公司,上周,他们推出了新的产品Height Copilot,通过AI代理,使工作流的管理更加自动化,帮助团队构建更好的产品。🔗 https://height.app/🔍 Aomni一个专用于信息检索而非内容生成的AI代理,能够在互联网上找到、提取和处理数据,无需API。Aomni采用了AutoGPT架构来智能规划查询,并确保正确的数据来源和多样化的结果。🔗 https://www.aomni.com/

Others are asking
企业级rag系统开发框架
企业级 RAG 系统开发框架如下: 首先,通过数据预处理引擎(如 Unstructured)将企业无结构文件(如 PDF、幻灯片、文本文件)从数据孤岛(如 Google Drive 和 Notion)加载、转换为 LLM 可查询格式,并将这些文件“分块”成更小的文本块,以实现更精确的检索,然后作为向量嵌入和存储在数据库(如 Pinecone)中。 当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。LLM 会从检索到的上下文中合成答复返回给用户。 在实际生产中,AI 应用程序具有更复杂的流程,包含多个检索步骤和“提示链”,不同类型的任务并行执行多个“提示链”,然后将结果综合在一起生成最终输出。 RAG 是检索增强生成(Retrieval Augmented Generation)的简称,概括起来是知识检索+内容生成,主要组成包括数据提取、embedding(向量化)、创建索引、检索、自动排序(Rerank)、LLM 归纳生成。其核心在于能否将内容检索得又快又准。 RAG 的优势在于: 大语言模型技术存在输出结果不可预测、知识有截止日期、无法满足实际业务需求等问题,而 RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。 RAG 可以和微调结合使用,两者并不冲突。微调适用于模型需要复制特定的结构、样式或格式时,RAG 适用于模型需要回答特定的询问或解决特定的信息检索任务。但 RAG 不适合教模型来理解广泛的领域或学习新的语言、格式或样式。 同时,通用的基础大模型无法满足实际业务需求的原因包括: 知识的局限性:模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 幻觉问题:大模型基于数学概率的文字预测,存在提供虚假、过时、通用或低可信度信息的情况。 数据安全性:企业重视数据安全,不愿承担数据泄露风险将私域数据上传第三方平台训练。
2025-03-08
什么是AGI,如何在做企业级程序开发的工作中使用提高自己的工作效率
AGI 即通用人工智能(Artificial General Intelligence),指的是具备像人类一样广泛的认知能力和学习能力,可以执行多种复杂任务的人工智能。 在企业级程序开发工作中提高效率,可以考虑以下几点: 1. 利用自动化工具和脚本:例如自动化测试工具、代码生成工具等,减少重复性工作。 2. 采用敏捷开发方法:如 Scrum 或 Kanban,提高团队协作和项目管理效率。 3. 学习和应用新的编程语言和框架:选择适合项目需求的高效技术。 4. 优化代码结构和算法:提高程序的性能和运行效率。 5. 建立良好的代码规范和文档:便于团队成员理解和维护代码。 6. 利用云计算资源:根据需求灵活扩展计算和存储能力。 7. 持续学习和交流:参加技术社区和培训,了解行业最新动态和最佳实践。
2025-02-11
企业级应用集成AI大模型架构白皮书
以下是关于企业级应用集成 AI 大模型架构的相关内容: 从整体分层的角度来看,目前大模型整体架构可以分为以下几层: 1. 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层:这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集。 3. 模型层:包括 LLm 或多模态模型。LLm 即 largelanguagemodel 大语言模型,例如 GPT,一般使用 transformer 算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,用户实际看到的地方。 此外,以下报告也涉及相关内容: 1. 量子位智库发布的《》概述了大模型技术在多个行业中的应用和发展趋势。强调大模型在编程、教育、医疗等领域的重要性,并预测其将推动生产力和创新服务的增长。大模型业务模式涵盖应用开发、模型 API 和模型服务,其中模型服务和 API 是核心。报告还讨论了大模型在不同地域和行业的落地情况,以及企业在大模型技术投资方面的需求。 2. 亿欧智库发布的《》聚焦于企业中人工智能大模型的应用和落地情况。报告涵盖了 AI 大模型在企业中的应用现状、发展趋势以及面临的挑战。它详细分析了 AI 技术如何推动企业创新、提高效率和降低成本,并探讨了不同行业如何利用 AI 大模型实现数字化转型。此外,白皮书还提供了关于如何克服实施过程中的障碍和最大化 AI 大模型价值的见解。 对于大模型 API,与大模型对话产品的提示词不同。对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,可以看到需要在请求中传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。可以构建相应的 API 请求内容,包括设定系统提示词定义基础任务、设定用户提示词提供具体任务数据并要求大模型按 JSON 格式返回生成结果等。如果缺少参数设定的经验,也可以先询问 AI 文本总结类的模型 API 请求,temperature 设定多少合适,再逐步调试效果即可。
2025-02-06
企业级AI的现状如何了?
