直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

reward model

回答

奖励模型(Reward Model)相关内容如下:

在训练 GPT 助手方面,对于奖励模型,需要将提示排成行,提示在三行中相同,但完成项不同。黄色的 token 来自 SFT 模型,在最后添加特殊的奖励读出 token,监督单个绿色 token 的 transformer,它会预测完成项的质量。做出预测后,根据模型对完成项的排名与来自人类承包商的比较事实数据制定损失函数,训练模型使其做出与比较事实数据相一致的奖励预测,从而能够评估提示的完成程度。

此外,关于盈利模式,比如在菠萝作词家平台,可以提供不同级别的订阅套餐,包括基础套餐和高级套餐,分别提供不同服务。还可以与音乐制作人等建立项目合作关系,按项目费用或作品分成获取收益。对于优秀歌词作品,平台可与创作者分享版权收益。也能吸引音乐相关品牌及广告商入驻,通过展示广告、品牌联名等增加收入,或为品牌定制专属歌词内容。最后可以开设线上或线下的歌词创作培训课程。

在 GPT 模型方面,开发者上架经过审核和筛选的 GPT 模型,可获得曝光和赚取收益,虽然官方未公开详细盈利模式,但可能包括多种方式。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

扣子初体验——菠萝作词家

关于怎么赚钱,我也有一些最初的想法,我们可以提供不同级别的订阅套餐,用户可根据自身需求选择适合的服务级别。基础套餐可能包括基础的作词指导和歌词修改服务,而高级套餐则可能包含定制化的歌词创作、快速响应通道以及优先享受新功能等增值服务。当然,也可以与音乐制作人、唱片公司及独立音乐人建立项目合作关系,为他们的音乐作品提供专业的歌词创作服务。通过一次性项目费用或按作品分成的形式获取收益。对于通过菠萝作词家平台创作的优秀歌词作品,平台可与创作者分享因歌曲发行、演出、版权转让等产生的版权收益,激励创作者持续贡献高质量内容。也可以吸引音乐相关品牌及广告商入驻平台,通过展示广告、品牌联名活动等方式增加收入来源。同时,平台也可为品牌定制专属歌词内容,提升品牌形象和市场影响力。最后我们可以开设线上或线下的歌词创作培训课程,邀请知名作词人分享经验,培养更多优秀的歌词创作者。教育培训不仅能为平台带来直接收入,还能间接促进歌词创作生态的繁荣。botID:7388767085096337462

GPT 的现状(State of GPT)

所以我们现在要做的是将我们的提示排成行,提示在所有三行中都是相同的。这都是同一个提示,但是完成项是变化的,所以黄色的token来自SFT模型。然后我们在最后添加一个特殊的奖励读出token,我们基本上只监督这个单个绿色token的transformer,并且transformer会预测对于该提示,这个完成项的质量如何。所以它基本上对每个完成项的质量做出了猜测。然后一旦它为每一个都做出了猜测,我们就有了模型对它们排名的基本事实。所以我们实际上可以强制执其中一些数字应该比其他的要高很多等等。我们将这个制定为一个损失函数,并训练我们的模型,使得模型做出与来自人类承包商的比较事实数据相一致的奖励预测。这就是我们如何训练我们的奖励模型,这让我们能够评估一个提示的完成程度有多好。

熊猫Jay:GPTs 从入门、进阶、实践到防护的万字教程

这些经过审核和筛选的GPT模型一旦上架,便可供搜索和使用,就如同我们在应用商店下载软件一般。开发者通过上架自己的GPT模型,不仅能够获得曝光,还有机会赚取收益。官方尚未公开详细的盈利模式,但根据我的分析,主要可能包括以下几种方式:

