Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI Infra 有哪些

Answer

AI Infra 主要包括以下方面:

  1. 入围的相关工具和服务:
    • Langfuse:大模型应用的开源追踪和分析工具,提供开源可观测性和分析功能,包括在可视化界面中探索和调试复杂的日志和追踪,以及使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。
    • Eden AI:将顶尖 AI API 融合为一,通过为每项 AI 任务选择正确的 AI API 来提高准确性和降低成本,通过集中管理使用限制和成本监测让用户更加放心,并不断探索市场上新兴的 AI 能力。
    • Langdock:在几分钟内创建、部署、测试和监控 ChatGPT 插件,将 API 连接到 Langdock,并将其作为插件部署到所有大模型应用中,然后使用内置的测试功能来确保一切按预期工作,并在插件扩展时进行监控。
    • LLM Spark:用于构建生产就绪大模型应用的开发平台。
  2. 基础设施成本的演变:目前模型参数和 GPU 计算能力呈指数级增长,但这种趋势是否持续尚不清楚。
  3. 基础设施的考虑因素:
    • 外部与内部基础设施的选择:许多创业公司,尤其是应用公司,在成立初期无需建立自己的 AI 基础设施,可采用托管模型服务,如 OpenAI、Hugging Face(针对语言)和 Replicate(针对图像生成)等,这些服务定价基于消费量,通常比运行单独的基础设施更便宜。而一些训练新的基础模型或构建垂直集成 AI 应用程序的公司,则可能需要直接在 GPU 上运行自己的模型,管理基础设施可成为竞争优势的来源。
Content generated by AI large model, please carefully verify (powered by aily)

References

ProductHunt 2023 年度最佳产品榜单

随着越来越多的AI模型和产品的出现,帮助构建、改进和监控它们的工具变得比以往任何时候都更加重要,因此几年的奖项又出现了一个新的类别。这个类别的入围者帮助AI创作,者为他们的产品选择合适的AI API并在它们之间切换(如EdenAI)、快速创建和部署LLM插件(如Langdoc)或LLM应用程序(如LLM Spark),以及追踪和调试复杂的LLM应用程序(如Langfuse)。Langfuse(免费可用)——大模型应用的开源追踪和分析工具:Langfuse为大模型应用提供开源可观测性和分析功能。可观测性:在可视化界面中探索和调试复杂的日志和追踪。分析:使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。Eden AI(免费可用)——将顶尖AI API融合为一:将Eden AI集成到产品中,实现以下目标:通过为每项AI任务选择正确的AI API来提高准确性和降低成本通过集中管理使用限制和成本监测,让你更加放心不断探索市场上新兴的AI能力。Langdock(免费可用)——在几分钟内创建、部署、测试和监控ChatGPT插件:将你的API连接到Langdock,并将其作为插件部署到所有大模型应用中,如ChatGPT和LangChain(Bing和Bard即将推出)。然后使用Langdock内置的测试功能来确保一切按预期工作,并在插件扩展时进行监控。LLM Spark(免费可用):用于构建生产就绪大模型应用的开发平台。

惊人算力成本背后,AI混战下如何选择基础设施?

在过去的几年里,我们见证了[模型参数](https://huggingface.co/blog/large-language-models)和[GPU计算能力](https://epochai.org/blog/trends-in-gpu-price-performance#:~:text=We%20find%20that%20FLOP%2Fs,price%2Dperformance%20for%20all%20GPUs.)%E5%91%88%E6%8C%87%E6%95%B0%E7%BA%A7%E5%A2%9E%E9%95%BF%E3%80%82%E7%9B%AE%E5%89%8D%E5%B0%9A%E4%B8%8D%E6%B8%85%E6%A5%9A%E8%BF%99%E7%A7%8D%E8%B6%8B%E5%8A%BF%E6%98%AF%E5%90%A6%E4%BC%9A%E6%8C%81%E7%BB%AD%E4%B8%8B%E5%8E%BB%E3%80%82)的[指数级增长。目前尚不清楚这种趋势是否会持续下去。](https://epochai.org/blog/trends-in-gpu-price-performance#:~:text=We%20find%20that%20FLOP%2Fs,price%2Dperformance%20for%20all%20GPUs.)%E5%91%88%E6%8C%87%E6%95%B0%E7%BA%A7%E5%A2%9E%E9%95%BF%E3%80%82%E7%9B%AE%E5%89%8D%E5%B0%9A%E4%B8%8D%E6%B8%85%E6%A5%9A%E8%BF%99%E7%A7%8D%E8%B6%8B%E5%8A%BF%E6%98%AF%E5%90%A6%E4%BC%9A%E6%8C%81%E7%BB%AD%E4%B8%8B%

惊人算力成本背后,AI混战下如何选择基础设施?

