Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

知识库和文件夹有什么区别

Answer

知识库和文件夹有以下区别:

  • 功能和用途:知识库是用于存储和管理外部数据,让 Bot 可以与指定的数据进行交互,并且会自动将文档分割成内容片段进行存储,通过向量搜索检索最相关内容来回答用户问题。而文件夹主要是用于对文件或数据进行分类和组织,方便用户查找和管理。
  • 组成和结构:知识库由大到小可分为知识库、单元和分段。单元是可上传的最小内容单位,可以是一个.txt、.pdf、.csv 文件或一个网页。分段是一个单元切分成的多个部分,是模型查询的最小单位。
  • 与 Bot 的关系:知识库是提前内置在 Bot 内部的,一般只能用作检索使用。而文件夹与 Bot 的交互相对较少。
  • 数据处理:数据库是偏编程的概念,非编程同学可以直接参考官方文档的教程操作一遍。数据库既可以提前内置在 Bot 内部,也可以在和 Bot 互动的过程中将某些数据写入数据库,当作存储组件使用。而知识库主要是提取和存储长期知识。
Content generated by AI large model, please carefully verify (powered by aily)

References

创建并使用知识库

扣子的知识库功能提供了简单易用的方式来存储和管理外部数据,让你的Bot可以与指定的数据进行交互。将数据上传到知识库后,扣子会自动将你的文档分割成一个个内容片段进行存储,并通过向量搜索来检索最相关的内容来回答用户问题。知识库由大到小可分为:知识库:一整套领域知识,是Bot加载的最小单位。单元:知识库的一部分,可上传的最小内容单位可以是一个.txt、.pdf、.csv文件或一个网页。分段:一个单元切分成多个分段,模型查询的最小单位。分段内容的完整度和准确性度会影响模型回答问题的准确性。

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

海外参考文档:https://www.coze.com/docs/zh_cn/database.html国内参考文档:https://www.coze.cn/docs/guides/database数据库是偏编程的概念,非编程同学可以直接参考官方文档的教程操作一遍数据库和知识库的区别主要有几点知识库是提前内置在Bot内部的,一般只能用作检索使用数据库则是既可以提前内置在Bot内部,也可以在和Bot互动的过程中将某些数据写入数据库,当作存储组件使用

知识表示和专家系统

符号人工智能的早期成就之一是专家系统——为充当某个有限问题领域的专家而设计的计算机系统。它们基于从一个或多个人类专家那里提取的知识库,并包含一个推理引擎,在此基础上进行推理。专家系统就像人类的推理系统一样,包含短期记忆和长期记忆。同样,在以知识为基础的系统中,我们会区分以下几个部分:问题记忆(Problem memory):包含与当前要解决的问题有关的知识,如病人的体温或血压、是否有炎症等。这种知识也被称为静态知识(static knowledge),因为它包含了快照信息,记录着我们在当前状态下对问题的了解——即所谓的问题状态(problem state)。知识库(Knowledge base):代表某个问题领域的长期知识。它是从人类专家那里人工提取的,不会因外部的咨询而改变。由于它允许我们从一个问题状态前往另一个问题状态,因此也被称为动态知识(dynamic knowledge)。推理引擎(Inference engine):协调在问题状态空间中搜索的整个过程,必要时向用户提问。它还负责找到适用于每个状态的正确规则。举例来说,下面这个专家系统是根据动物的物理特征来判断动物的:

