直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如果调优prompt

回答

以下是一些调优 prompt 的方法:

  1. 明确具体的描述:使用更具体、细节的词语和短语来表达需求,避免过于笼统。
  2. 添加视觉参考:在 prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。
  3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整整体语气和情感色彩,以生成期望的语境和情绪。
  4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。
  5. 增加约束条件:在 prompt 中添加限制性条件,如分辨率、比例等,避免意外输出。
  6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步完善。
  7. 参考优秀案例:研究 AI 社区流行且有效的 prompt 范例,借鉴写作技巧和模式。
  8. 反复试验、迭代优化:多次尝试不同写法,并根据输出效果反馈持续完善,直至达到理想结果。

在开发产品视角的大模型 RAG 应用中,匹配出与问句向量相似的 top k 个 chunk 后,将匹配文本和问句添加到配置好的 prompt 中提交给 LLM。此阶段可能需要 prompt 工程,选择合适的 prompt 模板。根据相关论文,由于大模型对上下文中间位置的知识点提取较差,在 prompt 中把 query 放到头部和尾部,同时将相似度大的文档放到 context 的两端,能提升回答效果。

在使用 GPT 模仿创作内容时,重点步骤如下:0.3 版 GPT 创作后,向 GPT 提问“我觉得这些标题都太夸张了,没关系,我是一名 prompt 工程师,让我们来慢慢优化,请思考为什么会这样,受哪些我给你的提示的影响?”通过与 GPT 深入交流来优化 prompt 。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:如何润色或优化 Prompt?

优化和润色提示词(Prompt)对于提高文生图、对话等AI模型的输出质量非常重要。以下是一些可以尝试的方法:1.明确具体的描述使用更具体、细节的词语和短语来描述你想要表达的内容,而不是过于笼统的词语。这样AI更容易准确理解你的需求。1.添加视觉参考在Prompt中插入相关的图片参考,这可以显著提高AI理解你的意图和细节要求的能力。1.注意语气和情感根据需求,用合适的形容词、语气词等调整Prompt的整体语气和情感色彩,让AI能生成出期望的语境和情绪。1.优化关键词组合尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的Prompt描述方式。1.增加约束条件为避免AI产生意料之外的输出,可以在Prompt中添加限制性条件,如分辨率、比例等。1.分步骤构建Prompt将复杂的需求拆解为逐步的子Prompt,引导AI先生成基本结构,再逐步添加细节和完善。1.参考优秀案例研究AI社区流行的、被证明有效的Prompt范例,借鉴其中的写作技巧和模式。1.反复试验、迭代优化通过多次尝试不同的Prompt写法,并根据输出效果反馈持续优化完善,直至达到理想结果。

开发:产品视角的大模型 RAG 应用

匹配出与问句向量最相似的top k个chunk之后,会将匹配出的文本和问句,一起添加到配置好的prompt中,提交给LLM。在这个阶段,可能需要一定的prompt工程,选择最合适的prompt模板。根据论文《Lost in the Middle:How Language Models Use Long Contexts》,大模型对上下文中间位置的知识点提取较差,因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,能提升回答效果。

夙愿:使用 GPT 模仿创作内容的万能思路

相比0.1版本,0.3版本创作的标题好了不少,但是我们可以看到0.3版本创作出来的标题还是太夸张了。接下来我将教你:通过与GPT深入交流进而优化Prompt,你在其他地方应该看不到这种优化Prompt的方法。(下面我将输入了0.x版本prompt的GPT称为0.x版GPT)重点步骤1:0.3版GPT创作之后,我们向GPT提问:我觉得这些标题都太夸张了,没关系,我是一名prompt工程师,让我们来慢慢优化,请思考为什么会这样,受哪些我给你的提示的影响?

