Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Cow好像接不上coze 的数据库,在coze 上能正常使用,到cow上就无法获取信息

Answer

以下是关于 Cow 接不上 coze 数据库的可能解决方法:

  1. 服务器设置方面:
    • 点击“Docker”中的“编排模板”中的“添加”按钮。
    • 备注说明版和无备注干净版的操作有所不同。
    • 将编译好的内容复制进来。
    • 在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”。提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。
  2. 直接调用大模型方面:
    • 当在 COW 中直接调用千问的某一个大模型时,只需要更改 key 和 model 即可。以调用“qwen-max”模型为例,在/root/chatgpt-on-wechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。获取 key 的方式有视频教程和图文教程。注意需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明没有实名认证,可点击去实名认证,或查看自己是否已认证。
  3. 安装并接入 cow 方面:
    • 回到宝塔,打开【终端】。
    • 依次粘贴并回车:cd /root ;git clone https://github.com/zhayujie/chatgpt-on-wechat 。出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次。
    • 继续依次输入:cd chatgpt-on-wechat/ ;pip install -r requirements.txt ;pip install -r requirements-optional.txt 。
    • 到“文件”菜单中执行,点击文件-找到 root,进入 root 文件夹,找到 chatgpt-on-wechat 文件夹,并进入。
    • 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)。
    • 粘贴并回车:cp config-template.json config.json ,刷新页面。在当前目录下,找到 config.json 文件。删除文件里的所有代码,复制提供的代码粘贴到文件里。
Content generated by AI large model, please carefully verify (powered by aily)

References

【智能体】让Coze智能体机器人连上微信和微信群详细配置文档

chatgpt-on-wechat(简称CoW)项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择GPT3.5/GPT4.0/GPT4o/Claude/Gemini/ChatGLM/月之暗面/文心一言/讯飞星火/通义千问/LinkAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。点击“Docker”中的“编排模板”中的“添加”按钮备注说明版此处借用“程序员安仔”封装的代码,以资感谢~无备注干净版将上面编译好的内容复制进来在“容器编排”中“添加容器编排”选择在“编排模板”里创建的“coze2openai”提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。说人话总结:现在只是个伏地魔,没有载体,需要找个微信号附着一下。

「第一天」COW项目:千问模型、百炼应用接入教程

百炼首页:https://bailian.console.aliyun.com/1、当我们在COW中,去直接调用千问的某一个大模型时,只需要更改key和model即可。以调用“qwen-max”模型为例,在/root/chatgpt-on-wechat/文件夹下,打开config.json文件:需要更改"model",和添加"dashscope_api_key"。那么如何去获取key呢:视频教程:图文教程:以下是参考配置:示意图:注意:需要“实名认证”后,这些key才可以正常使用,如果对话出现“ Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明你没有实名认证,点击去[实名认证](https://account.console.aliyun.com/v2?spm=5176.28508143.J_4VYgf18xNlTAyFFbOuOQe.13.38a9154amP8978#/authc/types),或查看自己是否已认证。

张梦飞:【知识库】FastGPT+OneAPI+COW带有知识库的机器人完整教程

1、回到宝塔,打开【终端】继续,一行一行依次粘贴,依次回车:cd /root2、这个注意一定要粘贴完整,这里容易粘贴不全。git clone https://github.com/zhayujie/chatgpt-on-wechat3、出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次4、继续一行一行,依次输入:cd chatgpt-on-wechat/pip install -r requirements.txt5、等待执行完成,如上图后,继续粘贴:pip install -r requirements-optional.txt6、上边的都执行完成后。现在我们到“文件”菜单中去执行,点击文件-找到root,进入root文件夹,找到chatgpt-on-wechat文件夹,并进入。7、点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)8、粘贴进入,点击回车。点击后,关闭此弹窗。cp config-template.json config.json9、刷新页面。在当前目录下,找到config.json文件。如下图:10、双击这个文件,我画红框的地方是需要修改的地方。*因为这个地方对格式和符合要求比较严格,如果是小白,建议你直接复制我下方的配置。11、删除上图文件里的所有代码。复制下边的代码,粘贴到文件里。