目前企业级 AI 的现状呈现出以下特点: 1. 应用方面:更多迁移到具体业务场景,企业重点放在自主构建应用程序上,如客户支持和内部聊天机器人等,同时也在尝试更新颖的应用,如编写消费品配方、缩小分子发现范围和进行销售推荐。 2. 资源配置和态度:企业对生成式 AI 的资源配置和态度在过去 6 个月发生显著变化,预算几乎增加两倍,将更多应用部署在较小的开源模型上,并将更多业务从早期实验转移到生产环境中。 3. 市场机会:生成式人工智能在 2023 年席卷消费市场,2024 年企业领域的收入机会预计数倍于消费市场。 4. 创新与挑战:基础模型的出现使企业构建自己的 AI 应用程序更易,但“GPT wrappers(GPT 套壳)”存在局限性。目前尚不清楚当更多面向企业的 AI 应用上市时情况是否会改变。那些能在“LLM+UI”公式之外创新,并帮助企业更好利用专有数据的应用将表现出色。 5. 赋能企业:许多公司正将 AI 融入工作流程以快速达成 KPI、扩张规模和降低成本。应用公司在 AI 50 强榜单中占据主导地位。不远的将来,有望看到 UX 和 UI 围绕 AI 的功能进行重新设计。
2025-01-11
万字长文带你使用Coze打造企业级 万字长文带你使用Coze打造企业级
以下是一些关于使用 Coze 打造企业级的相关资源: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库(https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb ) 大聪明:保姆级教程:Coze 打工你躺平(https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb ) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent(https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb ) Coze“图像流”抢先体验(https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf ) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏(https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe ) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档(https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ ) 知识库相关: 官方文档:创建并使用知识库(https://www.coze.cn/docs/guides/use_knowledge ) 官方文档:知识库最佳实践(https://www.coze.cn/docs/guides/product_knowledge_bot ) 用 Coze 做一个基于知识库的 QA bot,TA 熟读了我所有的文章(https://zhuanlan.zhihu.com/p/699276883 ) 手把手教你如何用扣子(COZE)打造一个企业级的知识库机器人(https://zhuanlan.zhihu.com/p/695935995 ) Coze 汽车售后服务知识库 Bot 拆解(https://waytoagi.feishu.cn/wiki/N4wBwPY1oifcNJkZsyHc6McdnYg?renamingWikiNode=true )
2024-12-24
企业级的ai服务或者解决方案有哪些
