Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

stablediffusion和midjourney有啥关系

Answer

Stable Diffusion 和 Midjourney 是 AI 绘画领域的两个重要模型,它们有以下关系和区别:

  • 关系:都是用于 AI 绘画的工具。
  • 区别:
    • Stable Diffusion 是完全开源的项目,包括模型、代码、训练数据、论文、生态等全部开源,能快速构建强大繁荣的上下游生态,吸引了众多 AI 绘画爱好者加入,推动 AIGC 领域的发展。但它需要较好的电脑配置,尤其是显卡。
    • Midjourney 操作简单方便,创作内容丰富,但需要科学上网并且付费,每月使用费大概在 200 多元。
Content generated by AI large model, please carefully verify (powered by aily)

References

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

Stable Diffusion(简称SD)是AI绘画领域的一个核心模型,能够进行文生图(txt2img)和图生图(img2img)等图像生成任务。与Midjourney不同的是,Stable Diffusion是一个完全开源的项目(模型、代码、训练数据、论文、生态等全部开源),这使得其能快速构建强大繁荣的上下游生态(AI绘画社区、基于SD的自训练AI绘画模型、丰富的辅助AI绘画工具与插件等),并且吸引了越来越多的AI绘画爱好者加入其中,与AI行业从业者一起推动AIGC领域的发展与普惠。也正是Stable Diffusion的开源属性、繁荣的上下游生态以及各行各业AI绘画爱好者的参与,使得AI绘画火爆出圈,让AI绘画的影响触达到了全球各行各业人们的生活中。可以说,AI绘画的ToC普惠在AIGC时代的早期就已经显现,这是之前的传统深度学习时代从未有过的。而ToC普惠也是最让Rocky兴奋的AIGC属性,让Rocky相信未来的十五年会是像移动互联网时代那样,充满科技变革与机会的时代。Rocky从传统深度学习时代走来,与图像分类领域的ResNet系列、图像分割领域的U-Net系列以及目标检测领域的YOLO系列模型打过多年交道,Rocky相信Stable Diffusion是AI绘画领域的“YOLO”。Stable Diffusion生成图片示例

如何使用 AI 来做事:一份带有观点的指南

1.Stable Diffusion,它是开源的,你可以在任何高端计算机运行。开始需要付出努力,因为你必须学会正确制作提示,但一旦你做到了,它可以产生很好的结果。它特别适合将AI与来自其他源的图像结合在一起。[如果你走这条路,这里有一个很好的Stable Diffusion指南(请务必阅读第1部分和第2部分)。](https://www.jonstokes.com/p/stable-diffusion-20-and-21-an-overview)2.DALL-E,来自OpenAI,已纳入Bing(您必须使用创意模式)和Bing图像创建器。这个系统很可靠,但比Midjourney差。3.Midjourney,这是2023年中期最好的系统。它的学习曲线最低:只需键入“thing-you-want-to-see --v 5.2”(末尾的--v 5.2很重要,它使用最新的模型),你就会得到一个很好的结果。Midjourney需要Discord。这是[使用Discord的指南](https://www.pcworld.com/article/540080/how-to-use-discord-a-beginners-guide.html)。4.Adobe Firefly内置在各种Adobe产品中,但在质量方面落后于DALL-E和Midjourney。然而,虽然其他两个模型还不清楚他们用于训练人工智能的源图像,但Adobe宣布它只使用它有权使用的图像。以下是它们的比较(每张图像都有模型标记):

【SD】软件原理傻瓜级理解

目前市面上主流的AI绘图软件有两个:Stable Diffusion和Midjourney。Stable Diffusion的优势在于开源免费、可以本地化部署、创作自由度很高,缺点是需要比较好的电脑配置,尤其是显卡;Midjourney的优势是操作简单方便,创作内容相当丰富,但是需要科学上网并且付费,目前的使用费大概在每月200多元左右。如果可以融入工作流,这个月费也不算高,毕竟它带来的效率是惊人的,当然前期想要了解玩一玩的,可以试试Stable Diffusion,关于具体的安装方法可以去看看B站的【秋葉aaaki】这个Up主的视频。很多还没有接触过AI绘画的朋友会觉得这个东西很神秘,哪怕装好了软件也会看着一堆英文和参数而一头雾水。今天我就用最傻瓜的方式来讲述一下Stable Diffusion的工作原理和基本功能。