Others are asking
coze的输入中如何引用变量
在 Coze 的输入中引用变量的方式如下: 在大模型节点的提示词中,支持使用{{variable}}引用输入参数。变量用{{}}来包裹,这里的变量就是前面输入的内容,如果变量名正确,会显示成蓝色。 在文本处理节点中,有两种工作模式。字符串拼接模式下,可以用{{变量名}},{{变量名.子变量名}},{{变量名}}的方式引用变量。如果直接引用一个数组类型的变量,默认会用逗号把数组中的内容连接起来,也可以指定只要数组中的某一项。字符串分隔模式下,用特定的分隔符(比如"||"、"////"或"")把一段文字拆分成多个小段。 在阅读导图的插件节点配置中,确定输入时,在输入区,该插件仅需设置{{query_text}}变量,格式是 string 字符串。只需要引用“标题、导语、大纲”节点的{{enTreeMind}}变量即可。
2025-03-26
coze怎么引用变量
在 Coze 中引用变量的方法如下: 1. 对于利用大语言模型生成文本内容的节点,在提示词中支持使用{{variable}}引用输入参数。提示词本身也可通过 Coze 来写,系统做了设定,变量用{{}}包裹,变量名正确时会显示成蓝色。系统提示词和用户提示词大部分情况下差异不大,可把完整逻辑放在系统提示词里,变量相关内容放在用户提示词里。 2. 在变量节点的使用中: 第一步,在 Bot 的页面创建一个变量的名字。 第二步,在工作流中设置变量的值。变量一般在工作流中使用,首先要创建工作流。工作流中的变量节点有给变量设置值和从变量中获取值两个作用。 第三步,在工作流中获取变量的值。 3. 在文本处理节点中,有两种工作模式: 字符串拼接模式:把多段文字按照指定顺序组合成一段完整文字。在这个模式下,可以用{{变量名}},{{变量名.子变量名}},{{变量名}}的方式引用变量。如果直接引用一个数组类型的变量,默认会用逗号把数组中的内容连接起来,也可以指定只要数组中的某一项。 字符串分隔模式:用特定分隔符把一段文字拆分成多个小段。
2025-03-26
如何用coze创建工作流 采集生成视频号内容
以下是使用 Coze 创建工作流采集生成视频号内容的步骤: 1. 安装 Coze Scraper 扩展程序至浏览器,完成安装后可手动采集要上传到扣子知识库的内容。更多关于知识库的内容,详情请参考。 登录。 在左侧菜单栏,选择一个工作区。 在工作区内,单击知识库页签。 创建一个知识库或点击一个已存在的知识库。 在知识库页面,单击新增单元。 在文本格式页签下,选择在线数据,然后单击下一步。 单击手动采集,然后在弹出的页面点击权限授予完成授权。 在弹出的页面输入要采集内容的网址,然后单击确认。 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。 2. 创建工作流: 登录到您的 Coze 账户,导航至个人空间页面。 在个人空间页面上,点击“工作流”按钮,系统会展示之前创建的工作流列表。 在页面的右上角,点击“创建工作流”按钮,打开创建工作流的界面。 在创建工作流的页面上,填写工作流的名称(必须使用英文字符)和描述(一段简洁的文本,帮助模型理解工作流的功能和用途以及触发情境)。 完成必填项后,系统将自动跳转到工作流的编辑页面,其中预设并配置了开始节点和结束节点。开始节点是用户输入内容的起点,结束节点是收尾角色,无论工作流中进行了哪些操作,最终都必须通过结束节点来完成。系统强制要求在工作流的最后步骤中包含结束节点,只有当整个流程的最终动作指向结束节点时,工作流才能够进行试运行和正式发布。 在工作流编辑页面的左侧,有组件库,包括大模型组件(用于执行复杂的数据处理任务)、代码组件(允许运行自定义代码段)、消息组件(用于发送或接收消息)、数据库组件(与数据库交互,执行查询或更新操作)、选择器组件(用于在工作流中进行条件判断和分支选择)。
2025-03-25
WaytoAGI coze 共享空间
WaytoAGI 是一个致力于人工智能(AI)学习的中文知识库和社区平台。 社区介绍: 汇集上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。 提供丰富学习资源,包括文章、教程、工具推荐及行业资讯等。 定期组织实践活动,如视频挑战赛、模型创作大赛等。 引领并推广开放共享的知识体系,倡导共学共创,孵化了 AI 春晚、离谱村等大型共创项目。 在没有任何推广的情况下,一年时间已有超过 100 万用户和超千万次的访问量。 目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。 目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝、豆包、火山引擎、marscode、coze 等。 从基础案例入门: 三分钟捏 Bot: 登录控制台:登录扣子控制台(coze.cn),使用手机号或抖音注册/登录。 在我的空间创建 Agent:在扣子主页左上角点击“创建 Bot”,选择空间名称为“个人空间”、Bot 名称为“第一个 Bot”并确认。如需使用其他空间,先创建后选择;Bot 名称可自定义。 编写 Prompt:填写 Prompt,即想要创建的 Bot 功能说明,第一次可用简短词语作为提示词。 