Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果调优prompt

Answer

以下是一些调优 prompt 的方法:

  1. 明确具体的描述:使用更具体、细节的词语和短语来表达需求,避免过于笼统。
  2. 添加视觉参考:在 prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。
  3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整整体语气和情感色彩,以生成期望的语境和情绪。
  4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。
  5. 增加约束条件:在 prompt 中添加限制性条件,如分辨率、比例等,避免意外输出。
  6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步完善。
  7. 参考优秀案例:研究 AI 社区流行且有效的 prompt 范例,借鉴写作技巧和模式。
  8. 反复试验、迭代优化:多次尝试不同写法,并根据输出效果反馈持续完善,直至达到理想结果。

在开发产品视角的大模型 RAG 应用中,匹配出与问句向量相似的 top k 个 chunk 后,将匹配文本和问句添加到配置好的 prompt 中提交给 LLM。此阶段可能需要 prompt 工程,选择合适的 prompt 模板。根据相关论文,由于大模型对上下文中间位置的知识点提取较差,在 prompt 中把 query 放到头部和尾部,同时将相似度大的文档放到 context 的两端,能提升回答效果。

在使用 GPT 模仿创作内容时,重点步骤如下:0.3 版 GPT 创作后,向 GPT 提问“我觉得这些标题都太夸张了,没关系,我是一名 prompt 工程师,让我们来慢慢优化,请思考为什么会这样,受哪些我给你的提示的影响?”通过与 GPT 深入交流来优化 prompt 。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何润色或优化 Prompt?

优化和润色提示词(Prompt)对于提高文生图、对话等AI模型的输出质量非常重要。以下是一些可以尝试的方法:1.明确具体的描述使用更具体、细节的词语和短语来描述你想要表达的内容,而不是过于笼统的词语。这样AI更容易准确理解你的需求。1.添加视觉参考在Prompt中插入相关的图片参考,这可以显著提高AI理解你的意图和细节要求的能力。1.注意语气和情感根据需求,用合适的形容词、语气词等调整Prompt的整体语气和情感色彩,让AI能生成出期望的语境和情绪。1.优化关键词组合尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的Prompt描述方式。1.增加约束条件为避免AI产生意料之外的输出,可以在Prompt中添加限制性条件,如分辨率、比例等。1.分步骤构建Prompt将复杂的需求拆解为逐步的子Prompt,引导AI先生成基本结构,再逐步添加细节和完善。1.参考优秀案例研究AI社区流行的、被证明有效的Prompt范例,借鉴其中的写作技巧和模式。1.反复试验、迭代优化通过多次尝试不同的Prompt写法,并根据输出效果反馈持续优化完善,直至达到理想结果。

开发:产品视角的大模型 RAG 应用

匹配出与问句向量最相似的top k个chunk之后,会将匹配出的文本和问句,一起添加到配置好的prompt中,提交给LLM。在这个阶段,可能需要一定的prompt工程,选择最合适的prompt模板。根据论文《Lost in the Middle:How Language Models Use Long Contexts》,大模型对上下文中间位置的知识点提取较差,因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,能提升回答效果。

夙愿:使用 GPT 模仿创作内容的万能思路

相比0.1版本,0.3版本创作的标题好了不少,但是我们可以看到0.3版本创作出来的标题还是太夸张了。接下来我将教你:通过与GPT深入交流进而优化Prompt,你在其他地方应该看不到这种优化Prompt的方法。(下面我将输入了0.x版本prompt的GPT称为0.x版GPT)重点步骤1:0.3版GPT创作之后,我们向GPT提问:我觉得这些标题都太夸张了,没关系,我是一名prompt工程师,让我们来慢慢优化,请思考为什么会这样,受哪些我给你的提示的影响?