Others are asking
我也想做一个有关于数据的知识库,做完之后可以让他帮我分析数据
以下是关于创建和使用数据知识库的相关信息: 智能体: 创建智能体的知识库时,可选择手动清洗数据,手动清洗数据能提高数据准确性。手动清洗数据包括创建在线知识库和本地文档。 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割,可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:注意拆分内容以提高训练数据准确度,例如对于画小二课程,将其章节内容按固定方式人工标注和处理。 完成创建后点击发布,确保在 Bot 商店中能够搜到,只有通过发布才能获取 API。 安装 Coze Scraper: 安装扩展程序至浏览器后,可按以下步骤采集数据上传到知识库: 1. 登录。 2. 在左侧菜单栏选择一个工作区。 3. 在工作区内,单击知识库页签。 4. 创建一个知识库或点击一个已存在的知识库。 5. 在知识库页面,单击新增单元。 6. 在文本格式页签下,选择在线数据,然后单击下一步。 7. 单击手动采集,完成授权。 8. 输入要采集内容的网址,确认。 9. 标注要提取的内容,查看数据确认无误后再点击完成并采集。 Obsidian 加 Cursor: 用 Trae 查询笔记内容:Obsidian 虽支持多种搜索方式,但基于关键字搜索在笔记库较大时存在困难。可在 Trae 右侧的 Chat 输入框输入相关问题进行模糊搜索,如输入「」然后选择剪藏文件夹,提问特定内容。 用 Trae 和 Obsidian 辅助研究:可对多个不同的笔记文件进行比较或综合整理研究,在 Chat 输入框提问时用「」分别引用指定的笔记文件或文件夹。还可根据需求和内容发散更多用法,如用于学习和复习,或分析结构化数据。
2025-03-06
有没有好用的知识库
以下是一些好用的知识库介绍: 扣子:其知识库功能强大,可上传和存储外部知识内容,提供多种查找知识的方法。能解决大模型有时出现的幻觉或专业领域知识不足的问题,支持多种格式文件,如文本格式。在智能体中使用时,回答用户前会先检索知识库内容。还可添加开场白提升体验。 扣子提供的存储和记忆外部数据的方式包括: 知识库:大量知识分片,通过语义匹配为模型补充知识。例如车型数据,每个知识库分段保存一种车型基础数据,用户提问时能匹配对应分段获取信息。 数据库:类似传统软件开发的数据库功能,以表格结构存储信息,通过 NoSQL 方式使用,目前提供关系型数据库,有多种应用场景。 AI 便签:记录用户提交的便签,支持提交、查询操作,通过 NL2SQL 完成。 单词本:记录用户背过的单词及未记住的单词等。 Coze 中创建知识库的步骤: 路径:个人空间 知识库 创建知识库。 支持的文档类型:本地文档、在线数据、飞书文档、Notion 等,本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可在内容中加特殊分割符如“”便于自动切分数据,分段标识符号选择“自定义”,内容填“”。最终的知识库结果中,同一颜色代表同一个数据段,有误可编辑或删除。
2025-03-05
我想要知识库里的ai系统学习文档,要怎么获取
您可以通过以下方式获取 AI 系统学习文档: 1. 观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等,并整理成学习笔记,在整理过程中学习更多知识,还能与大家交流互动。 2. 等待社区共创内容,通过共创做小项目来反向推动学习。 3. 原子将分享 30 分钟快速体验 AI 工具并教爸妈理解相关内容。 4. 学习 A16Z 推荐的包括 GPT 相关知识、Transformer 模型运作原理,及大语言模型词语接龙原理等基础知识。 5. 查看如介绍 GPT 运作原理、Transformer 模型、扩散模型等的经典必读文章。 6. 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 7. 查看历史脉络类资料,如整理了 open AI 的发展时间线和万字长文回顾等。 相关内容的获取链接为:https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2727000 、https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2806000 、https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2942000 。
2025-03-05
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建 OneAPI,用于汇聚整合多种大模型接口。 搭建 FastGpt,这是一个知识库问答系统,可放入知识文件,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat,将知识库问答系统接入微信,但建议先用小号以防封禁风险。 2. Coze: 知识库问答是其最基础的功能,利用了大模型的 RAG 机制(检索增强生成)。 RAG 机制先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 实现知识库问答功能需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传内容。 在设计 Bot 时添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地结合知识库返回的内容进行回答。
2025-03-05