Others are asking
Midjourney 学习教程
以下是学习 Midjourney 的教程: 1. 注册相关账号:注册 Discord 账号并加入 Midjourney 服务器,Midjourney 也有在线版本可直接使用。 2. 掌握提示词结构:了解 Prompt 的基本组成部分,如“主体”“媒介”“环境”等,学习构建有效的 Prompt 来生成理想图像。 3. 熟悉常用参数和命令:学习 Midjourney 的各种参数设置,如放大、细节等,掌握常用命令,如/imagine、/test 等。 4. 针对不同场景练习创作:尝试针对插画、游戏、框架等不同场景进行创作练习,通过实践提高 Prompt 编写和图像生成技巧。 5. 学习他人作品并模仿:观察学习其他用户的优秀作品,了解其 Prompt 技巧,通过模仿提高创作水平。 此外,还可以通过以下方式学习 Midjourney: 把 Midjourney 的官网说明书喂给 GPT,让其根据说明了解机制和结构,给出适合的提示词。 像案例中的二师兄一样,加入相关社群,如 Prompt battle 社群,打磨文生图提示词学习。 总的来说,系统学习 Prompt 编写技巧、熟悉 Midjourney 的功能,并通过大量实践创作,同时善于学习他人经验,是学习 Midjourney 的有效方法。但需注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-06
Midjourney+sd可以生成服装模特视频么
Midjourney 和 SD 可以用于生成服装模特视频。以下是一些常见的方法: 1. 方法 1【MJ 出图 + AI 视频软件】:使用 Midjourney 垫图➕描述出图,再去视频工具中转成视频。下载项里的深度图,打开 Midjourney 官网(https://www.midjourney.com/)上传深度图。局部重绘有难度,最终方式可以是分开画,比如先画个被关着的红衣服女孩,再画个二战德国士兵的背影,再合成后交给 MJ。 2. 方法 3【SD 出图 + AI 视频软件】:在 SD 的 controlnet 中上传原图,选择深度,文生图生成图片,再把生成好的图放在 AI 视频工具中进行视频生成。 同时,您还可以参考以下视频工具建议: 。另外,使用 Dreamina 图片生成功能(https://dreamina.jianying.com/aitool/image/generate)上传深度图,选择适应画布比例并填写描述,也可以实现深度图出图和出视频。
2025-01-06
怎么学习Midjourney和stable defussion
以下是关于学习 Midjourney 和 Stable Diffusion 的一些建议: Midjourney: 优势:操作简单方便,创作内容丰富,但需要科学上网并且付费,月费约 200 多元。若只是前期了解,可先尝试。 学习途径:只需键入“thingyouwanttoseev 5.2”(注意末尾的v 5.2 很重要,它使用最新的模型),就能得到较好的结果。Midjourney 需要 Discord,可参考。 Stable Diffusion: 优势:开源免费,可以本地化部署,创作自由度高,但需要较好的电脑配置,尤其是显卡。 学习途径: 关于具体的安装方法可以去看看 B 站的【秋葉 aaaki】这个 Up 主的视频。 可以参考,了解其工作原理和基本功能。 如果走 Stable Diffusion 这条路,这里有一个很好的指南(请务必阅读第 1 部分和第 2 部分) 此外,在学习 AI 绘画这段时间,发现 AI 绘画并不会完全替代设计师,而是可以让出图质量更好,效率更高。比如可以用 Midjourney 生成线稿,PS 稍微做一些修正,再用 ControlNet 控制,Stable Diffusion 上色,多套 AI 组合拳,可以快速生成效果惊艳的图。
2025-01-06
midjourney的基础使用教程
以下是 Midjourney 的基础使用教程: 一、进入官网 可以选择桌面端下载或浏览器使用。为方便起见,可选择浏览器使用,若想在桌面端使用,可根据电脑选择对应版本进行下载。点击右上角的浏览器使用,首次使用需注册,选择企业用户注册,输入对应名称和手机号即可注册成功(目前无需填写企业信息),注册完成后进入具体操作页面。 二、基础操作 点击开始想象按钮,将生成的提示词粘贴在下方,直接点击回车,耐心等待几十秒即可看到生成的图片。一次性会生成 4 张图片,可选择喜欢的图片点击,进入后可对图片进行相应操作。 三、创作调整 1. 风格化:数字越大越艺术,但并非越大越好,取决于创作,人像不用调整过高。 2. 怪异化:数字越大越奇怪,可不碰。 3. 多样化:数字越大结果越意想不到,越低越接近提示词。建议新手一开始不用怪异和多样化,可做实验测试。 4. 模式:默认标准,朴实 raw 会让图片质感更好,依个人喜好选择。 5. 版本:默认最高 V6,建议选最高,二次元可选 NIJI。 6. 生成图片的速度:默认快速,速度越快对支付套餐要求越高。 四、图片详情 1. 这边是写的提示词,右上可下载对应图片。 2. 