Others are asking
prompt 知识解释
以下是关于 prompt 的知识解释: 什么是 prompt: Prompt 是您提供给模型(如 Claude)的文本,用于引发相关输出。它通常以问题或指示的形式出现,例如“为什么天空是蓝色的?”。模型给出的回答被称为“响应”“输出”或“完成”。在不同领域,Prompt 的定义有所不同。在自然语言处理领域,它通常由一个问题或任务描述组成,如“给我写一篇有关人工智能的文章”“翻译这个英文句子到法语”等。在图像识别领域,Prompt 可以是一个图片描述、标签或分类信息。 支持的语言: 支持英语,不用担心英语不好的问题,。另外,emoji 也可以使用,如🥰、🫡等。 语法规则: 1. 用英文半角符号逗号,来分隔 tag。逗号前后有空格或者换行都不影响效果。 2. 改变 tag 权重: :数值从 0.1 到 100,默认状态是 1,低于 1 就是减弱,大于 1 就是加强。 括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。 3. 进行 tag 的步数控制(高级玩法): ,数字大于 1 理解为第 X 步前为 tag1,第 X 步后变成 tag2,数字小于 1 理解为总步数的百分之 X 前为 tag1,之后变成 tag2。 每个单独的提示词叫 tag(关键词)。
2025-03-02
如何基于模板填入词汇生成Prompt
基于模板填入词汇生成 Prompt 的方法如下: 在 GPT 相关工具中,如 EasyFill,选中页面上任意一段文字,点击按钮,工具会将选中的内容填入模板中的占位符位置并发送。若需编辑,可点击右侧铅笔图标。设置选项可用于修改菜单项。 对于 SD 文生图,先选择模板,点击倒数第二个按钮快速输入标准提示词。描述逻辑通常包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)等。可借助功能型辅助网站如 http://www.atoolbox.net/ 、https://ai.dawnmark.cn/ 填写关键词信息,也可在 C 站(https://civitai.com/)抄作业,复制数据粘贴到正向提示词栏。 对于 AI 视频生成,有具体案例模板,如史诗灾难场景、赛博朋克未来都市、奇幻神话场景等,每个场景都有详细的提示词,包括镜头、主体、细节、背景、光影、氛围、技术参数等方面的描述。
2025-02-28
prompt十大原则
以下是关于 prompt 的十大原则: 1. 指令清晰明确:下达的指令应清晰、没有歧义,让 AI 模型能准确理解任务要求。 2. 给予思考时间:给大模型足够的时间去思考和完成任务。 3. 明确任务:确保 prompt 清晰地定义任务,如写故事时包含背景、角色和主要情节。 4. 提供上下文:若任务需要特定背景知识,在 prompt 中提供充足的上下文。 5. 使用清晰语言:尽量用简单、清晰的语言描述任务,避免模糊或歧义词汇。 6. 给出具体要求:若任务有特定格式或风格要求,在 prompt 中明确指出。 7. 使用示例:如有特定期望结果,在 prompt 中提供示例帮助模型理解需求。 8. 保持简洁:尽量使 prompt 简洁明了,避免过多信息导致模型困惑。 9. 使用关键词和标签:有助于模型更好理解任务主题和类型。 10. 测试和调整:生成文本后仔细检查结果,根据需要调整 prompt 直至满意。 此外,ChatGPT CoT 的系统提示词有以下关键设计原则: 语气与风格:包括友好好奇、第一人称视角、口语化表达等。 内容处理规则:如信息过滤、忠实性等。 结构化输出:使用特定格式的子标题和段落分隔,保证连贯性。 同时,ChatGPT CoT 还有安全与合规机制,包括隐私保护和内容审查等方面。
2025-02-28
怎么学习提示词 prompt
以下是关于如何学习提示词(prompt)的全面指导: 一、理解提示词的作用 提示词向模型提供上下文和指示,其质量直接影响模型输出的质量,能让模型更准确地理解并完成所需任务。 二、学习提示词的构建技巧 1. 明确任务目标,用简洁准确的语言描述。 2. 给予足够的背景信息和示例,帮助模型理解语境。 3. 使用清晰的指令,如“解释”“总结”“创作”等。 4. 对特殊要求应给予明确指示,如输出格式、字数限制等。 三、参考优秀案例 研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中找到大量案例。 四、实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 五、活用提示工程工具 目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 六、跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。 七、具体学习步骤 1. 拥有一个大模型帐号,并熟悉与之对话的方式。推荐 ChatGPT4 及国产平替:。 2. 阅读 OpenAI 的官方文档:。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-26
