Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果调优prompt

Answer

以下是一些调优 prompt 的方法:

  1. 明确具体的描述:使用更具体、细节的词语和短语来表达需求,避免过于笼统。
  2. 添加视觉参考:在 prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。
  3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整整体语气和情感色彩,以生成期望的语境和情绪。
  4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。
  5. 增加约束条件:在 prompt 中添加限制性条件,如分辨率、比例等,避免意外输出。
  6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步完善。
  7. 参考优秀案例:研究 AI 社区流行且有效的 prompt 范例,借鉴写作技巧和模式。
  8. 反复试验、迭代优化:多次尝试不同写法,并根据输出效果反馈持续完善,直至达到理想结果。

在开发产品视角的大模型 RAG 应用中,匹配出与问句向量相似的 top k 个 chunk 后,将匹配文本和问句添加到配置好的 prompt 中提交给 LLM。此阶段可能需要 prompt 工程,选择合适的 prompt 模板。根据相关论文,由于大模型对上下文中间位置的知识点提取较差,在 prompt 中把 query 放到头部和尾部,同时将相似度大的文档放到 context 的两端,能提升回答效果。

在使用 GPT 模仿创作内容时,重点步骤如下:0.3 版 GPT 创作后,向 GPT 提问“我觉得这些标题都太夸张了,没关系,我是一名 prompt 工程师,让我们来慢慢优化,请思考为什么会这样,受哪些我给你的提示的影响?”通过与 GPT 深入交流来优化 prompt 。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何润色或优化 Prompt?

优化和润色提示词(Prompt)对于提高文生图、对话等AI模型的输出质量非常重要。以下是一些可以尝试的方法:1.明确具体的描述使用更具体、细节的词语和短语来描述你想要表达的内容,而不是过于笼统的词语。这样AI更容易准确理解你的需求。1.添加视觉参考在Prompt中插入相关的图片参考,这可以显著提高AI理解你的意图和细节要求的能力。1.注意语气和情感根据需求,用合适的形容词、语气词等调整Prompt的整体语气和情感色彩,让AI能生成出期望的语境和情绪。1.优化关键词组合尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的Prompt描述方式。1.增加约束条件为避免AI产生意料之外的输出,可以在Prompt中添加限制性条件,如分辨率、比例等。1.分步骤构建Prompt将复杂的需求拆解为逐步的子Prompt,引导AI先生成基本结构,再逐步添加细节和完善。1.参考优秀案例研究AI社区流行的、被证明有效的Prompt范例,借鉴其中的写作技巧和模式。1.反复试验、迭代优化通过多次尝试不同的Prompt写法,并根据输出效果反馈持续优化完善,直至达到理想结果。

开发:产品视角的大模型 RAG 应用

匹配出与问句向量最相似的top k个chunk之后,会将匹配出的文本和问句,一起添加到配置好的prompt中,提交给LLM。在这个阶段,可能需要一定的prompt工程,选择最合适的prompt模板。根据论文《Lost in the Middle:How Language Models Use Long Contexts》,大模型对上下文中间位置的知识点提取较差,因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,能提升回答效果。

夙愿:使用 GPT 模仿创作内容的万能思路

相比0.1版本,0.3版本创作的标题好了不少,但是我们可以看到0.3版本创作出来的标题还是太夸张了。接下来我将教你:通过与GPT深入交流进而优化Prompt,你在其他地方应该看不到这种优化Prompt的方法。(下面我将输入了0.x版本prompt的GPT称为0.x版GPT)重点步骤1:0.3版GPT创作之后,我们向GPT提问:我觉得这些标题都太夸张了,没关系,我是一名prompt工程师,让我们来慢慢优化,请思考为什么会这样,受哪些我给你的提示的影响?