其他人在问
写精彩脱口秀文本的prompt
以下是关于写精彩脱口秀文本的一些提示: 基本提示可以只是一个单词、短语或表情符号。 更高级的提示可以包括一个或多个图片 URL、多个文本短语以及一个或多个参数。图片 URL 始终位于提示的最前面,以影响完成结果的风格和内容。参数需要放在提示语的末尾。 作为脱口秀编剧,如李继刚,在编写 Oneliner 风格的脱口秀段子时,需注意以下方面: 角色设定:writer 为李继刚,语言为中文。 注意事项:创作对用户的上台表演影响巨大,段子必须包含铺垫和包袱两部分,要有幽默感,能打破预期。预期违背即在段子的结构中,包袱必须是对铺垫的预期违背。 参考示例:可查看
2024-11-19
hello 有什么写新闻采写好用的prompt嘛
以下是一些写新闻采写好用的 prompt 示例: 1. 新闻文章的事实核查员: 角色:你是一个新闻文章的事实核查员。 个人信息: 作者:悟空 版本:0.1 语言:中文 描述:你的工作是确定新闻报道中哪些段落是假的。 目标:首先,你需要能够区分事实和观点。其次,你需要确定事实和观点是否一致。最后,你应该同时呈现事实和观点,使用问号标记哪些观点缺乏事实支持。 约束:你列出的事实可以进行总结,而观点必须原样重述。 技能:首先是区分事实和观点的能力。此外,还包括使用表情符号、缩写、粗体文本和其他格式化技术使内容清晰生动。 工作流程:第一步,逐步列出文本中的事实和观点;第二步,在列举观点之前列举事实的内容;第三步,使用颜文字符号(对,错,疑问)标记与事实不符的观点并提供判断的理由。第四步,进一步解释第三步的推理,并提供类似案。 2. 联网的科普作者: 角色:科普作者 个人信息: 作者:小七姐 版本:1.4 语言:中文 PTC(prompt token count):897 tokens 描述:我是一名资深科普作家,我会用通俗的语言对当然科研领域的新闻消息进行深度的解析和真实性判断 目标:根据用户提供的关键词找到更可信的新闻源,并根据你的专业性对新闻内容进行解读和判断 约束:准确性:判断和生成内容准确无误,判断新闻消息是否反映了科学研究的真实结果,必须有三个以上的内容源交叉验证你的结论。清晰性:文章应该易于理解。记者需要使用清晰、简洁的语言来解释复杂的科学概念和发现。公正 3. 精通中文的专业翻译: 角色:你是一位精通简体中文的专业翻译 曾参与《纽约时报》和《经济学人》中文版的翻译工作,因此对于新闻和时事文章的翻译有深入的理解。我希望你能帮我将以下英文新闻段落翻译成中文,风格与上述杂志的中文版相似。 规则:翻译时要准确传达新闻事实和背景。保留特定的英文术语或名字,并在其前后加上空格,例如:"中 UN 文"。分成两次翻译,并且打印每一次结果:1.根据新闻内容直译,不要遗漏任何信息;2.根据第一次直译的结果重新意译,遵守原意的前提下让内容更通俗易懂,符合中文表达习惯 初始化:本条消息只需要回复 OK,接下来的消息我将会给你发送完整内容,收到后请按照上面的规则打印两次翻译结果。
2024-11-19
产品经理功能设计prompt
以下是为您整理的关于产品经理功能设计的相关 prompt: 创建客户旅程:帮您写一段客户旅程,该产品功能为{功能描述},用户画像是{用户特征描述,如年龄、性别等};为{具有功能的产品}创建针对{受众人口统计,如性别、年龄组等}的客户旅程。客户旅程应该包括用户角色、场景、目标和期望,以及接触点的体验。此外,提供有助于改善客户旅程的机会和问题等见解。 竞争对手分析:帮您分析几个竞争对手,可以列出产品名字;通过研究提供类似产品或功能的公司,分析{产品/功能}的竞争对手。使用表格格式组织调查结果:公司名称|资金来源|投资者|客户|目标市场。 API 集成问题:帮您确定需要哪些 API 来实现以下的功能;请提供在将第三方 API 集成到此特定功能的{产品}中时需要询问的技术问题列表。 用户测试问题:帮您编写一份用户测试问题,实现以下的功能;编写{产品/功能}的用户测试说明,用用户目标和目的代替逐步指导。用相关问题总结说明,以收集用户的反馈。 商业计划书:您的商业目标是{……},为您撰写一份商业计划书,包括想法名称、简短的一句话、目标用户角色、用户要解决的痛点、主要价值主张、销售和营销渠道、收入来源、成本结构、关键活动、关键资源、关键合作伙伴、想法验证步骤、估计的第一年运营成本,以及需要寻找的潜在业务挑战。将结果以 Markdown 形式写在表格中。 写 PRD:您作为一名产品经理,根据{具体需求}撰写一份 PRD。包括主题、介绍、问题陈述、目标和目的、用户故事、技术要求、好处、关键绩效指标、开发风险、结论。 行业洞察分析:对行业现状、趋势和未来发展方向进行深入研究和预测。 方法论专家:精通各类管理和研发方法论,能根据具体情况选择和应用最佳方法。 头脑风暴:团队成员自由提出各种想法和见解,快速产出创意解决方案。 需求文档设计:根据产品特性和用户需求,设计产品需求文档。 功能价值分析:评估产品各项功能的重要性和价值,辅助优化资源配置。 竞品分析报告:对竞争对手的产品进行全面的分析比较,找出优劣势。 流程图/图表设计:直观地呈现业务流程、组织结构或统计数据。 思维导图设计:以树状图形式展示思路和知识框架。 解决方案专家:根据问题分析,提供切实可行的解决方案。 周报生成器:自动化生成工作周报,提高工作效率。 学习 Prompt 提示词可以参考:https://www.promptingguide.ai/zh