生成 ppt 内容的 prompt
以下是关于生成 PPT 内容的 prompt 相关信息: 角色方面包括专业推特新闻小编、好评生成器、PPT 生成器、周报生成器、文章打分器、英文日文翻译员、分享卡片生成器、邮件优化大师、专业书评人等。 周三【workshop】一起写 Prompts 成果展示小组 1 中,作者夙愿提到: 该 prompt 主要解决输入一个主题帮老师生成 PPT(场景不定)的问题。 使用该 prompt 的是教师(生成)和学生(阅读)。 目前的最好解决方案包括:提炼教学内容的核心概念确定主题;确定主题后增加提纲;对提纲进行关键词描述;根据关键词书写提纲下的摘要;生成的课件提纲、内容让用户确认是否需要修改。 成熟的案例参考: step 1(根据 PPT 大纲助手 GPTs 生成 PPT 大纲):https://chat.openai.com/g/gOKorMBxxUpptdagangzhushou step 2(根据输入文本生成 PPT 内容 GPTs 生成 PPT 内容):https://chat.openai.com/g/gYJs9jxVBHshuruwenbenshengchengpptneirong step 3(将生成的内容复制到 Marp Web 渲染简洁的 PPT):https://web.marp.app/
2025-02-25
职场求职 prompt
以下是关于职场求职的相关内容: 岗位职责生成器:由小七姐创作,版本 1.3。可根据标准模板及用户需求,为从事人力资源岗位的初级用户快速生成岗位职责。需注意与用户对话时,考虑其经验和技能水平,生成的岗位职责应包含通用模块和业务专业模块。生成岗位职责后,可基于此提供 15 个面试问题,分任职资格、职业发展、业务能力三个模块。 AI 提示词工程师岗位技能要求: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 职场新人求助攻的案例:刚转正的 HR 要组织新员工培训,制造业公司新人 HR 要给 20 名 95 后校招生做入职培训等。 常见翻车急救包:如应对 AI 开始瞎编、答案太笼统、越改越跑偏等状况的方法。
2025-02-25
提示词调优产品
以下是关于提示词调优产品的相关信息: 针对性技巧: 从用户痛点、技术创新、市场竞争三个维度分析产品的差异化优势,并预测可能面临的发展瓶颈。 “说人话”优化技巧,目的是获得更容易理解的解释,例如用 8 岁小朋友能听懂的比喻解释复杂概念。 细节约束技巧,确保输出符合特定要求,如写一篇有具体要求的美食测评。 资源获取技巧,获得具体可行的工具或方法建议,如为职场人士推荐学习英语口语的 APP 及使用方法和时间分配等。 灵活组合使用这些技巧的要点是提供清晰的背景信息、设定具体的目标和要求、指定期望的输出形式、适时使用追问和反馈优化结果。 相关产品日报: XiaoHu.AI 日报 11 月 15 日: 优化提示词,通过链式思维等技术自动改进提示词,提升 AI 模型回答质量,具有示例增强、标准化、提示重写、预填充内容等功能特点,测试显示多标签分类准确率提升 30%,摘要任务可完全遵循字数要求,若提示缺少示例,Claude 会自动生成合成示例简化提示构建过程。 Context 推出基于“上下文引擎”的 AI 助手 Autopilot,核心功能是无缝集成用户工作流,支持计划文档生成、多步数据分析、财务建模和图表创建等任务,人机协作方面,面对不确定任务时 AI 会主动请求指导,支持任务并行处理,创新点在于在大项目中能“自我复制”生成多个微型代理协作完成复杂任务。 苹果发布 Final Cut Pro 11,新增多项 AI 功能,包括磁性遮罩(AI 自动识别人和物体,无需绿幕实现抠图)、自动生成字幕(语音转字幕,提高效率)、智能适配(裁剪视频为适合社交媒体的格式)、自动色彩增强(优化画面效果)、平滑慢动作(生成额外帧,改善慢动作视频流畅性)、语音去噪(消除背景噪音,提升对话清晰度)。
2025-02-27
如何调优大模型
以下是关于调优大模型的一些方法: 1. 更换大模型:比如从 ChatGLM26B 替换成 baichuan213b,针对特定场景,后者性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果最优。 4. 对文档名称进行处理:人工对文件重命名,上传相同文件构建知识库,同时在构建时勾选【开启中文标题加强】选项。重命名文件对结果提升不明显,但勾选该选项后,回答的无关信息减少,效果有所提升。 5. Prompt 阶段:需要一定的 prompt 工程,选择最合适的 prompt 模板。根据相关论文,把 query 放到头部和尾部,同时把相似度大的文档放到 context 的两端,能提升回答效果。 6. LLM 生成答案:大模型本身的性能是最大影响因素。选择大模型时要在成本和收益间找最佳平衡点,有条件还可对模型进行微调以更匹配自身场景。
