Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何做Agent,请举例说明

Answer

以下是关于如何做 Agent 的详细说明及举例:

一、基本框架

Agent 的基本框架可以概括为“Agent = LLM + 规划 + 记忆 + 工具使用”。其中,大模型 LLM 充当 Agent 的“大脑”。

二、规划(Planning)

主要包括子目标分解、反思与改进。子目标分解能将大型任务拆解为较小可管理的子目标,便于处理复杂任务。反思和改进则可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,以提升最终结果的质量。

三、记忆(Memory)

分为短期记忆和长期记忆。短期记忆将所有的上下文学习视为利用模型的短期记忆来学习;长期记忆提供了长期存储和召回信息的能力,通常通过利用外部的向量存储和快速检索来实现。

四、工具(Tools)

五、智能体的类型

智能体可以根据其复杂性和功能分为以下几种类型:

  1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。
  2. 基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并据此采取行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。
  3. 目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。
  4. 效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。金融交易智能体就是一个例子,它会根据不同市场条件选择最优的交易策略。
  5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。强化学习智能体通过与环境互动不断学习最优策略。

六、从产品角度思考 Agent 设计

以历史新闻探索向导为例,其身份是历史新闻探索向导,性格是知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可为其设计简短的背景故事,比如曾是一位历史学家,对世界重大历史事件了如指掌且充满热情,愿意分享知识。写好角色个性需考虑角色背景和身份、性格和语气、角色互动方式以及角色技能等方面。

例如吴恩达通过开源项目 ChatDev 举例,可让一个大语言模型扮演不同角色,如公司 CEO、产品经理、设计师、代码工程师或测试人员,这些 Agent 会相互协作,共同开发一个应用或复杂程序。

Content generated by AI large model, please carefully verify (powered by aily)

References

Inhai: Agentic Workflow:AI 重塑了我的工作流

吴恩达通过开源项目ChatDev进行举例,你可以让一个大语言模型扮演不同的角色,比如让一个Agent扮演公司CEO、产品经理、设计师、代码工程师或测试人员,这些Agent会相互协作,根据需求共同开发一个应用或者复杂程序。AI Agent基本框架OpenAI的研究主管Lilian Weng曾经写过一篇博客叫做《LLM Powered Autonomous Agents》,其中就很好的介绍了Agent的设计框架,她提出了“Agent = LLM +规划+记忆+工具使用”的基础架构,其中大模型LLM扮演了Agent的“大脑”。Planning(规划)主要包括子目标分解、反思与改进。将大型任务分解为较小可管理的子目标处理复杂的任务。而反思和改进指可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。Memory(记忆)分为短期记忆和长期记忆。其中短期记忆是指的将所有的上下文学习看成是利用模型的短期记忆来学习;而长期记忆是提供了长期存储和召回信息的能力,它们通常通过利用外部的向量存储和快速检索来存储和召回信息。Tools(工具)

问:什么是智能体 Agent

智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。1.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。1.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。1.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。1.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。

Roger:从产品角度思考 Agent 设计

我们的Agent是一个历史新闻探索向导。身份:历史新闻探索向导性格:知识渊博、温暖亲切、富有同情心角色:主导新闻解析和历史背景分析为了使角色更加生动,我为Agent设计了一个简短的背景故事。比如,这个Agent曾是一位历史学家,对世界上的重大历史事件了如指掌,充满热情,愿意分享知识。怎么写好角色个性:角色背景和身份:编写背景故事,明确起源、经历和动机性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格角色互动方式:设计对话风格,从基本问答到深入讨论角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性正如《[Character.ai:每个人都可定制自己的个性化AI](https://waytoagi.feishu.cn/wiki/EoBkwirgjiqscKkAO6Wchyf1nPe)》所写:个性化定制的“虚拟伴侣”能得到用户的认可,这是因为精准地击中了许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家Robert Jeffrey Sternberg提出了“爱情三角理论”,认为爱情包含“激情”、“亲密”和“承诺”三个要素。