优化 Prompt:点击“优化”进行优化。 设置开场白及其他环节。 发布到多平台&使用。 进阶之路: 15 分钟:查看其他 Bot 获取灵感。 1 小时:找到和自己兴趣、工作方向等结合的 Bot 深入沟通,阅读相关文章。 一周:了解基础组件,寻找不错的扣子借鉴复制,加入 Agent 共学小组,尝试在群里问第一个问题。 一个月:合理安排时间,参与 WaytoAGI Agent 共学计划,自己创建 Agent 并分享经历心得。 在 WaytoAGI 的支持:包括文档资源、交流群、活动。 此外,大圣提供了胎教级教程:万字长文带你使用 Coze 打造企业级知识库,相关活动及链接如下: coze 官方活动正在进行中奖金丰厚: 参赛作品提交页:https://bytedance.larkoffice.com/share/base/form/shrcnH7yDl3oqOiQeQ2LTFnByXe 渠道选择 WaytoAGI,提交后记录到。 扣子专业版注册链接:https://zjsms.com/iAfQNK4U/ 参考模板:https://www.coze.cn/template 线下路演报名:https://bytedance.larkoffice.com/share/base/form/shrcnhJdt1EZXicuO23kVzeOved 大圣的个人宝藏:
2025-03-25
coze
以下是关于 Coze 的相关信息: 重磅更新:Coze 可以接入抖音评论区,帮您自动回复用户的评论。若想快速上手,可参考视频。若不了解 Coze 是什么,可参考文章。 安装 Coze Scraper: 通过应用商店安装: 1. 打开 Chrome 浏览器。 2. 点击在 Chrome 应用商店中打开 Coze Scrapper 扩展程序。 3. 单击添加至 Chrome。 4. 在弹出的页面,单击添加扩展程序。 本地安装: 1. 单击下载安装包,然后解压下载的文件。 2. 打开 Chrome 浏览器。 3. 在浏览器中输入 chrome://extensions 打开扩展程序页面,确认开发者模式处于打开状态。 4. 点击加载已解压的扩展程序,选择已解压的文件夹。 Coze 记账管家: 什么是 COZE:字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent;目前 coze 可以白嫖海量的大模型免费使用,有丰富的插件生态。 什么是记账管家:基于 COZE 平台的能力搭建的一个记账应用;您可以直接和 coze 说您今天的收入或者支出情况,coze 会自动帮您记账,同时帮您计算出账户余额。每一笔记账记录都不会丢失,下次来记账管家还记得您的历史记账记录。点击以下卡片体验记账管家。
2025-03-25
有coze硬件的案例吗
以下是一些关于 Coze 硬件的案例: 1. 一泽 Eze:用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力。 分步构建和测试 Agent 功能:首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建。左侧「选择节点」模块中,实际用上的有插件、大模型、代码。按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本。 智能纪要:Code AI 应用开发教学,背景是智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 3. 大雨:【场景驱动】企业的哪些重复性任务,最适合用 Coze 循环节点来解决? 案例展示:出海品牌设计师。早起智能体的逻辑通过工作流承载,比如让 AI 出图以后,希望在它的基础上再修改,直到满意为止,这种情况没有循环节点,整个工作流会非常复杂。从这个案例可以明显感受到,在智能体的交互上,循环节点的出现,带来极大的可能性。部分工作流的截图体现出 Coze 在实际业务场景上,具有非常巨大的商业价值。
2025-03-25
COW微信机器人、FastGpt微信机器人、COZE微信机器人的区别?
以下是 COW 微信机器人、FastGpt 微信机器人、COZE 微信机器人的区别: COW 微信机器人: 基于 Hook 机制,具有相对更高的稳定性和安全性,更简单易上手。 目前插件相对较少,仅支持 Windows 系统。 可以不用服务器,对小白更加友好。 能够结合 FastGPT 进行使用。 具备基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发等功能,还有安全新闻定时推送、Kfc 文案、星座查询、天气查询等有趣的小功能。 FastGpt 微信机器人:可以与 COW 微信机器人结合使用。 COZE 微信机器人:在 6 月底的微信机器人共建中有所提及,有多种玩法,如对接 llm key 的玩法等。在百炼平台里的“应用”概念类似于 COZE 中的“bot”。
2025-03-11
cow微信机器人