Others are asking
imagine prompt
以下是关于图像提示、排列提示和探索提示的相关内容: 图像提示: 将图像添加到提示中,按“/imagine”照常输入,出现提示框后可拖入图片文件或粘贴图片 URL。使用 Midjourney Bot 在私信中上传图像可保护隐私,除非用户有隐身模式,否则图像提示在中途网站上可见。 举例:如阿波罗雕像、复古花图、恩斯特·海克尔的水母等,还包括中途模型版本 4 和 5 的相关示例。同时,将图像裁剪为与最终图像相同的宽高比可获得最佳效果。 排列提示: 排列提示允许您使用单个命令快速生成提示的变体。不同订阅者可创建的作业数量不同,基本订阅者最多 4 个,标准订阅者最多 10 个,Pro 和 Mega 订阅者最多 40 个。 您可以使用排列提示创建涉及中途提示任何部分的组合和排列,包括文本、图像提示、参数或提示权重。排列提示仅在使用快速模式时可用。将选项列表放在大括号{}内以快速创建和处理多个提示变体,例如“/imagine prompt a{red,green,yellow}bird”会创建并处理三个作业。排列提示将在开始处理之前显示确认消息。 探索提示: 时间旅行:不同的时代有不同的视觉风格,如“/imagine prompt<decade>cat illustration 1700 年代1700s”等。 表情:使用情感词语赋予人物个性,如“/imagine prompt<emotion>cat 决定Determined”等。 变得多彩:全方位的可能性,如“/imagine prompt<color word>colored cat 千禧粉红Millennial Pink”等。 环境探索:不同的环境可以设定独特的情绪,如“/imagine prompt<location>cat 苔原Tundra”等。
2025-01-26
如何优化自己的prompt,提升AI结果输出的稳定性
以下是优化自己的 prompt 以提升 AI 结果输出稳定性的方法: 1. 明确具体的描述:使用更具体、细节的词语和短语来表达需求,避免过于笼统。 2. 添加视觉参考:在 prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩,以生成期望的语境和情绪。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的描述方式。 5. 增加约束条件:在 prompt 中添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、有效的 prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 此外,如果提示词效果不符合预期,可以和 AI 再进行几轮对话来调整输出结果。最终通过询问 AI“怎么样修改现有的 Prompt,可以让你稳定输出当前的预期”来进行 prompt 的迭代。得到 prompt 后,可以新开一个 AI 对话,把 prompt 输入到对话中,开始验证其可用性和稳定性。例如输入 MECE 法则进行测试。
2025-01-24
用AI总结长文的prompt怎么写比较好
以下是关于用 AI 总结长文的一些提示词编写建议: 1. 单人发言版:基于李继刚老师的“通知消息整理助手”修改“文字排版大师”的 Prompt,重点 Prompt 语句需标出。 2. 多人发言版: 明确跟 GPT 说明需要其帮忙总结文字内容。 将提示词和文字原文发送给 GPT,等待其输出完毕后复制粘贴到文本编辑器中,整理并删掉无关内容,替换掉不美观的符号。 3. 法律相关: 格式:【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】 讲清楚背景和目的,例如律师处理交通事故案件时应清晰描述案件事实、法规等。 学会提问,使用清晰、具体的语言,避免模糊表述,了解 AI 工作原理和限制。 拆解工作流程,将复杂任务分解成更小、更具体的环节。 4. 通用写作方面: 第一部分:说清楚要解决的问题及背景,可能导致的损失。 第二部分:以案例引入,写明案号、案件事实经过、裁判结果、关键依据等要点。 第三部分:对案例进一步分析,写明注意关键点,不给建议。 第四部分:给出具体操作建议,包括事前、事中、事后的注意事项和补救措施。 第五部分:结语及作者宣传。 文章结构需有结构化理解,所有结论应有案例基础,不能违反法律规定,文字简练精准,信息密度足够,建议具体细致且易于操作。
2025-01-24
12个prompt 框架
