Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI infra

Answer

以下是关于“AI infra”的相关信息:

AI 模型的计算成本: GPT-3 约有 1750 亿个参数,对于 1024 个令牌的输入和输出,计算成本约为 350 万亿次浮点运算。训练像 GPT-3 这样的模型需要约 3.14×10^23 次浮点运算,其他模型如 Meta 的 LLaMA 有更高的计算要求。训练此类模型是人类迄今计算量最大的任务之一。AI 基础设施昂贵的原因在于底层算法问题计算难度极大,相比之下,对一百万个条目的数据库表进行排序的算法复杂性微不足道。因此,应选择最小的模型来解决具体用例。同时,根据变换器的经验法则,可轻松估计特定大小模型的算力和内存消耗,进而选择合适的硬件。

Generative AI 的开发工具和基础设施的趋势: 有一张图描绘了其趋势,代表了在 AI 开发领域中,为满足不同需求,工具和基础设施正逐渐模块化和专业化。图中的公司被分为四个主要类别:

  1. Orchestration(编排):如 DUST、FIAVIE、LangChain 等公司提供的工具帮助开发人员管理和协调各部分和任务,确保系统流畅运行。
  2. Deployment, Scalability, & Pre-Training(部署,可扩展性和预训练):如 UWA mosaicm、NMAREL、anyscale 等公司提供工具,帮助开发人员部署模型,保证模型的可扩展性,以及进行预训练。
  3. Context & Embeddings(上下文和嵌入):如 TRUDO,Llamalndex,BerriAI 等公司提供工具,帮助模型处理和理解语言上下文,以及将词语和句子转化为计算机可理解的形式。
  4. QA & Observability(质量保证和可观察性):如 Pinecone,drant,Vald 等公司提供工具,确保模型表现,并能监控模型的性能和状态。

AI 基础设施的考虑因素: 一些创业公司,尤其是训练新的基础模型或构建垂直集成 AI 应用程序的公司,不可避免直接在 GPU 上运行自己的模型。这要么是因为模型本身就是产品,团队正在寻找“模型-市场契合度”,要么是因为需要对训练和/或推理进行细粒度的控制,以实现某些功能或大规模降低边际成本。无论哪种方式,管理基础设施都可以成为竞争优势的来源。

Content generated by AI large model, please carefully verify (powered by aily)

References

惊人算力成本背后,AI混战下如何选择基础设施?

上表显示了几种流行模型的大小和计算成本。GPT-3大约有1750亿个参数,对于1024个令牌的输入和输出,计算成本大约是350万亿次浮点运算(即太浮点运算或TFLOPs)。训练一个像GPT-3这样的模型需要大约3.14*10^23次浮点运算。其他模型,如Meta的LLaMA,有更高的计算要求。训练这样一个模型是人类迄今为止进行的计算量最大的任务之一。总之:AI基础设施之所以昂贵,是因为底层的算法问题计算难度极大。与GPT-3生成一个单词的复杂度相比,对一百万个条目的数据库表进行排序的算法复杂性显得微不足道。这意味着你要选择最小的模型来解决你的用例。好消息是,根据变换器的经验法则,我们可以轻松估计一个特定大小的模型将消耗多少算力和内存。因此,选择合适的硬件成为我们下一个考量因素。

Generative AI的开发工具和基础设施的趋势

这张图描绘了Generative AI的开发工具和基础设施的趋势。它代表了在AI开发领域中,为满足不同需求,工具和基础设施正在逐渐模块化和专业化的趋势。图中的公司被分组到以下四个主要类别:1.Orchestration(编排):涉及到的公司(如DUST、FIAVIE、LangChain等)提供的工具帮助开发人员管理和协调各个部分和任务,以确保系统的流畅运行。2.Deployment,Scalability,& Pre-Training(部署,可扩展性和预训练):这个类别的公司(如UWA mosaicm、NMAREL、anyscale等)提供工具,帮助开发人员部署模型,保证模型的可扩展性,以及在模型使用前进行预训练。3.Context & Embeddings(上下文和嵌入):这个类别的公司(如TRUDO,Llamalndex,BerriAI等)提供工具,帮助模型处理和理解语言上下文,以及将词语和句子转化为计算机可以理解的形式。4.QA & Observability(质量保证和可观察性):这个类别的公司(如Pinecone,drant,Vald等)提供工具,以确保模型的表现,并能够监控模型的性能和状态。这些类别和公司的出现代表了人工智能技术的复杂化和专业化。随着技术的发展,更多专门针对不同AI开发阶段的工具和服务正在被开发和使用,这有助于提高开发效率和模型质量。

惊人算力成本背后,AI混战下如何选择基础设施?