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建步骤: 搭建 OneAPI(https://github.com/songquanpeng/oneapi),用于汇聚整合多种大模型接口。 搭建 FastGpt(https://fastgpt.in/),这是一个知识库问答系统,将知识文件放入,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat(https://github.com/zhayujie/chatgptonwechat),接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。 2. Coze: 知识库问答利用了大模型的 RAG 机制,全称为“检索增强生成”(RetrievalAugmented Generation)。 RAG 机制先从大型数据集中检索与问题相关的信息,再使用这些信息生成回答。 实现知识库问答功能,需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传文章内容。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以结合知识库返回的内容进行回答。
2025-03-05
我想搭建自己的知识库,然后进行知识提取和查询辅助我进行办公和内容生成,请问有哪些工具好用?
以下是一些可用于搭建知识库并进行知识提取和查询以辅助办公和内容生成的工具: 1. ChatGPT:可以生成文章、故事、诗歌、歌词等内容,作为聊天机器人后端提供自然对话体验,用于问答系统、文本摘要、机器翻译、教育等,还能生成代码片段。相关网址:https://chat.openai.com/ 、https://bard.google.com/extensions 、https://claude.ai/ 。 2. ExoBrain 的集成软件:作为外脑的主要记忆空间,能捕获各种数字内容,挂接和导入外部记忆,快速理解内容,灵活创作笔记,生成创作建议,与外脑知识库对话并自动做外部检索完善答案。相关网址:https://hallid.ai/?ref=indigox.me ,关注获取最新信息。 3. 多维表格:用表格+AI进行信息整理、提效、打标签,满足 80%数据处理需求。相关文章: ,适用人群为 Excel 重度使用者、手动数据处理使用者、文件工作者。 4. Cursor:通过 AI 工具对编程祛魅,降低技术壁垒。相关文章: ,适用人群为 0 编程经验、觉得编程离我们很遥远的小白。 5. Suno:AI 赋能音乐创作,无需乐理知识即可参与音乐制作。相关文章: ,适用人群为 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。 6. 其他工具: PPT 生成: 。 音视频提取总结:https://bibigpt.co/r/AJ 。 播客总结:https://podwise.xyz/dashboard/trending 。 生成脑图:https://xmind.ai/editor/ 。 PDF 对话:演示 www.chatpdf.com 。
2025-03-05
flux模型放在那个文件夹
FLUX 模型的放置位置如下: FLUX.1等版本的模型应放在 ComfyUI/models/unet/文件夹中。如果爆显存了,“UNET 加载器”节点中的 weight_dtype 可以控制模型中权重使用的数据类型,设置为 fp8 可降低显存使用量,但可能会稍降质量,默认的 weight_type 显存使用较大。 t5xxl_fp16.safetensors 和 clip_l.safetensors 应放在 ComfyUI/models/clip/文件夹里面。可以使用 t5xxl_fp8_e4m3fn.safetensors 来降低内存使用率,若有超过 32GB 内存,建议使用 fp16。 下载的 Vae 模型应放入 ComfyUI/models/vae 文件夹。 同时,以下模型也有对应的放置位置: flux1dev.safetensors 放在 ComfyUI/models/unet/目录下。 t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/目录下。 ae.safetensors 放在 ComfyUI/models/vae/目录下。 flux1dev.safetensors 是底模,ae.safetensors 是 VAE,clip_l.safetensors 和 t5xxl_fp16.safetensors 是关于文字语言编码。
2025-03-03
有没有带有文件夹功能的ai
目前,带有文件夹功能的 AI 仅在 Cursor Chat 中受支持。您还可以将 Cursor 中的整个文件夹作为上下文引用,@Folders 对于希望为 AI 提供大量上下文的长上下文聊天特别有用,相关链接为:https://docs.cursor.com/chat/overviewlongcontextchat 。 此外,能联网检索的 AI 也是存在的。例如,ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网;Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型;Bing Copilot 作为 AI 助手,旨在简化在线查询和浏览活动;还有如 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 在 Excel 方面,有以下几种增强数据处理和分析能力的 AI 工具和插件: 1. Excel Labs:是 Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求,Copilot 自动完成任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 以上内容由 AI 大模型生成,请仔细甄别。
2024-12-21
我要整理文件夹中的图片, 请推荐一款适合的AI软件
以下为您推荐适合整理文件夹中图片的 AI 软件: 1. 去水印方面: AVAide Watermark Remover:在线工具,支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简单,上传图片、选择水印区域,保存并下载处理后的图片,还提供去除文本、对象、人物、日期和贴纸等功能。 Vmake:可上传最多 10 张图片,AI 自动检测并移除水印,适合需快速去水印并在社交媒体分享图片的用户。 AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中多余物体、人物或水印,支持直接粘贴图像或上传手机图像,操作简便。 2. 图生图方面: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感,丰富创作过程。 Retrato:AI 工具,将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计,将上传照片转换为芭比风格,效果佳。 这些 AI 模型通过组合技术如扩散模型、大型视觉转换器等,可以根据文本或参考图像生成具有创意且质量不错的相似图像输出,但仍有一些局限,如偶尔会出现性能不稳定、生成内容不当等问题。内容由 AI 大模型生成,请仔细甄别。您可以根据具体需求选择最适合您的工具。