以下是一些企业级的 AI 服务或解决方案: 1. 美国的 Zephyr AI 公司,于 2024 年 3 月 13 日完成 A 轮融资,融资金额 1.11 亿美元,主营 AI 药物发现和精准医疗。 2. Together AI 公司,2024 年 3 月 13 日完成 A 轮融资,融资金额 1.06 亿美元,从事 AI 基础设施和开源生成。 3. Glean 公司,2024 年 2 月 27 日完成 D 轮融资,融资金额 2.03 亿美元,专注于 AI 驱动企业搜索。 4. Figure 公司,2024 年 2 月 24 日完成 B 轮融资,融资金额 6.75 亿美元,业务为 AI 机器人。 5. Abridge 公司,2024 年 2 月 23 日完成 C 轮融资,融资金额 1.5 亿美元,从事 AI 医疗对话转录。 6. Recogni 公司,2024 年 2 月 20 日完成 C 轮融资,融资金额 1.02 亿美元,提供 AI 接口解决方案。 在 AI 应用方面: 1. AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术,市场规模达数十亿美元。 2. 淘宝拍照搜商品,通过图像识别和机器学习技术,市场规模达数百亿美元。 3. 小爱同学、Siri 等 AI 语音助手定制开发,运用语音识别和自然语言理解技术,市场规模在百亿美元以上。 4. Keep 智能训练计划,基于数据分析和机器学习,市场规模达数十亿美元。 5. 大众点评智能推荐,借助数据挖掘和自然语言处理,市场规模达百亿美元规模。 6. 阿里小蜜等电商客服,采用自然语言处理和机器学习技术,市场规模达数十亿美元。 影刀 RPA + AI Power 具有以下特点: 1. 功能亮点:集成丰富的 AI 组件及各种技能组件,拓展 AI 服务的能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现 AI 自动化操作。 2. 无缝多样的使用方式:提供网页分享、对话助理、API 集成等嵌入方式,方便企业在不同业务场景下灵活选择接入方式,打通分散的系统,实现便捷的 AI 交互。 3. 贴身的企业级服务支持:提供教学培训、技术答疑、场景共创等贴身服务,帮助企业把产品用起来,把 AI 落地下去,找到最佳实践,助力业务成功。
2024-12-19
agent 打通应用之间的协议?
在 AI 领域中,Agent 是连接模型与应用的关键。端侧 Agents 是在终端设备上自主运行的智能代理程序,具备感知、决策、执行的闭环能力。 Agent 之所以重要,原因包括:端侧资源约束要求最优化使用,任务具有复杂性,生态存在多样性,双系统路线更适合端侧。 Agent 创造价值的方式体现在双重价值实现:一是资源优化,包括任务分解、按需调用;二是生态连接,比如跨应用协作、UI 理解。 其发展趋势包括:技术上从单一模型到多智能体协作;生态上从封闭应用到开放服务;交互上从指令执行到场景理解。 在技术层面,AI Agent 的发展出现了两条技术路线:一是以自主决策为核心的 LLM 控制流,二是以工作流(Workflow)编排为重点的工具集成系统。 特别值得关注的是 Anthropic 提出的 MCP(Model Context Protocol),它的本质是一个通用接口协议,试图解决让 AI 模型能够以标准化、可扩展的方式与外部世界交互的问题。 此外,还有 Agent Protocol 这种用于与 AI 代理进行通信的统一接口,它提供了一种 API 规范,任何代理开发者都可以实现该协议,设计简单且不依赖特定技术栈,有助于生态系统发展和简化集成,并提供了不同语言的 SDK 供开发者使用。
2025-03-09
做一个每日收集兴趣信息的工具,如收集agent,从微信公众号上收集,应该怎么做
以下是一种通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答的方式来做每日收集兴趣信息的工具: 1. 安装 Docker(假设已经装上) 浏览器打开:http://127.0.0.1:4000 或 http://wewerss 服务的 IP:端口(为上面设置的外部端口) 点开后,输入 Dash 管理页面密码 先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号 然后在公众号源上,点添加 将您想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章。