另一方面,一些创业公司——尤其是那些训练新的基础模型或构建垂直集成AI应用程序的公司——不可避免直接在GPU上运行自己的模型。要么是因为模型本身就是产品,团队正在寻找“模型-市场契合度”,要么是因为需要对训练和/或推理进行细粒度的控制,才能实现某些功能或大规模降低边际成本。无论哪种方式,管理基础设施都可以成为竞争优势的来源。

Others are asking
AI与SAAS结合
AI 与 SaaS 的结合具有以下特点和影响: 1. 像 Microsoft 推出的 Copilot 产品升级,如 Copilot Team 与 Studio,能让 Agent 融入企业内部,实现自动化的会议记录和日程安排,还能设计组织内部自动化流程,帮助操作办公软件。这表明软件应用范式已转移,AI Agent 成为新 SaaS。 2. 对于生成式 AI 对 SaaS 生态的影响,起初认为大公司不会受到太大冲击,因为初创公司和大公司各有优势,初创公司机会在于瞄准可自动化工作领域。但现在不确定是否低估了“AI 原生”的巨大潜力。 3. 二十年前传统软件公司对 SaaS 崛起的态度与如今对 AI 变革的态度可能类似。SaaS 带来了业务模式的全面变革,包括开发方式、市场策略和商业模式的转变,只有极少数传统公司成功转型。 4. OpenAI 的目标明确为 all in AGI,商业模式为 SaaS,直接提供 API,接口设计内部决定,按使用付费。其在一些产品上如 ChatGPT Plus、与第三方插件结合等方面的处理方式较为简单直接。
2025-03-08
AI和AGI的区别
AI(Artificial Intelligence,人工智能)和 AGI(Artificial General Intelligence,通用人工智能)有以下区别: 1. 能力范围: AI 通常指的是弱人工智能(ANI,Artificial Narrow Intelligence),它只能完成特定的任务,如智能音箱的语音交互、网站搜索、自动驾驶、工厂与农场的应用等。 AGI 则能够做任何人类可以做的事情。 2. 发展程度: ANI 已经取得了巨大的发展。 而 AGI 目前还没有取得巨大的进展。 3. 模型目的和底层数据量: 以往的 AI 被视为“工具”,而 AGI 更像是“大脑”。 OpenAI 主张的 AGI 模型,如 GPT 系列,致力于成为“世界模型”,将世界上所有的知识压缩到模型里,其底层数据量巨大,正在接近全人类所有数据的量级。
2025-03-08
AI能做什么?无所不能么
AI 具有广泛的应用和能力,但并非无所不能。以下是 AI 能够做到的一些方面: 在医疗领域,AI 可以辅助疾病的预测、诊断和治疗,例如通过训练神经网络预测蛋白质结构,从而推进结构生物学的发展,帮助预防抗生素耐药性、推进疾病研究以及加速对抗塑料污染。 在科学研究方面,AI 能够促进科学发现,例如用于拼凑出首张距离地球 5500 万光年的黑洞图像,还能解决长期困扰科学家的蛋白质折叠难题。 在医疗检测方面,AI 有助于提高疾病检测效率,如应用于乳腺癌筛查,使更多患者能更快接受筛查,让临床医生有更多时间为患者服务并提供更快速的治疗。 在农业领域,AI 机器人可以提高农业生产效率。 然而,对于一些终极问题,答案不可避免且坚决是否定的。但这并不意味着 AI 不能重要地帮助科学进步,例如在非常实用的层面上,语言模型可以为计算功能提供新的语言接口,并通过其知识提供高水平的“自动完成”,辅助科学工作中的“传统答案”或“传统的后续步骤”。
2025-03-08
有没有ai编程的AI rules
目前关于 AI 编程的 AI Rules 主要有以下内容: 在字节发布的全新 AI IDE Trae 中,由于其过于智能,有时难以控制其立即执行任务,且目前没有全局 AI Rules 的设置,需要用“”来引入规则。 在进行 AI 编程时,应遵循一定的准则。例如,能不编程尽量不编,优先寻找线上工具、插件、本地应用等现成的解决方案,先找现成的开源工具和付费服务,最后再考虑自己编程,且编程时要以终为始,聚焦目标。 在 Trae 中,可以新建一个文件“AI Rules”,将相关规则代码复制进去并保存。在与 AI 沟通需求时引入该文件,AI 会按照规则进行开发。同时,AI 生成的代码可能存在随机性和错误,需要花费时间调试 Bug,可以通过终端、测试网页功能时的“F12”等方式查看报错信息并修复。