以下是关于基于 COW 框架的 ChatBot 实现步骤的详细介绍: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信等平台。 实现内容包括: 打造属于自己的 ChatBot,具备文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能。 常用开源插件的安装应用。 正式开始前需知: ChatBot 与在各大模型网页端使用的区别在于本实现思路需接入大模型 API(API 单独付费)。 风险与注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用,包括对大模型生成内容的甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 特点: 多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 多模型选择,如 GPT3.5、GPT4.0、Claude、文心一言、讯飞星火、通义千问、Gemini、GLM4、LinkAI 等。 多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 多部署方法,包括本地运行、服务器运行、Docker 方式。 部署项目的具体步骤: 1. 下载 COW 机器人项目(chatgptonwechatmaster.zip)并解压缩。 2. 解压后打开 COW 文件夹,在空白处 shift+鼠标右键,点击“在此处打开 Powershell 窗口”。 3. 在 Powershell 窗口中,粘贴“pip install r requirements.txt”,等待执行完成后,继续粘贴“pip install r requirementsoptional.txt”。 4. 执行完成后关闭窗口,在当前目录下找到 configtemplate.json 文件。新生成的是配置文件,右键使用记事本打开,修改画红框的地方。小白建议直接复制给定的配置,删除新文件里的所有代码,复制给定代码粘贴到文件里,找到第 4 行,把注册并保存好的千问 API key 粘贴到双引号里,修改完保存并关闭文件。 5. 保存上述文件,然后在当前文件下,找到 plugins/godcmd 文件夹,复制 config.json.template 重命名为 config.json,双击进入后设置 password 和 admin_users,可先设置为和示例一样,之后再改,保存后关闭。 6. 重新回到 chatgptonwechat/文件路径下,空白处右键,打开 Powershell 里复制粘贴“python app.py”。 基于张梦飞同学的更适合小白的使用教程:
2024-10-10
微信机器人 cow
以下是在自己的电脑上部署 COW 微信机器人项目的详细步骤: 1. 安装环境: 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 在命令窗口中,粘贴入以下代码,确认是否有 python 和 pip。 如果没有 python 和 pip,先进行 python 的安装。 2. 部署项目: 下载 COW 机器人项目,解压缩。 解压后,打开 COW 文件夹。 在空白处,shift+鼠标右键,点击“在此处打开 Powershell 窗口”。 在 Powershell 窗口中,粘贴进入: pip install r requirements.txt 等待执行完成后,继续粘贴:pip install r requirementsoptional.txt 上边的都执行完成后,关闭窗口。在当前目录下,找到 configtemplate.json 文件。 新生成的便是配置文件,右键使用记事本打开这个文件,修改画红框的地方。 删除新文件里的所有代码,复制提供的代码,粘贴到文件里,并在第 4 行把一开始注册并保存好的千问 API key 粘贴到双引号里,修改完之后,点击保存,关闭文件。 保存上述文件,然后在当前文件下,找到 plugins/godcmd 文件夹,复制 config.json.template 重命名为 config.json。 双击 config.json,进入后,设置下 password 和 admin_users,点击保存后关闭。 重新回到 chatgptonwechat/这个文件路径下,空白处右键,打开 Powershell 里复制粘贴进入:python app.py,然后将会弹出二维码,扫码登录即可。 注意事项: 1. 程序将在您的电脑本地运行,假如您关掉了窗口,那么进程也就结束。所以,如果想让 AI 持续使用,就必须保持窗口打开和运行,也就是电脑不能关。 2. 如果发现突然不管用了,可以点击一下窗口,然后点一下空格。因为在选中状态下,powershell 窗口是不继续执行的。 3. 其他操作与服务器部署的操作一致。 4. 参加机器人比赛的,可以参考其他教程,自行更改配置。
2024-09-02
Cow好像接不上coze 的数据库,在coze 上能正常使用,到cow上就无法获取信息