但建议不要短时间订阅太多公众号(最好不超 40 个),然后在本地 data/目录会生成一个 SQLite 数据库文件 wewerss.db 2. 关于 Coze 工作流和 Bot 因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。得到机器人的 app_id 和 app_secret 即可获得租用 token:tenant_access_token 来获取多维表格数据和编辑能力。 工作流一:通过微信文章链接进行文章解读成摘要报告。通过 LLM 能力,开源提示词如下。由于 Coze 使用 LLM 和批量执行任务延时的约束,建议不要同时处理太多文章(如 6 篇左右)。这样执行后,将多维表格的文章状态转换成“已通知”并生成简报。 消息情报官 Bot:最后可以通过 Coze,建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,即可变成一个消息情报官的 Agent,我们即可以获得想要的领域或行业情报,也可以深入挖掘相关情报的信息。然后发布到想要的平台,如:Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等,即可使用。可以构建多个分身,就能收集整理不同领域和行业的情报信息。 如感兴趣欢迎联系交流合作。
2025-03-08
AI Agent MANUS个人助手是否可以本地私有化部署
目前没有明确的信息表明 AI Agent MANUS 个人助手可以本地私有化部署。 Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人,具备自主规划、执行复杂任务并直接交付完整成果的能力。其技术架构主要基于多智能体架构,运行在独立的虚拟机中,核心功能由多个独立模型共同完成,包括规划、执行和验证三个子模块,还包括虚拟机、计算资源、生成物、内置多个 agents 等关键组件,并采用了“少结构,多智能体”的设计哲学。 但对于其是否能本地私有化部署,现有资料未给出确切说明。在构建高质量的 AI 数字人方面,由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,算法一般会部署到额外的集群或者调用提供出来的 API。而在本地部署资讯问答机器人方面,有相关案例,但未提及与 AI Agent MANUS 个人助手的直接关联。
2025-03-07
AI Agent MANUS个人助手
AI Agent MANUS 个人助手是一种真正自主的 AI 代理。它区别于传统的 AI 助手,能够自主完成复杂任务,不仅生成想法,还能直接执行并交付结果。其核心亮点包括: 1. 自主执行:可直接执行任务,而非仅提供建议。 2. 类人工作模式:能解压文件、浏览网页、阅读文档、提取关键信息等。 3. 云端异步运行:在后台执行任务,完成后自动通知用户。 4. 持续学习和记忆:从用户反馈中学习,提高未来任务的准确性。 5. “心智与手”理念:象征着实际执行能力。 在构建高质量的 AI 数字人时,涉及到为数字人构建灵魂,使其具备各种智能,充当个人助手等。其中在构建数字人灵魂方面,有以下几个工程关键点: 1. AI Agent:要让数字人像人一样思考,需要编写一个像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建存在挑战。 2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式视躯壳部分的实现而定。但包含情绪的语音表达以及保证躯壳的口型、表情、动作和语音的同步及匹配存在困难,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 实时性:由于数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,算法一般会部署到额外的集群或者调用提供出来的 API,会涉及到网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 多元跨模态:仅仅语音交互的数字人远远不够,可根据实际需求添加其他感官,如通过添加摄像头数据获取视觉信息,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常与人交流时并非线性对话,会有插话、转移话题等情况,这些情景的工程处理需要优化。 