Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

多模态上下文语义识别

Answer

多模态上下文语义识别是指通过理解和分析多种不同模态的信息(如文本、图像、声音等)来识别和解释其背后的含义和上下文关系的技术。这种技术在人工智能和机器学习领域正变得越来越重要,因为它可以帮助机器更好地理解和模拟人类的多感官体验。

例如,在处理一段包含文本和图像的新闻报道时,多模态上下文语义识别技术可以同时分析文本内容、图像中的物体和场景,以及可能的语音信息,从而更准确地理解整个报道的主题和情感倾向。

这项技术涉及的几个关键点包括:

  1. 数据融合:如何有效地结合来自不同模态的信息,以便进行统一的语义理解。
  2. 跨模态学习:通过训练模型来识别和关联不同模态之间的潜在联系。
  3. 上下文理解:不仅理解单个模态的局部信息,而且理解多个模态组合在一起时的整体上下文。
  4. 语义表示:如何将不同模态的信息转换为统一的语义表示形式,以便进行进一步的分析和处理。

在应用层面,多模态上下文语义识别技术已经在诸如情感分析、信息检索、智能问答、内容审核等多个领域展现出其潜力。随着技术的不断进步,未来这一领域有望实现更多突破性的应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
多模态大模型 原理是什么?
多模态大模型的原理如下: 基于大圆模型,能够识别页面组件结构和位置绝对值信息,并与组件、文本映射。由解码器、backbone、Generator 等部件组成,左侧进行多模态理解,右侧生成输出。 典型的多模态大模型架构包括一个编码器、一个连接器和一个 LLM,还可选择性地在 LLM 上附加一个生成器以生成除文本之外的更多模态。编码器接收图像、音频或视频并输出特征,这些特征经由连接器处理,使 LLM 能更好地理解。连接器大致可分为基于投影的、基于查询的和基于融合的三类,前两种类型采用词元级融合,将特征处理成词元,与文本词元一起发送,最后一种类型则在 LLM 内部实现特征级融合。
2025-02-27
多模态搜索
以下是关于多模态搜索的相关信息: ThinkAny 搜索引擎: 产品特性: 支持多模态检索(MultiModeSearch),可检索链接、图片、视频等模态内容。 支持多维度输出(MultiFormOutput),能以对话、大纲、思维导图、时间线等形式输出搜索问答内容。 支持多信源检索(MultiRetrieveSource),可检索 Google、Wikipedia、Github 等信息源的内容。 开源了 API 项目 ragsearch,实现联网检索功能,并对检索结果进行重排和获取详情内容。 长期发展方向是走 AI Search+Anything 的平台化路线,允许用户挂载自定义信息源、创建自定义智能体、实现自定义的流程编排。 其他推荐的 AI 搜索引擎: 秘塔 AI 搜索:提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能。 Perplexity:聊天机器人式搜索引擎,用自然语言提问,从各种来源收集信息并给出答案。 360AI 搜索:通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 天工 AI 搜索:采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持图像、语音等多模态搜索。 Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 Devv:面向程序员的 AI 搜索引擎,提供编程、软件开发和人工智能等领域的专业建议和指导。 Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 提升 AI 搜索准确度: 在提示词的设计和调试方面需要下功夫,很多环节都需用到提示词,如请求大模型判断是否需要联网、改写问题、提取关键词、回答问题、标注引用来源、以思维导图形式输出答案、做 Function Calling 判断使用的 Agents 等。 多模态检索是提升信息密度的重要措施,随着 5G 发展,互联网信息多元化,图片、视频、音频比重增大,多模态检索为获取不同形式信息再聚合起来作为引用参考。但多模态检索实现困难,现阶段可在谷歌搜索基础上,先使用其图片/视频检索 API 拿到匹配内容,再通过 OCR 图片识别、音视频转录等方法拿到多模态信息的文本内容。
2025-02-25
有什么支持多模态输入和输出的C端产品
以下是一些支持多模态输入和输出的 C 端产品: 1. 宝玉日报:支持文本或音频输入,输出可为文本、音频或混合数据。价格方面,1 小时音频输入成本为$12.8,输出为$25.6。相关链接: 2. Imagic 发布的 AI 驱动的无代码应用构建工具:支持多模态输入输出,包括文本、图片、3D 和视频。创建出来的应用立刻就能使用和发布。相关链接:https://get.imagica.ai/s 3. 面壁智能推出的 MiniCPMo 2.6:具有多模态能力,如 OCR、视频理解、连续视频与音频流处理,实时直播与多模态上下文理解,支持 30 多种语言的文本和语音输入输出。资源链接: 4. 世界首个支持手持产品展示的 AI 数字人 Product Avatar:上传产品图片,数字人即可手持产品进行口播展示,支持多语言,覆盖 28 种语言,可快速生成产品宣传视频。相关链接:
2025-02-21
多模态的AI工具有哪些