以下是关于 Cow 接不上 coze 数据库的可能解决方法: 1. 服务器设置方面: 点击“Docker”中的“编排模板”中的“添加”按钮。 备注说明版和无备注干净版的操作有所不同。 将编译好的内容复制进来。 在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”。提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。 2. 直接调用大模型方面: 当在 COW 中直接调用千问的某一个大模型时,只需要更改 key 和 model 即可。以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。获取 key 的方式有视频教程和图文教程。注意需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明没有实名认证,可点击去,或查看自己是否已认证。 3. 安装并接入 cow 方面: 回到宝塔,打开【终端】。 依次粘贴并回车:cd /root ;git clone https://github.com/zhayujie/chatgptonwechat 。出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次。 继续依次输入:cd chatgptonwechat/ ;pip install r requirements.txt ;pip install r requirementsoptional.txt 。 到“文件”菜单中执行,点击文件找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)。 粘贴并回车:cp configtemplate.json config.json ,刷新页面。在当前目录下,找到 config.json 文件。删除文件里的所有代码,复制提供的代码粘贴到文件里。
2024-08-13
知识库里有没有阿里云部署cow教程
以下是阿里云部署 cow 的完整教程: 一、注册云服务器和获取模型 key 1. 刚才在这里保存的“外网面板地址”,点击打开。 2. 输入账号密码,即上图中的 username、password。 3. 第一次进入会让您绑定一下,点击免费注册,注册完成后,返回此页,登录账号。 4. 首次会有个推荐安装,只安装第一个即可。其他的取消勾选。 5. 点击“终端”,会让您关联,点击关闭就好。 七、安装并接入 cow 1. 回到宝塔,打开【终端】 继续,一行一行依次粘贴,依次回车: cd /root git clone https://github.com/zhayujie/chatgptonwechat 这个注意一定要粘贴完整,这里容易粘贴不全。 出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次。 继续一行一行,依次输入: cd chatgptonwechat/ pip install r requirements.txt 等待执行完成,如上图后,继续粘贴: pip install r requirementsoptional.txt 上边的都执行完成后。 现在我们到“文件”菜单中去执行,点击文件找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑) 粘贴进入,点击回车。点击后,关闭此弹窗。 cp configtemplate.json config.json 刷新页面。在当前目录下,找到 config.json 文件。 双击这个文件,找到第 4、5 行,把刚才 FastGPT 里拿到 API 和 key,根据要求粘贴到双引号里。这也是您唯一需要修改的地方。修改完之后,点击保存,关闭文件。 依然在当前文件,【终端】里进行,依次复制粘贴进入: cd plugins/godcmd cp config.json.template config.json 操作完成后,退出窗口,刷新一下。进入/root/chatgptonwechat/plugins/godcmd, 下边是依次进入窗口的路径, 双击 config.json,进入后,设置下您的 password 和 admin_users,可以设置为和我一样的,后边再改,点击保存后关闭。 重新回到/root/chatgptonwechat/这个文件路径下,点击终端,继续依次粘贴: touch nohup.out nohup python3 app.py & tail f nohup.out 使用微信扫码(建议使用小号)。完成
2024-07-19
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
现在市面上能够购买的AI产品有哪些