在人工智能的发展历程中,Agent(智能代理)一直是令人着迷的概念之一。2024 年,Agent 技术实现了从概念到实践的关键突破。例如,当对手机下达指令“帮我给同事的朋友圈点赞”,AI 就能识别屏幕并完成操作。这种进化展示了 AI 不仅能“听懂”,还能“思考”和“行动”,会分析任务、规划步骤、选择工具,甚至在遇到问题时及时调整策略。2024 年,Anthropic 的 Computer Use、智谱 AI 的 AutoGLM 以及 Google 的 Gemini 2.0 等都展示了 AI Agent 的突破性进展。这种接近成型的工程化的 Agent 核心在于四个关键能力的进展,但在过往,类似的 Agent 能力存在成功率不高、泛化能力不够强等问题,训练模型识别所有 App 的 UI 很难,模型进行自主操作也是难点。
2025-03-07
如何使用AI agent
使用 AI Agent 主要包括以下几个方面: 1. 理解工具:AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。利用 LLM 的 zeroshot learning 和 fewshot learning 能力,可通过描述工具功能和参数的 zeroshot demonstration 或特定工具使用场景和相应方法演示的少量提示来获取工具知识。面对复杂任务,AI Agent 应先将其分解为子任务,再组织和协调,这依赖于 LLM 的推理和规划能力及对工具的理解。 2. 使用工具:AI Agent 学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习(清华有相关从训练数据中学习的文章)。这包括模仿人类专家行为,了解行为后果,并根据环境和人类反馈(包括行动结果反馈、环境状态变化的中间反馈、显性评价和隐性行为如点击链接)做出调整。 3. 具身智能:在追求 AGI 的过程中,具身 Agent 成为核心研究范式,强调智能系统与物理世界紧密结合。与传统深度学习模型不同,LLMbased Agent 能主动感知和理解物理环境并互动,利用内部知识库决策并产生行动改变环境,此系列行为称为“具身行动”。 此外,AI Agent 还包括以下概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成,一个 Chain 视作一个步骤,可接受输入变量并产生输出变量,大部分 Chain 是大语言模型完成的 LLM Chain。 2. Router:可使用判定(甚至用 LLM 判定)让 Agent 走向不同的 Chain,如根据输入是图片还是其他进行不同处理。 3. Tool:Agent 上的一次工具调用,如互联网搜索、数据库检索。 同时,还需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态,如进入下一个剧本,抽检生成增长的记忆体等。 3. Daily Agent:每日 agent,用于生成剧本、配套图片及每日朋友圈。Background Agent 每隔一段时间运行一次(默认 3 分钟),分析期间的历史对话,变更人物关系、反感度,抽简对话内容提取信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-03-07
agent有哪些文章推荐?