Others are asking
怎么制作一个AI agent?
制作一个 AI Agent 通常有以下几种方式和步骤: 方式: 1. Prompttuning:通过 Prompt 来构建大脑模块,但一般适合拟人化不是很重的情况,其缺点是使用的 Prompt 越长,消耗的 Token 越多,推理成本较高。 2. Finetuning:针对“有趣的灵魂”,通过微调一个定向模型来实现,能将信息直接“记忆”在 AI 的“大脑模块”中,提高信息提取效率,减少处理数据量,优化性能和成本。 3. Prompttuning + Finetuning:对于复杂情况,一般是两种方式结合。 步骤(以工作流驱动的 Agent 为例): 1. 规划: 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-01-31
系统学习agent构建
以下是一些关于系统学习 Agent 构建的内容: 一些 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供环境感知和记忆功能,在处理高频工作场景表现出色。 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤: 规划:制定任务的关键方法,总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能,在 Coze 上搭建工作流框架,设定每个节点的逻辑关系,详细配置子任务节点,并验证每个子任务的可用性。 完善:全面评估并优化 Agent 效果,整体试运行 Agent,识别功能和性能的卡点,通过反复测试和迭代,优化至达到预期水平。
2025-01-30
agent
智能体(Agent)在人工智能和计算机科学领域是一个非常重要的概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分: 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆:包括短期记忆(所有的上下文学习都是利用模型的短期记忆来学习)和长期记忆(为 Agents 提供长时间保留和回忆无限信息的能力,通常通过利用外部向量存储和快速检索来实现)。 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 智能体可以根据其复杂性和功能分为以下几种类型: 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。
2025-01-29
RAG与agent
RAG(RetrievalAugmented Generation,检索增强生成)是一种方法,例如在餐饮生活助手的应用中,它能根据用户需求从大规模餐饮数据集中检索出最合适的餐厅并提供相关信息和服务。实现餐饮生活助手的 RAG 实战,需要将餐饮数据集转化为 LangChain 可识别和操作的数据源,并定义 LLM 的代理,让其根据用户问题提取核心信息和条件,形成标准查询语句检索数据源并生成答案。 Agent 是大模型的一个重要概念,被认为是大模型未来的主要发展方向。它可以通过为 LLM 增加工具、记忆、行动、规划等能力来实现。目前行业里主要使用 LangChain 框架将 LLM 与工具串接。例如在 RAG 基础上,Agent 给大模型提供了更多工具,如长期记忆(数据库工具),还在 prompt 层和工具层完成规划和行动等逻辑设计。 在大模型请求中,最大的两个变量是 Messages 和 Tools,两者组合形成整个 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。RAG 可以是向量相似性检索,放在 system prompt 里或通过 tools 触发检索。Action 触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互,没有 tool_calls 标记则循环结束。Multi Agents 则是通过更换 system prompt 和 tools 实现。
2025-01-28
购物推荐的aiagent 目前有好用的吗