2024-11-18
一个 prompt 有 10 段文本内容,怎么标记不同段落的权重
当一个 prompt 有 10 段文本内容时,标记不同段落权重的方法如下: 使用双冒号“::”将提示分成不同部分,并在双冒号后面立即添加一个数字来指定该部分的相对权重。例如,“hot::2 dog”表示单词“hot”比“dog”重要度高出两倍。 在版本 1、2、3 中只接受整数作为权值,版本 4 能接受权值的小数位数。未指定权值时默认为 1。 负数权值可用于提示中以删除或排除不需要的元素,但所有权值的比必须是正数。 改变 tag 权重有多种方式: :数值从 0.1 到 100,低于 1 减弱,大于 1 加强。 括号,权重就重 1.1 倍;每加一层括号就反向减弱 1.1 倍。 小括号权重乘 1.1,如 a;中括号权重除以 1.1;小括号里面直接用冒号写权重也行;反斜杠可以让小括号的权重不生效当做一般字符串处理。 花括号写法,一个花括号权重为 1.05。 提示词其他常用语法:是画到一半的时候开始不画女孩。
2024-11-17
什么是prompt?
Prompt 是您给大模型的文本,用于引发相关输出,通常以问题或指示的形式出现。它可以是一套与大模型交互的语言模板,通过这个模板,您可以输出对大模型响应的指令,明确大模型应该做什么、完成什么任务以及如何处理具体任务,并最终获得期望的结果。大模型的本质是基于语言的概率模型,没有 Prompt 时,大模型随机给出答案,有了 Prompt 则相当于给了一个包含对模型要求、输入和输出限制的模板,让大模型在限制下得到概率最大的答案。此外,Prompt 是给到大模型输入的一段原始输入,能帮助模型更好地理解用户需求并按特定模式或规则进行响应。例如可以设定“假设你是一位医生,给出针对这种症状的建议”,后续对话会按此设定展开,还能在设定中要求模型按一定思路逻辑回答,如思维链(cot),也能让模型按特定格式(如 json)输出,使模型成为输出器。
2024-11-17
用 mj 做文生图,Prompt 模板
以下是使用 MJ 进行文生图的 Prompt 模板: 1. 定主题:明确您需要生成一张什么主题、什么风格、表达什么信息的图。 2. 选择基础模型 Checkpoint:按照主题,找内容贴近的 checkpoint。一般喜欢用模型大佬麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等,效果较好。 3. 选择 lora:在想要生成的内容基础上,寻找内容重叠的 lora,以控制图片效果及质量。可多参考广场上好看的帖子中使用的 lora。 4. ControlNet:用于控制图片中特定的图像,如人物姿态、生成特定文字、艺术化二维码等,属于高阶技能,可后续学习。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语的组合,不用管语法,单词、短语之间用英文半角逗号隔开。 8. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,同样不用管语法,只需单词和短语组合,中间用英文半角逗号隔开。 9. 采样算法:较复杂,一般选 DPM++ 2M Karras 较多。最稳妥的是留意 checkpoint 的详情页上模型作者是否有推荐采样器,使用推荐的采样器更有保障。 10. 采样次数:根据采样器特征,选 DPM++ 2M Karras 后,采样次数一般在 30 40 之间,多了意义不大且慢,少了出图效果差。 11. 尺寸:根据个人喜好和需求选择。 另外,使用 Stability AI 基于 Discord 的媒体生成和编辑工具进行文生图时: 1. 点击链接进入官方 DISCORD 服务器:https://discord.com/invite/stablediffusion 。 2. 进入 ARTISAN 频道,任意选择一个频道。 3. 输入/dream 会提示没有权限,点击链接,注册登录,填写信用卡信息以及地址,点击提交,会免费试用三天,三天后开始收费。 4. 输入/dream 提示词,这部分和 MJ 类似。 5. 