至此,你对AI模型的训练和推理所需的规模以及驱动它们的底层参数有了直观了解。我们现在想就如何决定使用哪种AI基础设施提供一些实用指南。[heading2]外部vs.内部基础设施[content]让我们面对现实吧:GPU很酷。许多工程师和有工程思维的创始人都倾向于配置自己的AI硬件,这样不仅可以对模型训练进行细粒度的控制,而且使用高性能的计算机或云服务来执行复杂的任务或创造新的东西,可以带来一种满足感或兴奋感(见图表A)。然而,事实是,许多创业公司——尤其是应用公司——不需要在成立第一天就建立自己的AI基础设施。相反,像OpenAI或Hugging Face(针对语言)和Replicate(针对图像生成)等采用托管模型服务,可以让创始人迅速寻找产品市场契合度,且无需管理底层基础设施或模型。这些服务已经足够好,以至于许多公司离不开它们。开发者可以通过提示工程和更高阶的微调抽象(即通过API调用进行微调)来实现对模型性能的有意义的控制。这些服务的定价是基于消费量的,这通常也比运行单独的基础设施更便宜。我们看到一些应用公司在后台运行托管模型服务,产生了超过5000万美元的年收入,估值超10亿美元。另一方面,一些创业公司——尤其是那些训练新的基础模型或构建垂直集成AI应用程序的公司——不可避免直接在GPU上运行自己的模型。要么是因为模型本身就是产品,团队正在寻找“模型-市场契合度”,要么是因为需要对训练和/或推理进行细粒度的控制,才能实现某些功能或大规模降低边际成本。无论哪种方式,管理基础设施都可以成为竞争优势的来源。