以下是一些好用的购物推荐的 AI Agent: AutoGPT GUI:其 GUI 已开放 waitlist,可在 https://news.agpt.co/ 注册。 MULTI·ON plugin by MULTI·ON:今年 2 月开始使用,能在笔记本电脑上自动执行许多任务。现开发了 ChatGPT 插件,功能强大。链接:https://www.multion.ai/ ,演示:https://twitter.com/DivGarg9/status/1648394059483054081 。 BabyBeeAGI:由 Yohei 本人开发,有更强的任务管理等能力,但速度较慢,适合处理复杂任务。链接:https://replit.com/@YoheiNakajima/BabyBeeAGI?v=1 。 MiniAGI:基于 GPT3.5Turbo/4 的最小通用自主代理,保留简单实用功能,可执行多种任务,如订比萨。链接:https://github.com/muellerberndt/miniagi 。 此外,智谱的 AutoGLM 经过深度测试,展现出了较好的场景理解能力,如能准确区分“帮我买一杯咖啡”和“帮我买一包咖啡豆”并打开相应应用,但目前离好用还有一定距离,存在语音识别偏差、复杂界面操作稳定性待提升、只支持安卓等问题。 Cursor 虽然免费版只有 chat 功能,但其中的 Agent 功能只要给一个模糊指令,就会自动规划和解决问题。Cline 作为一个 AI 助手,能力有保障,长期霸榜 OpenRouter token 消耗榜,新版本还推出检查点功能。实际体验中,DeepSeekV3 和 Gemini 2.0 Flash Thinking 可作为不错的候选。
2025-01-26
如果我想让一个agent的回复的观点更鲜明,而非对一连串的侧面做分析,然后给出分散的建议, 如何做到?
要让一个智能体(agent)的回复观点更鲜明,而非分散地分析侧面和给出建议,您可以考虑以下几个方法: 1. 明确任务设定:在与智能体交互之前,清晰准确地定义任务目标和期望的回复形式,强调需要鲜明的观点表达。 2. 优化训练数据:确保用于训练智能体的数据集包含观点鲜明的示例,让智能体学习到这种表达模式。 3. 调整提示词:精心设计提示词,明确要求智能体给出直接、明确且鲜明的观点,避免模糊或宽泛的指令。 4. 引入奖励机制:在训练过程中,对观点鲜明的回复给予更高的奖励,激励智能体朝着这个方向优化。 5. 后处理和筛选:对智能体的初步回复进行后处理,筛选出观点鲜明的部分,或者对不够鲜明的部分进行修改和优化。
2025-01-26
举例说明,意图和FAQ训练的区别
意图和 FAQ 训练是两种不同的概念。 意图训练主要侧重于理解用户的核心意图或目的。例如,在一个客服场景中,用户的意图可能是查询产品信息、寻求技术支持或进行投诉等。通过对大量的用户交互数据进行分析和学习,模型能够识别出这些不同的意图类别。 FAQ 训练则侧重于常见问题及其对应的标准答案。比如常见的“产品如何退换货”“售后服务的联系方式是什么”等问题,以及相应的准确回答。 总的来说,意图训练更注重对用户目的的分类和理解,而 FAQ 训练更侧重于对特定常见问题的准确回答。
2025-01-13
举例说明,医疗人工智能应用的风险及其法理防范
医疗人工智能应用存在以下风险: 1. 可能对受欧盟法律保护的公共利益和基本权利造成损害,包括身体、心理、社会或经济方面的损害。 2. 在决定是否给予、拒绝、减少、取消或收回医疗保健服务等福利时,可能对人们的生计产生重大影响,并侵犯基本权利,如社会保护权、不受歧视权、人的尊严权或有效补救权。 3. 用于评估自然人信用分数或信用度的人工智能系统可能导致对个人或群体的歧视,并延续历史上的歧视模式或造成新形式的歧视性影响。 法理防范措施包括: 1. 为所有高风险人工智能系统制定统一的规则,这些规则应与《宪章》保持一致,是非歧视性的,并符合欧盟的国际贸易承诺,同时考虑相关的伦理准则。 2. 明确价值链上相关经营者的作用和具体义务,促进对法规的遵从,确保法律的确定性。 3. 在特定条件下,明确高风险人工智能系统提供者的责任和义务。 需要注意的是,欧盟法律规定的用于检测提供金融服务过程中的欺诈行为以及用于计算信贷机构和保险企业资本要求的尽职审慎目的的人工智能系统,以及用于自然人健康和人寿保险风险评估和定价的人工智能系统,在符合一定条件时不视为高风险系统。
2025-01-02