可进行参数调整,参数详解参考下方「参数详解」。对图片进行调整时,注意任何点击都会重新生成图片,免费用户会提示超出套餐,所以别乱点。最右侧是所有生成图片的缩略图。 学习 Midjourney 的步骤 1. 注册 Discord 账号并加入 Midjourney 服务器,Midjourney 也有在线版本可直接使用。 2. 掌握 Midjourney 的提示词(Prompt)结构,了解其基本组成部分,如“主体”“媒介”“环境”等,学习构建有效的 Prompt 来生成理想图像。 3. 熟悉 Midjourney 的常用参数和命令,如放大、细节等参数设置,掌握常用命令如/imagine、/test 等。 4. 针对不同应用场景练习创作,如插画、游戏、框架等,通过实践提高 Prompt 编写和图像生成技巧。 5. 学习他人的优秀作品并进行模仿,观察和学习其他用户的 Prompt 技巧,通过模仿练习提高创作水平。 总的来说,系统学习 Prompt 编写技巧、熟悉 Midjourney 的功能,并通过大量实践创作,同时善于学习他人经验,可有效提升 Midjourney 的使用水平和创作能力。
2024-12-26
MidJourney的地址
Midjourney 的官网地址为:https://www.midjourney.com 。在官网上,已向生成 100 张以上图片的用户开放使用权限。登录后,左侧为各种页面入口,顶部是生成入口(prompt 框)和搜索框。在社区作品、创作(Create)以及组织(Organize)页面中,可随时使用 prompt 框和搜索框,方便查找参考和进行创作,无需频繁切换页面。还可以通过点击 prompt 框最右侧的图标来设置常用参数的默认值,包括画面比例和个性化模型开关。在官网上使用图片参考也变得简单直观,只需点击 prompt 框最左侧的图片按钮,或直接拖入图片即可,官网会记录所有使用过的图片,方便调用或删除。当鼠标悬停在图片上时,会看到 3 个小图标,从左到右分别是角色参考、风格参考、整图参考,点击相应的图标即可,如需多种参考逻辑可按住 shift 键点选多个图标。创作页面最大亮点是 prompt 的复用,可直接点击画面描述或复制描述词到 prompt 框中,也可以直接点击下方横列菜单里的按钮,将包括参考图在内的完整 prompt 替换当前的 prompt。点击图片则会进入单图调整模式,在 discord 中常用的操作指令都被集中在了右下角的按键中,并且上线了全新的 Editor 编辑器功能。
2024-12-17
midjourney的提示词
以下是关于 Midjourney 提示词的相关内容: Midjourney V6 更新风格参考命令 2.0 中,将 sref 和 URL添加到提示的末尾,可利用风格参考图像的视觉风格创建新图像。例如:“A young man stands at the edge of the forest cliff,looking over the ocean below.sref https://s.mj.run/9DFZsjKwkyEv 6.0”。使用“风格参考”图像的魔力在于 Midjourney 会努力捕捉参考图像的美学特质而非语义内容,新提示本身没有美学内容有助于 sref 的执行。 学习 Midjourney 可以采取以下步骤: 1. 注册 Discord 账号并加入 Midjourney 服务器,Midjourney 也有在线版本可直接使用。 2. 掌握 Midjourney 的提示词(Prompt)结构,了解其基本组成部分,如“主体”“媒介”“环境”等,学习构建有效的 Prompt 来生成理想图像。 3. 熟悉 Midjourney 的常用参数和命令,如放大、细节等参数设置,掌握常用命令如 /imagine、/test 等。 4. 针对不同应用场景练习创作,如插画、游戏、框架等,通过实践提高 Prompt 编写和图像生成技巧。 5. 学习他人的优秀作品并进行模仿,观察和学习其他用户的 Prompt 技巧,通过模仿练习提高创作水平。 如果您有疑问或者需要帮助,可以尝试使用以下命令: 1. /help 显示有关 Midjourney Bot 的有用基本信息和提示。 2. /ask 获取问题的答案。 如果需要更多帮助,可以访问 Midjourney Discord 上的 频道。Midjourney Bot 可以通过输入指令与其进行交互,指令可用于创建图像、更改默认设置、监视用户信息等。提示(Prompt)是 Midjourney Bot 解释为生成图像的短文本短语,Bot 将提示中的单词和短语分解成较小的片段作为标记,这些标记与其训练数据比较后用于生成图像,精心制作的提示可帮助生成独特和令人兴奋的图像。Bot 频道是 Midjourney Bot 被允许处理斜杠指令的 Discord 频道。 网站原文请查看:
2024-12-16
StableDiffusion 云服务