以下是为您推荐的关于 agent 的文章: 从下往上看,一个一个点进去,都有视频。共学都有视频,都是手把手从注册开始的教学,不会就多看几遍,基本保障一个工具能调通、一个 Agent 能搭好。 注意事项:确实内容有点多,点进去看看哪个工具您听过就从哪个工具开始吧,不然太累啦。 看了一些视频之后,您就知道您要看理论还是应用了,找到导航,想看哪里点哪里。 备注:智能千帆、阿里云百炼都是有视频的,其余没有视频。 注意事项:确实内容有点多,您如果都看到这里了,就要考虑聚焦了,先挑一个,开始手把手一起做起来,看看能不能持续用起来,只要您开始用起来,这事儿就成啦! 增加了 AI Agent 图谱,由共建者缱绻怡然制作。 》,作者孔某人,主要讨论基于 LLM 的复杂 Agent 的实现。 《》,来自有新 Newin,Essential AI 由两位谷歌重要研究论文的作者 Ashish Vaswani 和 Niki Parmar 创立,2017 年在谷歌工作时与他人一起共同撰写了具有重要影响力的论文《Attention Is All You Need》。Essential AI 正在开发全栈 AI 产品,这些产品具备快速学习能力,能够通过自动化繁琐且耗时的工作流程来提高生产力。 Tesla 发布 Optimus Gen2 机器人,现在拥有更加精致的外观,并且比 5 月份特斯拉展示 Optimus Gen1 时的速度快了 30%,。 《》是微软亚洲研究院、华为天才少年李博杰的一篇文章,虽然目前的大模型技术已经非常强大,应付日常的 chat 并不难,但做一个有多模态能力、有记忆、能解决复杂任务、会利用工具、有性格、有情感、有自主性、低成本、高可靠的 AI Agent 并不容易。如果说 Chat 是大模型的第一个应用场景,也许 Agent 才是大模型真正的 killer app。 《》的 GitHub 地址,收集了多模态大型语言模型的最新论文和数据集及其评估。 《》是知识库的好友「INDIGO 的数字镜像」万字长文,本探讨在新一轮的 AI 变革之下,如何用新工具来帮助扩展大脑思维与记忆的边界,以及知识工作流的新方法,激发潜能,构建外脑!强烈推荐阅读。 《》是波士顿咨询的一篇新文章,讲述 CEO 抓住机遇和应对挑战,他们必须在三个关键支柱上做出选择:潜力、人员和政策。 收集群友的每日创作。
2025-03-07
AI对于3d的建模
在 3D 建模方面,AI 主要有以下应用和相关工具: 应用: 在 3D 模型生成中,AI 能够完成 3D 模型生成流程的“一步到位”。工作流中的每个环节通常需要 3D 美术工程师完成,而使用 3D 生成模型可直接生成一个可调整的 3D 粗模,显著提升效率。 在游戏测试与优化环节,AI 承担改善角色动画、编程与加速、自动化游戏测试等功能,能通过生成文字、图片、视频、音乐来缩减时间和资源消耗,快速识别游戏开发中的基本问题并提出改善方法。 在游戏设计中,AI 依托自然语言生成用法,在角色与故事生成、游戏机制创新等方面发挥作用,通过针对性训练数据集强化 NPC 模型的基础能力。 大淘宝设计部的实践中,22 年中绘制头像还用 3D 建模,年末已用 AI 直接生成。23 年 AI 工具覆盖所有营销场景业务,带来降本增效,拓展设计师思维边界,改变工作流程,降低技能门槛,对设计师内在素养提出更高要求。 工具: provisual.app:这是一个 3D 模型在线可视化平台,具有易于使用、无需特殊技能或软件、可节省时间和成本等优点。其功能包括在线协作、实时渲染、无限视角、材质和纹理编辑、高质量输出等,适用于产品设计、营销、教育等领域,目标客户为营销机构、创意机构、包装公司、在线商店、设计院的设计师、美术师等。 tripo3d.ai:这是一个人工智能驱动的 3D 建模平台,可以使用文本或图像在几秒钟内生成高质量且可直接使用的 3D 模型。 meshy:相关案例可参考 https://www.meshy.ai/ 。
2025-03-10
ai如何提升产品经理的工作效率
AI 可以通过以下方式提升产品经理的工作效率: 1. 辅助精读论文:能帮助翻译、拆解公式,分析代码等。工具如 https://scispace.com 。 2. 编写小脚本:如写 SQL 查询、Python 脚本、正则表达式、图片批量处理等。 3. 撰写产品宣传文案:根据产品宣传渠道写营销文案、营销邮件、产品上架文案等。 4. 设计和整理调研问卷:生成调研框架,回收非结构化问卷,按指定框架生成指定表头表格。 5. 进行竞品分析:用 BingChat 或 ChatGPT Browsering 插件,按指定框架对比各项数据,如 DAU、用户结构、市场占比等。 