和 MJ 手工输入参数不同,可选参数有五类: prompt:提示词,正常文字输入,必填项。 negative_prompt:负面提示词,填写负面提示词,选填项。 seed:种子值,可以自己填,选填项。 aspect:长宽比,选填项。 model:模型选择,SD3,Core 两种可选,选填项。 Images:张数,1 4 张,选填项。完成后选择其中一张。 在 MJ 应用篇儿童绘本制作、人物一致性方面: 1. 生成人物图片:确定人物形象,如“a little girl wearing a yellow floral skirt + 人物动作 + 风格词”,在 mj 中生成直到得到满意的人物图像。垫图 URL + “In the forest,a little girl wearing a yellow floral skirt is playing happily,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”,iw 取值范围,不填写默认 iw = 1,iw 值越大越接近垫的图像,反之更接近提示词。为确保人物一致性,取 iw 2 。 2. 合成人物和场景,垫图并重新生成:使用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐(若画面和谐或 PS 技术足够,也可不用图生图),将合成后的图作为垫图(iw 2),mj 重新生图,如“prompt:垫图 url + Little girl wearing a yellow floral skirt,and her friend brown bear,taking shelter in the cave,rainstorm,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”。 3. 绘本展示。
2024-11-15
LLM是什么,有什么方法能够调优
LLM 即大型语言模型(Large Language Model)。以下是一些调优 LLM 的方法: 1. 改进提示:在上下文中提供基本事实,例如相关文章段落或维基百科条目,以减少模型生成虚构文本的可能性。通过降低概率参数并指示模型在不知道答案时承认(例如,“我不知道”)来配置模型以生成更少样式的响应。在提示中提供问题和答案的组合示例,其中可能知道和不知道的问题和答案。 2. 微调:采用在通用数据集上预训练的模型,复制这个模型,然后以这些学习到的权重为起点,在新的特定领域数据集上重新训练模型。但由于 LLM 规模较大,更新每个权重可能需要很长时间的训练工作,且计算成本较高,所以微调大型语言模型可能不是最佳选择。 3. 参数有效调优:这是一种创新的调优方法,旨在通过仅训练一部分参数来减少微调 LLM 的挑战。这些参数可能是现有模型参数的子集,也可以是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示。参数有效调整非常适合拥有“适度”数量训练数据的场景,例如数百或数千个训练示例。训练数据应以文本到文本格式构建为受监督的训练数据集,数据中的每条记录或行都应包含输入文本(即提示)。 此外,研究发现 GPT4 等 LLM 在一些简单的代数问题上存在表现局限性,例如随着 L 的增加,模型更容易犯计算错误,90%的错误是由于在合并相似项时跳过了步骤。这启发了是否有有效方法训练或微调 LLM 以实现更准确计算能力的研究问题。同时,LLM 在计数方面也存在困难,不仅在转换器架构中难以实现,而且数据集中计数示例的稀缺性也加剧了这个问题。
2024-10-24
prompt调优是干嘛的
Prompt 调优是对给大模型输入的原始输入进行优化和改进的过程,具有以下作用和特点: 1. 帮助模型更好地理解用户需求,并按照特定模式或规则进行响应。 2. 可以设定特定的角色或场景,如“假设你是一位医生,给出针对这种症状的建议”,后续对话将基于此设定展开。 3. 有多种有趣的玩法,例如要求模型按照思维链(cot)的思路逻辑回答,或者让模型按照特定格式(如 json)输出,使模型成为特定的输出器。 4. 提示开发生命周期包括设计初步提示,即制定一个初步的提示,概述任务定义、良好响应的特征以及所需的上下文,并添加规范输入和输出的示例作为改进的起点。 5. 测试提示时要根据测试用例评估模型的响应与预期输出和成功标准是否一致,使用一致的评分标准,如人工评估、与答案标准比较或基于评分标准的模型判断等,以系统性评估性能。 6. 自动提示工程方面,有一些相关的重要主题和关键论文,如使用离线逆强化学习生成与查询相关的提示、引入使用大语言模型优化提示的思想、提出基于梯度引导搜索自动创建各种任务提示的方法、作为轻量级微调替代方案的为自然语言生成任务添加可训练连续前缀、提出通过反向传播学习软提示的机制等。
2024-09-03