以下是关于 StableDiffusion 云服务的相关信息: 如果您的电脑配置较低,也可以通过云平台畅玩 StableDiffusion 并生成好看的图片。这里推荐使用“青椒云”,您可以点击以下链接下载:http://account.qingjiaocloud.com/signup?inviteCode=R0JJ9CHY 。 云平台的使用方法如下: 1. 点击上述链接,注册账号。 2. 下载并安装后,登录注册好的账户。 3. 点击右上角的个人中心进行实名认证。 4. 实名认证后回到主界面,点击新增云桌面。想玩 StableDiffusion 可以选“AIGC 尝鲜”,新注册一般会有优惠券,可免费试用。大多数云平台每小时费用约 2 3 元。 5. 在新弹出的框框中点击“开机”按钮,稍等之后点击“进入桌面”。进入桌面后弹出的全部框框可直接关掉。 6. 点击新打开桌面的“此电脑”,在 C 盘里找到 SD 的根目录,点击“A 启动器.exe”。 7. 点击右下角的“一键启动”即可进入 SD。 8. 用完云平台记得关机,否则会持续计费。 另外,SD 是 Stable Diffusion 的简称,它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,主要用于根据文本描述产生详细图像。其代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。 如果您要在本地安装部署 ComfyUI 副本,电脑硬件要求如下: 1. 系统:Windows 7 以上。 2. 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 3. 硬盘留有足够空间,最低 100G 起步(包括模型)。 同时,您需要依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。具体下载地址如下: 1. Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 2. VSCode:https://code.visualstudio.com/Download 。 3. Git:https://gitscm.com/download/win 。 4. 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。
2024-11-23
stablediffusion在线webui如何开发
开发 Stable Diffusion 在线 Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。尝试生成图像,观察不同参数对结果的影响。学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。学习如何导入自定义模型、VAE、embedding 等文件。掌握图像管理、任务管理等技巧,提高工作效率。 在完成了依赖库和 repositories 插件的安装后,还需要进行以下配置: 将 Stable Diffusion 模型放到/stablediffusionwebui/models/Stablediffusion/路径下。然后到/stablediffusionwebui/路径下,运行 launch.py 即可。运行完成后,将命令行中出现的输入到本地网页中,即可打开 Stable Diffusion WebUI 可视化界面。进入界面后,在红色框中选择 SD 模型,在黄色框中输入 Prompt 和负向提示词,在绿色框中设置生成的图像分辨率(推荐设置成 768x768),然后点击 Generate 按钮进行 AI 绘画。生成的图像会展示在界面右下角,并保存到/stablediffusionwebui/outputs/txt2imgimages/路径下。 如果选用 Stable Diffusion 作为 AIGC 后台,需要注意: DallE 缺乏室内设计能力,MidJourney 出图效果好但无法基于现实环境重绘,Stable Diffusion 出图成功率较低,但可调用 controlnet 的 MLSD 插件捕捉现实环境线条特征做二次设计。安装 Stable Diffusion WEB UI 后,修改 webuiuser.bat 文件加上 listen 和 API 参数,让 Stable Diffusion 处于网络服务状态。代码如下: @echo off set PYTHON= set GIT= set VENV_DIR= set COMMANDLINE_ARGS=xformers nohalfvae listen api git pull call webui.bat 让 Stable Diffusion 具有 AI 室内设计能力的步骤: 1. 下载室内设计模型(checkpoint 类型),放到 stable diffusion 目录/models/stablediffusion 下面。 2. 安装 controlnet 插件,使用 MLSD 插件,实现空间学习。 通过 API 方式让前端连接到 Stable Diffusion 后台的具体代码在前端开发详细展开,API 参考文档可选读。
2024-11-01
stablediffusion3.5最新资讯