以下是 12 种 Prompt 框架: 1. Instruction(指令):即希望 AI 执行的具体任务,如翻译或写一段文字。 2. Context(背景信息):给 AI 更多背景信息,引导模型做出更贴合需求的回复。 3. Input Data(输入数据):告知模型需要处理的数据。 4. Output Indicator(输出引导):告知模型输出的类型或风格。 5. Capacity and Role(能力和角色):ChatGPT 应扮演的角色。 6. Insight(见解):提供请求背后的见解、背景和上下文。 7. Statement(声明):说明要求 ChatGPT 做什么。 8. Personality(个性):希望 ChatGPT 以何种风格、个性或方式回应。 9. Experiment(实验):请求 ChatGPT 回复多个示例。 10. Background(背景):说明背景,为 ChatGPT 提供充足信息。 11. Role(角色):希望 ChatGPT 扮演的角色。 12. Objectives(目标):希望实现的目标。 此外,还有以下框架: 1. TASK(任务):定义特定任务。 2. ACTION(行动):描述需要做的事情。 3. GOAL(目标):解释最终目标。 4. INPUT(输入):描述信息或资源。 5. STEPS(步骤):询问详细的步骤。 6. EXPECTATION(期望):描述所需的结果。 7. REQUEST(请求):描述您的要求。 8. Key Result(关键结果):要什么具体效果,试验并调整。 9. Evolve(试验并改进):三种改进方法自由组合,包括改进输入、改进答案、重新生成。 10. CONTEXT(上下文背景):为对话设定舞台。 11. OBJECTIVE(目的):描述目标。 12. SCENARIO(方案):描述场景。 同时,还有一些特定的框架,如 ICIO 框架、CRISPE 框架、BROKE 框架等。
2025-01-23
1.AI搜索的prompt怎么写 2.AI搜论文的prompt怎么写比较好
以下是关于 AI 搜索和 AI 搜论文的 prompt 写作的相关指导: 对于 AI 搜索的 prompt 写作: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述您的需求,避免过于笼统。 2. 添加视觉参考:若可能,在 prompt 中插入相关图片参考,以提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:为避免意外输出,添加如分辨率、比例等限制性条件。 6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步完善。 7. 参考优秀案例:研究 AI 社区流行且有效的 prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同写法,并根据输出效果反馈持续优化。 对于 AI 搜论文的 prompt 写作,您可以参考以下要点: 1. 设定角色为资深学术研究者,明确具备高效的学术论文阅读、总结能力。 2. 遵循“二八原则”进行论文总结。 3. 输出阅读的总结文字,包括列出论文的明确方法论、经过验证的结论等关键信息。 4. 采用结构化的内容组织方式,如使用编号、子标题和列表。 5. 按照规定概述内容解读结语的结构写作,先概述规定内容,然后解读具体内容,最后以结语结束。 6. 结合案例和挑战,增强说服力并提供解决方案。 7. 引入法规内容和实际操作案例,提供详细解释和建议。 8. 使用商业术语,确保专业性和针对性。 9. 注意文章结构,标题要开门见山、切中要害并引起目标群体悬念;第一部分说清楚要解决的问题及背景和可能导致的损失;第二部分以案例引入;第三部分对案例进一步分析;第四部分给出具体操作建议,包括事前、事中、事后的注意事项和措施。 总之,编写高质量的 prompt 需要不断实践和总结经验,熟悉 AI 模型的能力边界,保持开放思维并尝试创新描述方式。
2025-01-22
怎么在coze的智能体总加入一个使用MARKDOWN编写的代码的prompt?
在 Coze 的智能体中加入使用 Markdown 编写的代码的 prompt 可以参考以下方法: 首先,了解相关的任务和目标,比如像实现输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。为达到这一效果,大模型对话产品通常需要完成网页爬取、内容总结、二维码生成、卡片样式生成等关键步骤。 在编写 prompt 时,可以发现新的词生卡 Prompt 组织方法,把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”“字体规范”“颜色规范”的独立模块,并结合“内容结构”进行要求提示。这种提示词组织方式具有模型通用性、提示简易性和生成稳定性等显著优势。 对于刚入门的朋友,首推 LangGPT 结构化提示词,直观易懂,可以快速上手。对于想要进阶的用户,一方面可以继续选择 LangGPT,另一方面如有额外精力和好奇心,不妨尝试刚哥推崇的 Lisp 伪代码格式,有助于精炼提示词和提升对措辞理解、概念认知的能力。但需要注意的是,真正重要的不是提示词的外在形式,而是内容是否与 AI 的“理解机制”相契合。同时,在实际应用中,还需要经过多次调试,并根据测试 bug 微调提示词,直至稳定运行。
2025-01-19
如何调优大模型
