以下是一些调优 prompt 的方法:
在开发产品视角的大模型 RAG 应用中,匹配出与问句向量相似的 top k 个 chunk 后,将匹配文本和问句添加到配置好的 prompt 中提交给 LLM。此阶段可能需要 prompt 工程,选择合适的 prompt 模板。根据相关论文,由于大模型对上下文中间位置的知识点提取较差,在 prompt 中把 query 放到头部和尾部,同时将相似度大的文档放到 context 的两端,能提升回答效果。
在使用 GPT 模仿创作内容时,重点步骤如下:0.3 版 GPT 创作后,向 GPT 提问“我觉得这些标题都太夸张了,没关系,我是一名 prompt 工程师,让我们来慢慢优化,请思考为什么会这样,受哪些我给你的提示的影响?”通过与 GPT 深入交流来优化 prompt 。
优化和润色提示词(Prompt)对于提高文生图、对话等AI模型的输出质量非常重要。以下是一些可以尝试的方法:1.明确具体的描述使用更具体、细节的词语和短语来描述你想要表达的内容,而不是过于笼统的词语。这样AI更容易准确理解你的需求。1.添加视觉参考在Prompt中插入相关的图片参考,这可以显著提高AI理解你的意图和细节要求的能力。1.注意语气和情感根据需求,用合适的形容词、语气词等调整Prompt的整体语气和情感色彩,让AI能生成出期望的语境和情绪。1.优化关键词组合尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的Prompt描述方式。1.增加约束条件为避免AI产生意料之外的输出,可以在Prompt中添加限制性条件,如分辨率、比例等。1.分步骤构建Prompt将复杂的需求拆解为逐步的子Prompt,引导AI先生成基本结构,再逐步添加细节和完善。1.参考优秀案例研究AI社区流行的、被证明有效的Prompt范例,借鉴其中的写作技巧和模式。1.反复试验、迭代优化通过多次尝试不同的Prompt写法,并根据输出效果反馈持续优化完善,直至达到理想结果。
匹配出与问句向量最相似的top k个chunk之后,会将匹配出的文本和问句,一起添加到配置好的prompt中,提交给LLM。在这个阶段,可能需要一定的prompt工程,选择最合适的prompt模板。根据论文《Lost in the Middle:How Language Models Use Long Contexts》,大模型对上下文中间位置的知识点提取较差,因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,能提升回答效果。
相比0.1版本,0.3版本创作的标题好了不少,但是我们可以看到0.3版本创作出来的标题还是太夸张了。接下来我将教你:通过与GPT深入交流进而优化Prompt,你在其他地方应该看不到这种优化Prompt的方法。(下面我将输入了0.x版本prompt的GPT称为0.x版GPT)重点步骤1:0.3版GPT创作之后,我们向GPT提问:我觉得这些标题都太夸张了,没关系,我是一名prompt工程师,让我们来慢慢优化,请思考为什么会这样,受哪些我给你的提示的影响?