以下是关于 Stable Diffusion 3.5 的最新资讯: Stability AI 刚刚发布了 Stable Diffusion 3.5,其中 8B 的 Large 和 Turbo 已经开放,2B 的 Medium 会在 10 月 29 日发布。 ComfyUI 官方提供了示例工作流,尤其对于 RAM 低于 32GB 的用户,comfyanonymous 制作了额外的 scaled fp8 clip。 如何使用:https://blog.comfy.org/sd35comfyui/ 工作流:https://huggingface.co/ComfyOrg/stablediffusion3.5fp8/tree/main scaled fp8 clip:https://huggingface.co/ComfyOrg/stablediffusion3.5fp8/blob/main/sd3.5_large_fp8_scaled.safetensors 10 月 29 日将公开发布 Stable Diffusion 3.5 Medium。不久之后,ControlNets 也将推出,为各种专业用例提供先进的控制功能。 Stability AI 社区许可证关键组成部分: 免费用于非商业用途:个人和组织可以免费将该模型用于非商业用途,包括科学研究。 免费用于商业用途(年收入高达 100 万美元):初创公司、中小型企业和创作者可以免费将该模型用于商业目的,只要其年总收入低于 100 万美元。 输出的所有权:保留所生成媒体的所有权,不受限制性许可影响。 对于年收入超过 100 万美元的组织,请在此处联系咨询企业许可证:https://stability.ai/enterprise 访问模型的更多方式: 稳定性 AI API:https://platform.stability.ai/docs/apireferencetag/Generate/paths/~1v2beta~1stableimage~1generate~1sd3/post Replicate 复制:https://replicate.com/stabilityai/stablediffusion3.5large ComfyUI 舒适用户界面:http://blog.comfy.org/sd35comfyui/ DeepInfra 深基础设施 Stability AI 相信安全、负责任的人工智能实践,并采取审慎措施确保诚信从开发的早期阶段开始。这意味着已经并将继续采取合理的措施来防止不良行为者滥用 Stable Diffusion 3.5。有关安全方法的更多信息,请访问稳定安全页面:https://stability.ai/safety
2024-10-23
请用StableDiffusion生成一幅画,钻井现场,旁边的风景很优美,以柳江盆地的地形和风景为主
很抱歉,目前我无法直接使用 StableDiffusion 为您生成这幅画。但您可以通过以下步骤来实现: 1. 准备好 StableDiffusion 软件,并确保您的计算机满足其运行要求。 2. 了解 StableDiffusion 的相关设置和参数调整方法。 3. 在输入描述中详细准确地描述您想要的画面,如“钻井现场,旁边的风景很优美,以柳江盆地的地形和风景为主”,同时可以补充更多细节,比如光线、色彩、物体的具体特征等,以获得更符合您期望的结果。 希望这些信息对您有所帮助。
2024-09-03
解释AI大模型和各种AI网站的关系
AI 大模型是一种具有大规模参数和强大能力的模型。 AI 网站通常会提供各种与 AI 相关的服务和工具,例如: 1. 提供多种 AI 生成工具,如输入简单提示词就能创作音乐的 so no 音频生成工具,能创建个人 AI 智能体的豆包,输入文本可生成播客的 Notebook LN 等。 2. 包含模型社区,为大模型提供数据、企业模型和算力服务,有按任务划分的模型库、数据集和在线应用供体验。 3. 拥有 AI 工程平台,对模型和应用有要求,像 define 是典型的工程平台,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。 总之,AI 网站是展示和应用 AI 大模型的平台,通过这些网站,用户可以接触和使用到基于 AI 大模型开发的各种功能和服务。
2025-01-07
如何理解AI网站和AI大模型的关系
AI 网站和 AI 大模型之间存在着密切的关系。 首先,AI 大模型是人工智能领域的核心技术之一。它是基于深度学习等方法构建的具有大规模参数和强大能力的模型,例如能够处理自然语言、生成文本、进行语义理解等。 生成式 AI 生成的内容称为 AIGC。相关技术名词包括: 1. AI 即人工智能。 2. 机器学习是电脑找规律学习,涵盖监督学习(有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据无标签,算法自主发现规律,如聚类)、强化学习(从反馈中学习,最大化奖励或最小化损失,类似训小狗)。 3. 深度学习参照人脑,有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。 4. LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成。 技术方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。 AI 网站通常是展示和应用 AI 大模型的平台。通过网站,用户可以与 AI 大模型进行交互,获取其提供的服务和功能,例如进行文本生成、问答、翻译等。同时,AI 网站也为 AI 大模型的推广、应用和改进提供了渠道。