6. 解释专业名词:很多垂直领域都有不少缩写或行业黑话,可以用 ChatGPT 解释举例、给场景说明。 7. 优化产品逻辑和代码:写完 PRD 后,让 GPT 从产品和研发两个视角写逻辑代码,既能发现产品逻辑表达问题,也方便 QA 同学测试。 此外,还有以下相关内容: 1. 银海分享了用 10 个 Prompt 提示词做产品经理 AI 助手,效果平替 PMAI。PMAI 是一款面向产品经理的生产力工具,具有一键生成 PRD、输出解决方案、生成 SQL 等实用功能。产品体验地址:https://www.pmai.cn/?utm_source=qoZaR5O 。 2. 有案例表明,产品经理使用 ChatGPT 优化代码可以显著提升效率。如将一段近 1900 行的 SQL 查询代码的执行时间从 4200 秒缩短到 8 秒,效率提升 520 倍,复杂度降低 6 倍,同时还能保存所有历史数据,报表实现秒开。而且 GPT 还能根据真实业务需求提出与原代码不同的解决思路。
2025-03-10
目前AI在HR领域的应用真实案例
以下是 AI 在 HR 领域的一些应用真实案例: 1. 在招聘初期,AI 可用于职位描述生成、简历分析、面试题设计。 2. 在员工绩效评估方面,AI 能够分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈。 3. 对于员工培训与发展,AI 也能发挥作用。 例如,在智能人力资源方面,目前主要利用模型进行简历初筛、JD 自动生成、数据分析等工作。还有像 Deepseek“4+1”黄金提问法中的人力资源场景,如作为 IT 企业 HR,目标是 6 个月内培养 10 名全栈工程师,能独立负责项目。需要设计阶段性培训方案,并提出了具体的要求,用培训体系文档格式输出,包含能力评估标准。
2025-03-10
推荐一个做ppt的AI
以下是为您推荐的做 PPT 的 AI 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有强大的团队,能敏锐把握市场机遇,已确立市场领先地位。 这些工具通过自动化和智能化的设计流程,极大地简化了 PPT 的制作工作,您可以根据自己的需求和喜好选择合适的工具,以提高工作效率和演示效果。
2025-03-10
我有很多产品视频,需要进行混剪,可以怎么通过AI减少工作时间,提升工作效率
以下是一些通过 AI 减少产品视频混剪工作时间、提升工作效率的方法: 1. 利用数字人技术:无需真人模特,只需上传产品图片,数字人即可手持产品进行口播展示。支持语音和口型同步,动作、姿势定制,提供 1000+多国家数字人模特,覆盖全球 28+种语言,能快速生成产品宣传视频,省去拍摄烦恼。您可以在线体验: 。 2. 产品链接生成视频:输入产品链接,一键生成数字人产品介绍视频。目前产品链接主要支持 Amazon、Shopify、ETSY、Ebay、Appstore、Google Play、WIKI 等,其他网站来源持续接入中。操作指引为输入产品网站链接——选择数字人角色——点击立即生成。如遇生成失败的问题,可尝试删除链接后缀,点击重新生成。 3. AI 视频高光切片:智能提取视频高光片段,高效二创生成新视频。适用场景为有初始长视频素材,需要提取高光镜头对初始素材进行混剪投放到短视频平台。使用指引为点击上传视频——立即生成。您可以参考案例示意,如初始视频 。
2025-03-10
AI可以协助制造业企业做哪些工作
AI 可以协助制造业企业完成以下工作: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:通过分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。 此外,在制造业中,AI 还能用于预测性维护,帮助工厂避免停机;进行质量控制,检测产品缺陷以提高产品质量;优化供应链,提高效率和降低成本;控制工业机器人,提高生产效率;以及协助生产计划和供应链计划状态查询、产线预测性维保辅助、产品质量分析与溯源等工作。
2025-03-10
manus算是AGI级别的产品吗?