Others are asking
我是一个小白,但是想学习AI相关的知识,你有什么推荐吗,我需要注意什么,有什么技术学习路线
对于想学习 AI 的小白,以下是一些推荐和需要注意的方面,以及技术学习路线: 一、基础知识 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 数学基础 学习线性代数、概率论、优化理论等。 3. 编程基础 掌握 Python、C++等编程语言。 二、学习路径 1. 偏向技术研究方向 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 三、深入学习和实践 1. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 2. 实践和尝试 理论学习之后,通过实践巩固知识,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 3. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-08
我需要一个AI给我匹配口型
以下为一些可以为您匹配口型的 AI 工具及相关信息: 1. 即梦 AI: 对口型功能是其“视频生成”中的二次编辑功能,现支持中文、英文配音。主要针对写实/偏真实风格化人物的口型及配音生成。 操作流程:可上传包含完整人物面容的图片,进行视频生成,待视频生成完成后,点击预览视频下的“对口型”(嘴唇)按钮,输入台词并选择音色,或上传配音文件进行对口型效果生成。 技巧:上传写实/近写实的人物单人图片,目前不支持多人物图片对口型;输入 prompt,选择参数,点击生成视频,尽量确保人物无形变等扭曲效果;确保人物生成的情绪与希望匹配的口型内容匹配;在生成的视频下方,点击【对口型】;输入或上传需要配音的内容,注意视频生成时长和配音试听时长尽量对齐,点击生成;先对口型,再超分补帧。 目前支持语言:中文(全部音色),英文(推荐“超拟真”内的音色)。 2. HenGen AI:近期公布了 AI 切换视频内语言的能力,并且能够将 Avatar 口型与视频相匹配。 3. PixVerse V3: Lipsync 可以为视频配音配口型,生成视频最长可达 30s,目前只支持对 PixVerse 生成的视频进行口型适配。 优点:支持多种语言(英语、汉语、法语、日语等等皆可适配)。 操作流程:选择一张带有人脸的图片上传,写好提示词,点击生成视频。为保证最佳生成效果,建议使用单人图片。点击生成的视频,在生成的视频下方找到“Lipsync”并点击。之后,您可以输入文案,从右边的预设声音中选择合适的声音,或者点击“Upload Audio”上传一段音频,最后点击“create”生成视频。 注意:生成视频的长度取决于您文案或音频的长度,最长为 30s。例如,5s 视频+3s 音频=3s 语音视频,5s 视频+30s 音频=30s 语音视频。
2025-03-08
现在ai最前沿的发展趋势是什么
AI 技术的发展历程和前沿趋势如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 在学习路径方面: 偏向技术研究方向: 1. 具备数学基础,如线性代数、概率论、优化理论等。 2. 掌握机器学习基础,包括监督学习、无监督学习、强化学习等。 3. 深入学习深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 4. 熟悉自然语言处理,如语言模型、文本分类、机器翻译等。 5. 了解计算机视觉,如图像分类、目标检测、语义分割等。 6. 跟进前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 7. 进行科研实践,包括论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 掌握编程基础,如 Python、C++等。 2. 熟悉机器学习基础,如监督学习、无监督学习等。 3. 熟练使用深度学习框架,如 TensorFlow、PyTorch 等。 4. 应用于自然语言处理、计算机视觉、推荐系统等领域。 5. 做好数据处理,包括数据采集、清洗、特征工程等。 6. 进行模型部署,如模型优化、模型服务等。 7. 参与行业实践,如项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 此外,去年生成式 AI 从不引人注意走到了 AI 50 强榜单的前列。今年,随着企业用户和消费者的 AI 生产力大幅提高,其成为前沿和中心。尽管 2023 年美国的大部分 AI 风投流向了基础设施领域,应用公司仍在 AI 50 强榜单中占据主导地位。如今,许多公司正将 AI 融入其工作流程,以此来快速达成 KPI。不远的将来,我们有望看到 UX 和 UI 围绕 AI 的功能进行重新设计。
2025-03-08
比较好用且免费的ai文生图
以下为一些好用且免费的 AI 文生图工具及使用方法: 1. Stability AI: 点击链接进入官方 DISCORD 服务器:https://discord.com/invite/stablediffusion 。 进入 ARTISAN 频道,任意选择一个频道。 输入/dream 会提示没有权限,点击链接,注册登录,填写信用卡信息以及地址,点击提交,会免费试用三天,三天后开始收费。 输入/dream 提示词,和 MJ 类似。 可选参数有五类: prompt(提示词):正常文字输入,必填项。 negative_prompt(负面提示词):填写负面提示词,选填项。 seed(种子值):可以自己填,选填项。 aspect(长宽比):选填项。 model(模型选择):SD3,Core 两种可选,选填项。 Images(张数):1 4 张,选填项。 2. 即梦: 文生图目前每次消耗 2 积分,垫图生图每次消耗 2 积分。 每天登录送 66 积分,等于可以免费做 33 次定制化人物肖像写真。一次 4 张,33×4 = 132 张图。如果不够用,可以用一个新的手机号再注册个即梦账号。 基础会员比免费版多了去水印功能。 免费去水印的网站和软件也有很多,比如这个 https://www.apeaksoft.com/zhCN/watermarkremover/ 。 3. Liblibai: 定主题:确定生成图片的主题、风格和表达的信息。 选择 Checkpoint:按照主题找内容贴近的 checkpoint,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 帮助控制图片效果及质量。 设置 VAE:无脑选 840000 那一串。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语的组合,用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,单词和短语组合,用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras,也可留意 checkpoint 详情页上模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 后,在 30 40 之间。 尺寸:根据喜好和需求选择。 生成批次:默认 1 批。