其他人在问
big model页面如何进入
以下是关于进入 big model 页面的相关信息: 1. 模型下载: 大多数模型可在 Civitai(C 站)下载,网址为:https://civitai.com/ 。 使用 C 站的方法: 科学上网(自行解决)。 点击右上角筛选按钮,在框中找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 。 看照片,感兴趣的点进去,点击右边“Download”保存到电脑本地。还可点击左上角“Images”,找到喜欢的图片点进去,查看全部信息,点击 Lora 和大模型可直接跳转到下载页面。复制图片信息可点击最下面“Copy...Data”。 2. 模型下载位置: 大模型:SD 根目录即下载 SD 时存放的文件夹。 Lora 和 VAE 也有相应的存放位置。 3. 分辨模型类型: 若不知下载的模型类型及应放的文件夹,可使用秋叶的模型解析工具 https://spell.novelai.dev/ ,将模型拖动到空白处即可自动弹出模型信息。 此外,还有关于 Lora 生图的步骤和 Llama3 部署的相关内容: 1. Lora 生图: 点击预览模型中间的生图会自动跳转页面。 可调节模型强度,建议在 0.6 1.0 之间。 能添加 lora 文件,显示训练过的所有 lora 的轮次。 输入正向提示词,选择生成图片数量、尺寸等。 采样器和调度器新手可默认,迭代步数在 20 30 之间,CFG 在 3.5 7.5 之间调整。 随机种子 1 代表随机生成图,复制好的随机种子可粘贴以生成近似结果。 合适的种子和参数可进行高清修复,选择放大倍数等。 2. Llama3 部署: 下载大模型可用于推理,有使用 API 和部署简单界面两种对话方式。 面向小白,可参考部署 webdemo 服务的代码,在/root/autodltmp 路径下新建 chatBot.py 文件并输入相应内容,启动 Webdemo 服务,在终端运行命令,将端口映射到本地,在浏览器中打开链接 http://localhost:6006/ 即可看到聊天界面。
2024-12-11
Error occurred when executing IPAdapterAdvanced: insightface model is required for FaceID models File "D:\AI\comfyui_20240421\execution.py", line 151, in recursive_execute output_data, output_ui = get_output_data(obj, input_data_all) File "D:\AI\co
以下是针对您所遇到的报错问题的一些解决建议: 1. 对于 ipadater 部分报错说 model 不存在的情况,将文中画圈部分修改调整到不报错。Pulid 部分,除了下载好对应的节点以及参考官方网站最下面的安装对应要求外,还要注意上图中的第二要点,对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”的文件及对应的云盘链接:PulID 全套模型,链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb,提取码:y6hb。否则将会遇到报错:Error occurred when executing PulidEvaClipLoader。 2. 对于 Ollama 大模型部分,为了应对没下载大模型带来的报错,需要下载大模型。首先,下载 ollama,网站: 。 3. 如果缺少 ipadapter 的模型,可去这个网址下载:https://github.com/cubiq/ComfyUI_IPAdapter_plus 。如果遇到“Error occurred when executing IPAdapterUnifiedLoader:ClipVision model not found.......”类似的报错,可在这个网址里找到多个关于 IPAdapter 报错的解决办法:https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/313 。 另外,换脸工作流的核心组件是 Apply InstantID Advanced 节点,这个节点的作用就是将源人脸替换到目标图像中。其中,instantID 模型擅长提取图片的高层次特征,包括面部的纹理信息、几何结构、风格特征等,在图中例子是 IPAdpater,用于识别和保留目标图像 image_kps 的风格并迁移到生成图像中。instantID Face Analysis 节点用于提取人脸五官的特征向量,作用是使生成图像时,人脸的眼睛、鼻子、嘴巴等样子仍然符合源人脸 image 的特征。controlnet 模型的作用是识别目标图像 image_kps 的低层次特征,包括骨架、姿势、边缘、结构。controlnet 模型和 instantID 模型起到不同的控制作用,结合使用可以达到将源人脸的五官替换目标图像中五官的效果。
2024-09-03
How Al Agentic workflows could drive more Al progress than even the next generation of foundation models
以下是关于您提出的“ How Al Agentic workflows could drive more Al progress than even the next generation of foundation models ”问题的相关信息: 吴恩达认为人工智能代理工作流程将在今年推动人工智能的巨大进步,甚至可能超过下一代基础模型。构建代理的设计模式框架包括反思、工具使用、规划和多代理协作。反思是指 LLMs 审视自身工作并提出改进方法;工具使用是指赋予 LLMs 如网络搜索、代码执行等工具以帮助其收集信息、采取行动或处理数据;规划是指 LLMs 制定并执行多步骤计划以实现目标;多代理协作则涉及多个 AI 代理共同工作,通过分工、讨论和辩论来提出比单个代理更好的解决方案。这些设计模式为构建高效的 AI 代理提供了指导,并将在下周进一步详细阐述并提供相关阅读建议。 此外,在医疗保健领域,为了产生真正的改变,AI 需要像我们一样学习。必须让这些专家 AI 接触到顶级从业人员的多样化视角,以避免复制危险的偏见。鉴于人工智能依赖的神经网络基础,这些专家 AI 可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。 在 AI 进化方面,CNN 的结构基于两类细胞的级联模型,主要用于模式识别任务,在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步。
2024-09-02
Rerank Model
重排通常是通过专门的 Rerank 模型来实现的。例如在一些研究中,如基于 Notion 和 Coze 打造个人知识问答系统,提到若不考虑速度和成本,最好的语义相关度计算算法就是 LLM 本身,所以直接使用 LLM 来做打分和重排。在大模型 RAG 问答的行业最佳实践中,如 Baichuan 案例,对于 Rerank 和 selection 的作用范围存在一定的不确定性,合理猜测是对全部 Material 进行重排序和筛序。
2024-08-29