Manus 是一款在 AI 领域引起关注的产品。以下是关于 Manus 的一些信息: 有众多关于 Manus 的体验文章,如《》等,展示了其强大的能力,如能完成复杂任务、自动拆解需求并实时运行,在某些方面超越了 OpenAI 的 DeepResearch,在 GAIA 评分中获得第一。 《》指出 Manus 让 AI 操控电脑迈出关键一步,它本质上是 AI 驱动的无图形界面 Linux 虚拟机和浏览器,能够运行终端命令、访问网页、调用 API,适用于自动化办公、数据分析等任务,但目前仍有一些限制,如无法运行 GUI 程序、自动登录网页账号或绕过验证码。 然而,仅根据这些信息,不能直接确定 Manus 是否属于 AGI 级别的产品。需要更多综合和深入的评估来做出准确判断。
2025-03-08
哪个工具可以生产产品原型
目前有以下一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计: 1. UIzard:利用 AI 技术生成用户界面,可根据提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发的一些 AI 插件可增强设计流程。 3. Sketch:流行的矢量图形设计工具,插件系统中部分插件利用 AI 技术辅助设计工作,如自动生成设计元素。 4. AdamCAD:通过文字描述即可生成专业级 CAD 图纸并支持 3D 打印,可用于工业零部件、产品外壳设计或快速制作 3D 原型。 随着 AI 技术的不断发展,未来可能会有更多专门针对产品原型设计的 AIGC 工具出现。
2025-03-07
我想整理现在国内和国外的大语言模型产品并需要你整理差异还有时间轴
以下是对国内外大语言模型产品的整理及差异: 国内大语言模型: 通用模型:如文心一言、讯飞星火等,能够处理自然语言。 垂直模型:专注于特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。 具有代表性的项目:“悟道・天鹰”(北京智源人工智能研究院)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型;文心一言(百度)可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 国外大语言模型: 具有代表性的项目:GPT4(OpenAI)是目前最先进的自然语言生成模型,可用于回答问题、撰写文章等;Gemini Ultra(Google)是多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等;Claude 3 Opus(Anthropic)是多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。 时间轴方面: 国内:去年 7 月大模型百花齐放。 国外:相关模型也在不断发展和更新。 在工作原理上,大语言模型通常包括训练数据、算力、模型参数等要素。在训练数据一致的情况下,模型参数越大能力越强。Transformer 架构是大语言模型训练的常见架构,具备自我注意力机制能理解上下文和文本关联。同时,大模型可能存在幻觉,即因错误数据导致给出错误答案,优质数据集对其很重要。此外,Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 Prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。还可以基于通用大模型进行 Fine tuning 微调,以适应特定领域的需求。
2025-03-07
我是一名电商工作者,主要负责产品图的图片设计,我该怎么学习AI,能给我带来效率和品质上的提高?
以下是为您提供的学习 AI 以提高电商产品图设计效率和品质的建议: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速获取关键信息,如受欢迎的产品、价格区间和销量等,以便在设计中更好地把握方向。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品图的标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具,根据市场趋势和用户偏好自动生成吸引人的产品页面布局,为产品图的展示提供良好的框架。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,与产品图相互配合,提高转化率。 5. 图像识别和优化:运用 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点,吸引顾客。 6. 价格策略:通过 AI 分析不同价格点对销量的影响,制定合理的价格策略,在产品图中体现价格优势。 7. 客户反馈分析:借助 AI 分析客户评价和反馈,了解客户需求,优化产品图和服务。 8. 个性化推荐:利用 AI 根据用户的购买历史和偏好提供个性化的产品推荐,在产品图设计中突出个性化元素。 9. 工具能力提升:对现有 AI 工具进行严格评估和选型,确保其能提供标准化输出和一致性体验,提升设计质量和速度。 10. 工作流程优化:将 AI 深入到日常设计流程中,形成新的工作方式与流程,针对 AI 的特性优化每一个环节,实现效率和创意品质的最大化。 同时,您还可以参考以下成功案例: 1. Show Me 扣子 AI 挑战赛大消费行业专场的三等奖作品,为电商卖家提供全面的图片处理服务,包括 AI 商品图、AI 场景图、AI 模特、AI 素材、AI 海报等。利用先进 AI 技术,帮助卖家无需专业设计经验即可创作出独特且充满想象力的优质素材,且创作素材可商用,有助于提升商品出单率。 2. 大淘宝设计部 2023 年度 AI 设计实践报告中提到,未来设计师要具备持续的学习习惯,将 AI 深入日常设计流程,设计团队要制定并执行明确的 AI 融合策略等。 总之,随着技术的不断进步,AI 在视觉设计领域将扮演更重要的角色,为您创造更多的可能性。
2025-03-07