欧盟《人工智能法案》在中国适用过程中的积极影响与不利影响,请举例说明
欧盟《人工智能法案》在中国适用过程中的积极影响与不利影响举例如下: 积极影响: 1. 对中小企业的兼顾激励与监管:欧盟的法案顾及到了中小企业在人工智能领域的弱势地位,适当地将对中小企业的合规义务豁免规定以及合规支持规定纳入未来的人工智能立法中,有利于形成健康有序的公平竞争秩序,激发中小企业的科技创新活力,同时防止过度监管。例如,2023 年《AI 法案》折衷草案通过制约单方面强加给中小企业和初创企业的不公平合同条款、促进监管沙盒广泛而平等的参与、降低评估费用等措施降低中小企业的合规成本。 2. 纳入道德伦理和人权考量:《人工智能法案》将人工智能系统对伦理道德和基本人权的影响有机纳入规制框架和评估框架中,我国《科技伦理审查办法》也是将伦理纳入包括人工智能开发在内的科技活动的积极探索。 不利影响: 1. 以风险为基准的管理框架存在不确定性:伦理道德和人权具有高度概括性、抽象性和不确定性,如何将其融入人工智能治理考验立法技术。《人工智能法案》对“不可接受的风险”和“高风险”的人工智能系统的界定和解释存在相当大的不确定性和模糊性,可能难以统一进行风险分类,成效有待进一步观望和研讨。 2. 可能无法完全适应中国国情:中国和欧盟在人工智能发展的阶段、市场环境、企业结构等方面存在差异,欧盟的法案在具体适用时可能需要进行较大的调整和适配,否则可能无法有效发挥作用。
2024-12-29
欧盟《人工智能法案》在我国适用过程中的影响,请举例说明(注意,简洁凝练)
欧盟《人工智能法案》在我国适用过程中的影响主要体现在以下方面: 1. 立法参考:我国与欧盟在人工智能立法工作上“齐头并进”,且立法理念有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则。该法案对我国人工智能立法工作具有重要参考意义。 2. 市场拓展:若我国的 AI 项目有意拓展欧洲市场,可能因针对不同市场重新训练特有模型效率不高,而不得不根据欧盟法案对产品进行调整。 同时,我国是第一个开始制定生成式人工智能监管框架的国家,从 2022 年开始陆续出台全面指南,如今审查机构已介入。我国持续生产 SOTA 模型,由国家互联网信息办公室监督。政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。虽然禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。此外,伦理道德和人权向来是人工智能技术发展绕不开的终极话题,我国《科技伦理审查办法》也是将伦理纳入包括人工智能开发在内的科技活动的积极探索。但由于该《办法》适用于所有科技活动,人工智能的特殊性可能无从得到体现,且如何界定和解释“不可接受的风险”和“高风险”的人工智能系统也面临相当大的不确定性和模糊性。
2024-12-29
AI的能力边界是什么,请举例说明
AI 的能力存在边界,主要体现在以下方面: 1. 知识来源受限:AI 的知识来源于训练数据,无法超越这些数据的范围,如同学生不能回答课本之外的问题。 2. 推理能力有限:即使拥有足够的知识,AI 也无法像人类一样进行无限的推理和联想。 例如,在“Hallucination is Inevitable:An Innate Limitation of Large Language Models”这篇论文中,揭示了 AI 幻觉无法被完全消除的根本原因就在于 AI 模型的能力边界。 在探索者队伍的研究中,有人提出开发一个用于探索 AI 能力边界的实验平台,这也从侧面反映了对 AI 能力边界的关注。 此外,国际政治的边界或将按照 AI 技术边界来重新划分,也说明了 AI 能力边界的影响范围之广。
2024-08-31
大语言模型领域, 如何理解“退火”概念。 请用通俗易懂的方式举例说明
在大语言模型领域,“退火”是一个相对复杂的概念。通俗地说,您可以把它想象成铁匠打铁时的一个过程。铁匠在打造铁器时,不会一开始就用猛火高温一直烧,而是会逐渐升高温度,然后再慢慢降低温度,让金属的结构更加稳定和优化。 在大语言模型中,“退火”的作用类似于此。它可能是在模型的训练过程中,对某些参数或者条件进行逐步的调整和优化,以达到更好的性能和效果。但目前提供的知识库内容中,没有直接关于大语言模型中“退火”概念的详细且通俗易懂的解释和具体例子。
2024-08-13