2025-03-08
AI绘画,有免费的吗
目前有免费的 AI 绘画工具,例如 Imagen 3,其优势包括无需排队、免费使用、交互人性化、具有较好的语义理解能力以及灵活性等。此外,Stable Diffusion 也是主流的 AI 绘画软件,其优势在于开源免费、可以本地化部署、创作自由度很高,但需要较好的电脑配置。如果您想要了解更多关于 AI 绘画的信息,比如具体的安装方法,可以去看看 B 站的【秋葉 aaaki】这个 Up 主的视频。
2025-03-08
利用ai对毕业论文扩写应该使用什么提示词
以下是一些利用 AI 对毕业论文扩写的提示词示例: 1. 请对这部分论文内容进行详细扩展,补充更多相关案例和数据,以增强论证的说服力。 2. 基于现有的论文内容,进一步阐述观点,丰富理论依据,并增加相关领域的前沿研究成果。 3. 对这段论述进行深化,从多个角度展开分析,同时融入更多的学术引用和参考文献。 4. 请将此部分内容扩展为更完整的篇章,增加细节描述,使论述更加全面和深入。 在使用提示词时,要注意内容的准确性和逻辑性,确保扩写后的论文质量得到提升。
2025-03-08
AI Infra 有哪些
AI Infra 主要包括以下方面: 1. 入围的相关工具和服务: Langfuse:大模型应用的开源追踪和分析工具,提供开源可观测性和分析功能,包括在可视化界面中探索和调试复杂的日志和追踪,以及使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。 Eden AI:将顶尖 AI API 融合为一,通过为每项 AI 任务选择正确的 AI API 来提高准确性和降低成本,通过集中管理使用限制和成本监测让用户更加放心,并不断探索市场上新兴的 AI 能力。 Langdock:在几分钟内创建、部署、测试和监控 ChatGPT 插件,将 API 连接到 Langdock,并将其作为插件部署到所有大模型应用中,然后使用内置的测试功能来确保一切按预期工作,并在插件扩展时进行监控。 LLM Spark:用于构建生产就绪大模型应用的开发平台。 2. 基础设施成本的演变:目前模型参数和 GPU 计算能力呈指数级增长,但这种趋势是否持续尚不清楚。 3. 基础设施的考虑因素: 外部与内部基础设施的选择:许多创业公司,尤其是应用公司,在成立初期无需建立自己的 AI 基础设施,可采用托管模型服务,如 OpenAI、Hugging Face(针对语言)和 Replicate(针对图像生成)等,这些服务定价基于消费量,通常比运行单独的基础设施更便宜。而一些训练新的基础模型或构建垂直集成 AI 应用程序的公司,则可能需要直接在 GPU 上运行自己的模型,管理基础设施可成为竞争优势的来源。
2025-02-06
AI Infra 市场未来的想象空间
在生成式 AI 革命进入第二个年头时,研究从迅速生成预训练结果的“快速思考(System 1)”转向推理过程中深度思考的“慢速思考(System 2)”,为全新自主型应用程序开启大门。自《生成式 AI:一个创意新世界》发表的两年间,AI 生态系统变化巨大,也有了新预测。生成式 AI 市场基础层趋于稳定,由 Microsoft/OpenAI、AWS/Anthropic、Meta 和 Google/DeepMind 等重要玩家和联盟主导,形成平衡态,只有具备经济实力和巨额资本的玩家仍在竞争,市场结构逐渐明朗,未来生成下一个 token 的成本会降低,数量会增多。随着大规模语言模型(LLM)市场稳定,竞争前沿转向以“系统 2”思维主导的推理层开发和扩展,受 AlphaGo 等模型启发,旨在让 AI 系统进行深思熟虑的推理和问题解决,新的认知架构和用户界面也在改变推理能力与用户的互动方式。 综上所述,对于 AI Infra 市场未来的想象空间,其可能在推理层的开发和扩展方面有更多的发展和创新,市场结构会进一步优化,成本降低和数量增加的趋势也将持续。
2024-11-01