2024-09-03
DeepSeek R1和DeepSeek(联网版)有什么区别
DeepSeek R1 和 DeepSeek(联网版)的区别主要在于以下方面: 1. DeepSeek 只是品牌名称,需要加上具体模型名,如 DeepSeek V3 (类似 GPT4o)或 DeepSeek R1 (类似 OpenAI o1)。 2. DeepSeek R1 是原生通过强化学习训练出的模型,而 DeepSeek 联网版的具体特点未明确提及,但可能在功能和性能上与 R1 存在差异。 3. Deep Research 更擅长生成专业报告,而 DeepSeek Chat 虽然集成搜索,但效果仍有差距。
2025-03-05
AI与智能体的区别
AI 与智能体的区别主要体现在以下方面: 1. 架构和功能:未来的完全自主智能体可能拥有所有四个构建块,但当前的 LLM 应用程序和智能体尚未达到此水平。例如,流行的 RAG 架构不是智能体式的,而是以推理和外部记忆为基础。一些设计如 OpenAI 的结构化输出支持工具使用,但这些应用程序将 LLM 作为语义搜索、综合或生成的“工具”,其采取的步骤由代码预先确定。而智能体是将 LLM 置于应用程序的控制流中,让其动态决定要采取的行动、使用的工具以及如何解释和响应输入。 2. 控制自由度和类型:在 Menlo,确定了三种不同主要用例和应用程序进程控制自由度的智能体类型。受到最严格限制的是“决策智能体”设计,它们使用语言模型来遍历预定义的决策树。“轨道智能体”提供了更大的自由度,为智能体配备了更高层次的目标,但同时限制了解决空间,要求遵循标准作业程序并使用预先设定的“工具”库。在光谱的另一端是“通用人工智能体”,本质上是没有任何数据支架的 for 循环,完全依赖于语言模型的推理能力来进行所有的计划、反思和纠正。 3. 概念理解:智能体简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,所以很多公司关注 AI 应用层的产品机会。在 C 端和 B 端都有相关案例,同时也有众多智能体开发平台。
2025-03-01
aI 智能体和大模型的区别是什么
AI 智能体和大模型的区别主要体现在以下几个方面: 1. 概念和定位:智能体简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。大模型是一种技术。 2. 服务对象:大模型是技术,面向用户提供服务的是基于大模型的产品,如智能体。 3. 功能特点:大模型具有强大的语言理解和生成能力,但存在局限性,如无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等。智能体通过集成特定的外部能力,能够弥补大模型的不足,例如实时信息获取、回答私有领域问题等。 4. 应用场景:智能体在 C 端有社交方向,用户注册后捏自己的 Agent 并让其与他人的 Agent 聊天;在 B 端可以帮助商家搭建 Agent。大模型适用于通用的语言处理任务。 5. 开发方式:有专门的智能体开发平台,如字节扣子、腾讯元器等。
2025-02-28
扣子和大模型的区别是什么
扣子是一个 AI 聊天机器人构建平台,如字节推出的 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。它具有强大的知识库功能,能帮助上传和存储知识内容,并提供多种查找知识的方法,解决大模型可能出现的幻觉或某些专业领域知识不足的问题。 而 AI 大模型是一种技术,面向用户提供服务的是基于大模型开发的产品。例如,智能体可以被视为基于大模型开发的应用。 在实际应用中,扣子这样的平台能让开发者更便捷地构建和优化智能体,以满足不同场景和用户的需求。
2025-02-28
r1-1.5b,7b,32b,70b的区别在哪
以下是关于 r11.5b、7b、32b、70b 区别的一些信息: 在模型规模方面,不同规模的模型具有不同的特点和应用场景。 从一些访谈和相关介绍来看: 小型模型(如 1.5b)在某些特定应用中可能已经足够好,并且成本相对较低,但在处理复杂任务和解锁新的有价值应用方面可能有限。 较大的模型(如 7b、70b)通常能够提供更强大的性能和能力,例如在提供良好的法律建议等任务中可能表现更出色。但大模型的成本也相对较高,并非所有应用都能证明其成本的合理性。 以 Qwen 2 为例,不同规模的模型具有不同的性能和处理能力: Qwen20.5B、Qwen21.5B 可处理 32k 上下文。 Qwen27B 可处理 128k 上下文。 像 baichuan7B 这样的 70 亿参数模型,在标准的中文和英文权威 benchmark 上均取得同尺寸最好的效果,支持中英双语,上下文窗口长度为 4096。 总之,不同规模的模型在性能、成本、适用场景等方面存在差异,需要根据具体需求来选择合适的模型。
2025-02-26
SVM与神经网络的区别是啥
SVM(支持向量机)和神经网络在以下方面存在区别: 1. 原理和模型结构: SVM 基于寻找能够最大化分类间隔的超平面来进行分类或回归任务。 神经网络则是通过构建多层神经元组成的网络结构,通过神经元之间的连接权重和激活函数来学习数据的特征和模式。 2. 数据处理能力: SVM 在处理小样本、高维度数据时表现较好。 神经网络通常更适合处理大规模数据。 3. 模型复杂度: SVM 相对较简单,参数较少。 神经网络结构复杂,参数众多。 4. 对特征工程的依赖: SVM 对特征工程的依赖程度较高。 神经网络能够自动从数据中学习特征。 5. 应用场景: 在图像识别、语音识别、机器翻译等领域,神经网络占据主导地位。 SVM 在一些特定的小数据集或特定问题上仍有应用。
2025-02-26