2024-12-12
rag调优
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合信息检索和文本生成能力的技术,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息来制作精确和连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。 LLM 需要 RAG 进行检索优化的原因在于 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调模型的接受能力不高且慢,甚至有丢失原有知识的风险。 3. 输出难以解释和验证,最终输出内容黑盒且不可控,可能受到幻觉等问题干扰。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,大模型输出出错的可能大大降低。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 性能提升的策略和方法包括: 1. 优化索引: 按照子部分索引,将文本块再拆分为较小的文本(例如单句),然后对这些小块进行多次索引,适用于有多个主题、有冲突信息的复杂长文本信息。 按照文本框可以回答的问题索引,让 LLM 生成与拆分的文本块相关的假设性问题,并将这些问题用于索引,适用于用户没有提出非常明确问题的情况,可减少模糊性。 按照文本块的摘要进行索引,适用于文本框中有多余信息或者与用户查询无关细节的情况。 2. 重排 rerank:搜到相似信息后选择合适的信息,大部分场景下选择最相似的即可。
2024-12-05
LLM是什么,有什么方法能够调优
LLM 即大型语言模型(Large Language Model)。以下是一些调优 LLM 的方法: 1. 改进提示:在上下文中提供基本事实,例如相关文章段落或维基百科条目,以减少模型生成虚构文本的可能性。通过降低概率参数并指示模型在不知道答案时承认(例如,“我不知道”)来配置模型以生成更少样式的响应。在提示中提供问题和答案的组合示例,其中可能知道和不知道的问题和答案。 2. 微调:采用在通用数据集上预训练的模型,复制这个模型,然后以这些学习到的权重为起点,在新的特定领域数据集上重新训练模型。但由于 LLM 规模较大,更新每个权重可能需要很长时间的训练工作,且计算成本较高,所以微调大型语言模型可能不是最佳选择。 3. 参数有效调优:这是一种创新的调优方法,旨在通过仅训练一部分参数来减少微调 LLM 的挑战。这些参数可能是现有模型参数的子集,也可以是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示。参数有效调整非常适合拥有“适度”数量训练数据的场景,例如数百或数千个训练示例。训练数据应以文本到文本格式构建为受监督的训练数据集,数据中的每条记录或行都应包含输入文本(即提示)。 此外,研究发现 GPT4 等 LLM 在一些简单的代数问题上存在表现局限性,例如随着 L 的增加,模型更容易犯计算错误,90%的错误是由于在合并相似项时跳过了步骤。这启发了是否有有效方法训练或微调 LLM 以实现更准确计算能力的研究问题。同时,LLM 在计数方面也存在困难,不仅在转换器架构中难以实现,而且数据集中计数示例的稀缺性也加剧了这个问题。
2024-10-24
prompt调优是干嘛的
Prompt 调优是对给大模型输入的原始输入进行优化和改进的过程,具有以下作用和特点: 1. 帮助模型更好地理解用户需求,并按照特定模式或规则进行响应。 2. 可以设定特定的角色或场景,如“假设你是一位医生,给出针对这种症状的建议”,后续对话将基于此设定展开。 3. 有多种有趣的玩法,例如要求模型按照思维链(cot)的思路逻辑回答,或者让模型按照特定格式(如 json)输出,使模型成为特定的输出器。 4. 提示开发生命周期包括设计初步提示,即制定一个初步的提示,概述任务定义、良好响应的特征以及所需的上下文,并添加规范输入和输出的示例作为改进的起点。 5. 测试提示时要根据测试用例评估模型的响应与预期输出和成功标准是否一致,使用一致的评分标准,如人工评估、与答案标准比较或基于评分标准的模型判断等,以系统性评估性能。 6. 自动提示工程方面,有一些相关的重要主题和关键论文,如使用离线逆强化学习生成与查询相关的提示、引入使用大语言模型优化提示的思想、提出基于梯度引导搜索自动创建各种任务提示的方法、作为轻量级微调替代方案的为自然语言生成任务添加可训练连续前缀、提出通过反向传播学习软提示的机制等。
2024-09-03