2025-03-08
我有个计算流体力学相关的数值模式,代码是C++写的,几万行,有多个文件,各个文件之间是相互关联,现在想对代码的运行效率、代码规范等进行优化升级,有什么AI工具推荐
目前在您所描述的这种对大规模、相互关联的 C++代码进行运行效率和代码规范优化升级的场景中,暂时没有特别直接适用的 AI 工具。不过,您可以考虑使用一些传统的代码分析和优化工具,例如: 1. ClangTidy:这是一个用于 C++代码的静态分析工具,可以帮助发现代码中的潜在问题,并提供一些改进建议。 2. Valgrind:用于检测内存管理错误和性能问题。 同时,您也可以利用一些代码版本管理工具,如 Git,来更好地跟踪和管理代码的修改。
2025-03-08
AI最新资讯
以下是为您整理的 AI 最新资讯: 腾讯研究院相关: 在过去一年,人工智能技术迅猛发展,深刻重塑社会运行方式。腾讯研究院为降低信息获取成本、提升学习效率,开发了一系列专业的 AI 资讯产品,包括高度凝练的日报“AI 每日速递”、基于 AI 速递内容构建的周报“AI 每周 50 关键词”、以 3 5 分钟视频形式解读科技热点与关键技术原理的“科技九宫格”。此外,团队还开展了 AGI 专题分析、AGI 线上圆桌、AI&Society 高端研讨会与 AI&Society 百人百问等系列研究探讨。 3 月 4 日 AI 资讯: 【AI 3D】:Meshcapade 可从视频/图像中捕捉面部表情并具有逼真的 3D 发丝;InsTaG 能通过几秒钟视频学习,快速形成逼真的 3D 说话头像效果;3DMem 为新型 3D 场景记忆框架。 【AI 绘图】:智谱开源 AI 绘图 CogView4,可在图像中生成中文字符;海螺推出 Image01 多功能文本转图像模型。 【AI 视频】:Runway 内测能力可根据参考图像进行 Video to Video 视频风格化;Vidu 的 API 开放平台全面开放。 【AI 模型】:Google Colab 推出 Data Science Agent;微软为医疗行业提供首个统一语音 AI 助手 Dragon Copilot;Opera 宣布推出网页浏览器的 AI 代理。 Bot 智能体 Coze 在多领域的应用: 【人工智能(AI)技术跟进】:帮助 AI 研究人员和开发者跟进最新研究成果、技术动态和行业报告,实时更新 AI 技术动态,汇总行业报告,多平台推送提升团队沟通效率。 【金融投资领域】:金融分析师和投资者可通过 Coze bot 自动接收最新市场动态、股市新闻和财务报告,实时跟踪市场动向,自动生成财务报告,多平台同步推送方便团队协作。 您可以根据自身需求,进一步了解感兴趣的部分。
2025-03-08
AI Infra 市场未来的想象空间
在生成式 AI 革命进入第二个年头时,研究从迅速生成预训练结果的“快速思考(System 1)”转向推理过程中深度思考的“慢速思考(System 2)”,为全新自主型应用程序开启大门。自《生成式 AI:一个创意新世界》发表的两年间,AI 生态系统变化巨大,也有了新预测。生成式 AI 市场基础层趋于稳定,由 Microsoft/OpenAI、AWS/Anthropic、Meta 和 Google/DeepMind 等重要玩家和联盟主导,形成平衡态,只有具备经济实力和巨额资本的玩家仍在竞争,市场结构逐渐明朗,未来生成下一个 token 的成本会降低,数量会增多。随着大规模语言模型(LLM)市场稳定,竞争前沿转向以“系统 2”思维主导的推理层开发和扩展,受 AlphaGo 等模型启发,旨在让 AI 系统进行深思熟虑的推理和问题解决,新的认知架构和用户界面也在改变推理能力与用户的互动方式。 综上所述,对于 AI Infra 市场未来的想象空间,其可能在推理层的开发和扩展方面有更多的发展和创新,市场结构会进一步优化,成本降低和数量增加的趋势也将持续。
2024-11-01
AI infra
以下是关于“AI infra”的相关信息: AI 模型的计算成本: GPT3 约有 1750 亿个参数,对于 1024 个令牌的输入和输出,计算成本约为 350 万亿次浮点运算。训练像 GPT3 这样的模型需要约 3.14×10^23 次浮点运算,其他模型如 Meta 的 LLaMA 有更高的计算要求。训练此类模型是人类迄今计算量最大的任务之一。AI 基础设施昂贵的原因在于底层算法问题计算难度极大,相比之下,对一百万个条目的数据库表进行排序的算法复杂性微不足道。因此,应选择最小的模型来解决具体用例。同时,根据变换器的经验法则,可轻松估计特定大小模型的算力和内存消耗,进而选择合适的硬件。 Generative AI 的开发工具和基础设施的趋势: 有一张图描绘了其趋势,代表了在 AI 开发领域中,为满足不同需求,工具和基础设施正逐渐模块化和专业化。图中的公司被分为四个主要类别: 1. Orchestration(编排):如 DUST、FIAVIE、LangChain 等公司提供的工具帮助开发人员管理和协调各部分和任务,确保系统流畅运行。 2. Deployment, Scalability, & PreTraining(部署,可扩展性和预训练):如 UWA mosaicm、NMAREL、anyscale 等公司提供工具,帮助开发人员部署模型,保证模型的可扩展性,以及进行预训练。 3. Context & Embeddings(上下文和嵌入):如 TRUDO,Llamalndex,BerriAI 等公司提供工具,帮助模型处理和理解语言上下文,以及将词语和句子转化为计算机可理解的形式。 4. QA & Observability(质量保证和可观察性):如 Pinecone,drant,Vald 等公司提供工具,确保模型表现,并能监控模型的性能和状态。 AI 基础设施的考虑因素: 一些创业公司,尤其是训练新的基础模型或构建垂直集成 AI 应用程序的公司,不可避免直接在 GPU 上运行自己的模型。这要么是因为模型本身就是产品,团队正在寻找“模型市场契合度”,要么是因为需要对训练和/或推理进行细粒度的控制,以实现某些功能或大规模降低边际成本。无论哪种方式,管理基础设施都可以成为竞争优势的来源。
2024-08-22