以下是一些市面上能够购买的 AI 产品: 制作 PPT 的 AI 产品: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网站:https://gamma.app/ 美图 AI PPT:可通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。网站:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网站:https://www.mindshow.fun/ 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。网站:https://zhiwen.xfyun.cn/ 其他 AI 应用: 联想设备管理平台:AI 办公设备管理系统,利用数据分析、物联网技术,管理办公设备,提高设备利用率。 新氧 APP:AI 美容护肤机构推荐平台,通过数据分析、自然语言处理技术,为用户推荐优质的美容护肤机构。 大众点评亲子频道:AI 儿童教育机构推荐平台,借助数据分析、自然语言处理技术,为家长推荐优质的儿童教育机构。 汽车之家车商城:AI 汽车销售平台,运用数据分析、自然语言处理技术,为消费者提供汽车购买渠道。 彩云天气 APP:AI 天气预报预警系统,利用数据分析、机器学习技术,提供准确的天气预报预警。 腾讯觅影:AI 医疗影像分析平台,基于数据分析、机器学习技术,分析医疗影像,辅助医生诊断。 钉钉会议管理功能:AI 会议管理系统,采用自然语言处理、数据分析技术,管理会议流程,提高会议效率。 微拍堂书法作品拍卖频道:AI 书法作品销售平台,借助图像识别、数据分析技术,为书法爱好者提供作品销售渠道。
2024-12-27
目前市面上能力最强的AI模型是哪家的
目前市面上能力较强的 AI 模型来自多家公司和机构。 OpenAI 的 GPT4 是一个表现出色的大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。此外,OpenAI 还带来了其他优秀的模型,如 DALL·E 3 等。 Meta 开发的 Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡,标志着首次开放模型缩小与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现优异。 中国的 DeepSeek、零一万物、知谱 AI 和阿里巴巴等开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了 SOTA。 Mistral 7B 是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 需要注意的是,AI 模型的能力评估会因不同的任务和应用场景而有所差异,且技术在不断发展和进步,新的更强的模型可能会不断涌现。
2024-11-18
我有一个文档字数可能比较多,我希望ai能基于这个文档内容对我的问题进行回答,目前市面上能实现这一功能比较好的工具有哪些?
目前市面上能实现基于文档内容回答问题这一功能较好的工具包括: 1. 飞书:通过企业搜一搜或者自定义问答,智能伙伴可以基于用户有权限的文档内容回答用户提问。 2. Grammarly:不仅是语法和拼写检查工具,还提供一些排版功能,可改进文档整体风格和流畅性。 3. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 4. Latex:常用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 5. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 6. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 7. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 8. Excel Labs:Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 9. Microsoft 365 Copilot:微软推出的整合 Word、Excel、PowerPoint、Outlook、Teams 等办公软件的 AI 工具,通过聊天形式完成用户需求。 10. Formula Bot:提供数据分析聊天机器人和公式生成器功能,可自然语言交互进行数据分析和生成 Excel 公式。 11. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成相关文本内容、执行情感分析、语言翻译等任务。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 较受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-10-18
AI在未来运用在人形机器人上能实现什么
在未来,AI 运用在人形机器人上能够实现以下方面: 1. 为人类生活带来更智能、更便捷的体验,提供各种生活服务和生产制造服务。 2. 打造能够与人类建立深度互动的智能体,自主处理与复杂物理世界的交互。 3. 利用端到端的 AI 运动控制技术驱动软硬件一体化的机器人系列产品,开发在真实世界中生产、制造以及服务的人形机器人产品。 4. 拥有先进的计算机视觉算法、人工智能算法、控制和路径规划算法,对 3D 物体的姿势估计具有出色的感知能力。 5. 可以为机器人提供模仿训练数据,人形机器人可能在人类世界中更加有用,部署更加高效。 6. 借助相关技术,人形机器人能够从少量人类演示中学习,帮助完成日常任务,通过观察模仿人类的运动。 7. 由全新的机器人芯片提供支持,实现更强大的智能功能。
2024-09-30