2025-01-07
大模型和小模型的关系是什么
大模型和小模型的关系主要体现在以下几个方面: 1. 规模和功能:大模型通常拥有海量参数和训练数据,能处理多种任务,应用范围广泛,具有更多通识知识;小模型规模相对较小,往往是为完成特定任务而设计,如专门用于图像分类等。 2. 处理信息类型:大型语言模型专注于处理和生成文本信息;大型多模态模型能处理包括文本、图片、音频等多种类型的信息。 3. 应用场景:大型语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等;大型多模态模型由于能处理多种信息类型,可应用于更广泛的领域,如图像识别与描述、视频分析、语音识别与生成等。 4. 数据需求:大型语言模型主要依赖大量的文本数据进行训练,大型多模态模型则需要多种类型的数据进行训练,包括文本、图片、音频等。 5. 在 AI 绘图方面:大模型如同主菜或主食,小模型(如 Lora)如同佐料或调料包,Lora 能帮助快速实现特定风格或角色的绘制。并且大模型和 Lora 要基于同一个基础模型才能搭配使用,以生成各种风格的图片。
2025-01-05
人工智能与机器学习的关系
人工智能(AI)和机器学习(ML)有着密切的关系。机器学习是人工智能的一个子领域。机器学习通过输入数据训练模型,使计算机能够在没有明确编程的情况下学习。机器学习模型有监督和无监督之分,监督模型使用标记的数据从过去的例子中学习并预测未来的值,无监督模型则专注于发现原始数据中的模式。深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,这些神经网络可以使用标记和未标记的数据,从而允许半监督学习。在生成式人工智能中,它试图学习数据和标签之间的关系以生成新的内容。
2024-12-28
AI与人的协同关系
AI 与人的协同关系主要体现在以下几个方面: 1. 生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,在这 3 种模式下,人与 AI 的协作流程有所差异。其中,Embedding 模式下人类完成大多数工作,Copilot 模式下人类和 AI 协同工作,Agents 模式下 AI 完成大多数工作。 2. 可以使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如产品经理角色,可通过 Agents 拆解任务,遵循不同工作流生成大体符合期望的输出结果,再进行修改达到可用阶段。 3. 应从原子能力层重新思考,重塑工作流。可抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,围绕“输入”“处理”“输出”“反馈”构建最底层的信息处理逻辑。 4. 重塑获取信息的方式,搜索引擎和基于大模型的聊天机器人在解决用户问题的目标上从根本上是一致的。 5. AGI 发展初期,与人脑相比仍有短板,需要向人学习,同时“人的模型”更重要的是解决 AI 与人配合的问题,实现 1+1>2 的效果。但目前如何达到“人的模型”还未知,可能需要在“世界模型”基础上加入个人大量多样的数据。 6. 在未来商业模式中,AI 原生应用包括广义语言的万能翻译机、想象力与创造力、AI 使用工具及相互合作、AI 微决策、AI 与人合作等方面。在相当长时间里,AI 首先要解决的是与人合作的问题,这需要“人的模型”和“人的数据”,让 AI 理解与之配合的人类。
2024-12-25
ai如何变革文化传媒游戏行业的生产关系与生产资料
AI 正在对文化传媒游戏行业的生产关系和生产资料带来多方面的变革: 1. 生成式 AI 为游戏创建 2D 艺术、纹理、3D 模型,并协助关卡设计,在营销中也有望取代部分传统内容。其应用已拓展至网页、室内和景观设计等领域,只要涉及创造性内容生成,AI 都可能成为流程的一部分甚至颠覆整个流程。 2. 游戏行业中,学会有效使用生成式 AI 将成为一项有市场价值的技能。懂得与 AI 工具最有效、最协同地合作的艺术家会变得稀缺,使用生成式 AI 进行生产艺术作品面临连贯性和风格统一等挑战。 3. 降低门槛将导致更大的冒险和创造性的探索,进入游戏开发的新“黄金时代”,更低的准入门槛将促使更具创新性和创造性的游戏大量涌现。 4. AI 辅助“微型游戏工作室”的崛起,配备生成式 AI 工具和服务,由 1 或 2 名员工组成的“微型工作室”能生产更多具有商业可行性的游戏。 5. 在 AIGC 的新世界,游戏开发变得更简单,互联网浪潮推动游戏产业分工成熟,门槛降低,GPT 等技术使编程等基础工作被替代,内容生产效率提高,想象力和热情成为新的杠杆力。
2024-12-19