以下是关于调优大模型的一些方法: 1. 更换大模型:比如从 ChatGLM26B 替换成 baichuan213b,针对特定场景,后者性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果最优。 4. 对文档名称进行处理:人工对文件重命名,上传相同文件构建知识库,同时在构建时勾选【开启中文标题加强】选项。重命名文件对结果提升不明显,但勾选该选项后,回答的无关信息减少,效果有所提升。 5. Prompt 阶段:需要一定的 prompt 工程,选择最合适的 prompt 模板。根据相关论文,把 query 放到头部和尾部,同时把相似度大的文档放到 context 的两端,能提升回答效果。 6. LLM 生成答案:大模型本身的性能是最大影响因素。选择大模型时要在成本和收益间找最佳平衡点,有条件还可对模型进行微调以更匹配自身场景。
2024-12-12
rag调优
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合信息检索和文本生成能力的技术,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息来制作精确和连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。 LLM 需要 RAG 进行检索优化的原因在于 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调模型的接受能力不高且慢,甚至有丢失原有知识的风险。 3. 输出难以解释和验证,最终输出内容黑盒且不可控,可能受到幻觉等问题干扰。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,大模型输出出错的可能大大降低。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 性能提升的策略和方法包括: 1. 优化索引: 按照子部分索引,将文本块再拆分为较小的文本(例如单句),然后对这些小块进行多次索引,适用于有多个主题、有冲突信息的复杂长文本信息。 按照文本框可以回答的问题索引,让 LLM 生成与拆分的文本块相关的假设性问题,并将这些问题用于索引,适用于用户没有提出非常明确问题的情况,可减少模糊性。 按照文本块的摘要进行索引,适用于文本框中有多余信息或者与用户查询无关细节的情况。 2. 重排 rerank:搜到相似信息后选择合适的信息,大部分场景下选择最相似的即可。
2024-12-05
LLM是什么,有什么方法能够调优
LLM 即大型语言模型(Large Language Model)。以下是一些调优 LLM 的方法: 1. 改进提示:在上下文中提供基本事实,例如相关文章段落或维基百科条目,以减少模型生成虚构文本的可能性。通过降低概率参数并指示模型在不知道答案时承认(例如,“我不知道”)来配置模型以生成更少样式的响应。在提示中提供问题和答案的组合示例,其中可能知道和不知道的问题和答案。 2. 微调:采用在通用数据集上预训练的模型,复制这个模型,然后以这些学习到的权重为起点,在新的特定领域数据集上重新训练模型。但由于 LLM 规模较大,更新每个权重可能需要很长时间的训练工作,且计算成本较高,所以微调大型语言模型可能不是最佳选择。 3. 参数有效调优:这是一种创新的调优方法,旨在通过仅训练一部分参数来减少微调 LLM 的挑战。这些参数可能是现有模型参数的子集,也可以是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示。参数有效调整非常适合拥有“适度”数量训练数据的场景,例如数百或数千个训练示例。训练数据应以文本到文本格式构建为受监督的训练数据集,数据中的每条记录或行都应包含输入文本(即提示)。 此外,研究发现 GPT4 等 LLM 在一些简单的代数问题上存在表现局限性,例如随着 L 的增加,模型更容易犯计算错误,90%的错误是由于在合并相似项时跳过了步骤。这启发了是否有有效方法训练或微调 LLM 以实现更准确计算能力的研究问题。同时,LLM 在计数方面也存在困难,不仅在转换器架构中难以实现,而且数据集中计数示例的稀缺性也加剧了这个问题。
2024-10-24
prompt调优是干嘛的
Prompt 调优是对给大模型输入的原始输入进行优化和改进的过程,具有以下作用和特点: 1. 帮助模型更好地理解用户需求,并按照特定模式或规则进行响应。 2. 可以设定特定的角色或场景,如“假设你是一位医生,给出针对这种症状的建议”,后续对话将基于此设定展开。 3. 有多种有趣的玩法,例如要求模型按照思维链(cot)的思路逻辑回答,或者让模型按照特定格式(如 json)输出,使模型成为特定的输出器。 4. 提示开发生命周期包括设计初步提示,即制定一个初步的提示,概述任务定义、良好响应的特征以及所需的上下文,并添加规范输入和输出的示例作为改进的起点。 5. 测试提示时要根据测试用例评估模型的响应与预期输出和成功标准是否一致,使用一致的评分标准,如人工评估、与答案标准比较或基于评分标准的模型判断等,以系统性评估性能。 6. 自动提示工程方面,有一些相关的重要主题和关键论文,如使用离线逆强化学习生成与查询相关的提示、引入使用大语言模型优化提示的思想、提出基于梯度引导搜索自动创建各种任务提示的方法、作为轻量级微调替代方案的为自然语言生成任务添加可训练连续前缀、提出通过反向传播学习软提示的机制等。
2024-09-03