以下是一些多模态的 AI 工具: GPT4VAct:这是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。它可以识别网页上的元素并理解其功能,目的是自动完成一些人工操作任务以提高效率。主要特点包括有限的视觉处理能力、自动标记、鼠标和键盘操作等,但目前存在一些功能暂不支持。 Sora:是第一个能够根据人类指令生成长达一分钟视频的模型,标志着在生成式 AI 研究和开发中的重大突破。 DiT:能将视频分解为一帧帧图像并逐帧去噪生成流畅连贯的视频,不仅能生成高质量逐帧图像,还能在时间维度上保持一致性。 Topview.ai:是一款面向海外市场的多模态转换工具,作为 AI 驱动的营销视频生成工具,可自动实现模态转换,帮助社交媒体达人将素材一键转换为爆款商业短视频。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
我在写小说,怎么让AI在写作时能很好地根据整体故事情节和上下文进行故事的展开和描写
以下是一些让 AI 在写作小说时能很好地根据整体故事情节和上下文进行故事展开和描写的方法: 1. 创作穿越故事的 Prompt 时,明确以下内容: 标题:“generate:小说的标题” 设置:“generate:小说的情景设置细节,包括时间段、地点和所有相关背景信息” 主角:“generate:小说主角的名字、年龄、职业,以及他们的性格和动机、简要的描述” 反派角色:“generate:小说反派角色的名字、年龄、职业,以及他们的性格和动机、简要的描述” 冲突:“generate:小说故事的主要冲突,包括主角面临的问题和涉及的利害关系” 对话:“generate:以对话的形式描述情节,揭示人物,以此提供一些提示给读者” 主题:“generate:小说中心主题,并说明如何在整个情节、角色和背景中展开” 基调:“generate:整体故事的基调,以及保持背景和人物的一致性和适当性的说明” 节奏:“generate:调节故事节奏以建立和释放紧张气氛,推进情节,创造戏剧效果的说明” 其它:“generate:任何额外的细节或对故事的要求,如特定的字数或题材限制” 根据上面的模板生成为特定题材小说填充内容,并分章节,生成小说的目录。 2. 接下来,让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。 3. 可以让 AI 以表格的形式输出细节描述。这样做有三个好处: 打破 AI 原本的叙事习惯,避免陈词滥调。 按编号做局部调整很容易,指哪改哪,别的内容都能够稳定保持不变。 确保内容都是具体的细节,避免整段输出时缩减导致丢光细节只有笼统介绍。 4. 把生成的表格依次复制粘贴,让 AI 照着写文章,偶尔根据需要给 AI 提供建议。 5. 注意小说大赛的要求,如最后的作品必须是 AI 直接吐出来的,不能有任何改动,不能超过规定字数等。如果需要修改,可能会遇到像 GPT4 记性不好或 Claude 改掉关键情节等问题。
2025-01-26
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
ai能够回复多少内容和它的上下文限制有关吗
AI 能够回复的内容与其上下文限制有关。 首先,上下文在英文中通常翻译为“context”,指的是对话聊天内容前、后的信息。使用时,上下文长度和上下文窗口都会影响 AI 大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 不同的 AI 平台有不同的限制方式。例如,Claude 基于 token 限制上下文,简单理解就是每次和 AI 对话,所有内容字数加起来不能太多,如果超过了,它就会忘记一些内容,甚至直接提示要另起一个对话。ChatGPT 则限制会话轮数,比如在一天之中,和它会话的次数有限制,可能 4 个小时只能说 50 句话。 应对这些限制的策略包括将复杂任务分解为小模块、定期总结关键信息以及在新会话中重新引入重要上下文。
2024-11-15
回复限制和上下文限制是一样的吗
回复限制和上下文限制不是一样的概念。 上下文(英文通常翻译为 context)指对话聊天内容前、后的内容信息。使用时,上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 回复限制通常是指对模型生成回复内容的各种约束条件,例如让模型基于一个固定知识片段去回复内容,为避免模型产生幻觉而对提示词进行优化,将 Constraints 前置以更好地控制模型行为。例如在一些测试中,会出现模型在没有上下文时不回复,按照提供的知识准确回复但透露原文,知识片段大小影响回复,以及有错误知识片段时不回复等情况,这表明模型在处理用户输入时会进行一定程度的推理和验证,生成回复时会考虑多种因素,包括上下文的准确性、问题的合理性以及模型内部的约束机制等。
2024-11-15
上下文窗口和 tokens限制
以下是关于上下文窗口和 tokens 限制的详细解释: Token 方面: Token 是大模型语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型自己的语言,大模型推理生成答案后再翻译为人类能看懂的语言输出。 不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 上下文方面: 上下文指对话聊天内容前、后的内容信息,其长度和窗口都会影响大模型回答的质量。 上下文长度限制了模型一次交互中能够处理的最大 token 数量,上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 目前常见模型的 token 限制: Claude 2 100k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT 16k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT 4 32k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制的影响: 对一次性输入和一次对话的总体上下文长度同时生效。 当达到上限时,不是停止对话,而是遗忘最前面的对话,类似于鱼的短暂记忆。 查看 token 使用量: 对于 GPT,可以打开查看实时生成的 tokens 消耗和对应字符数量。 需注意 GPT3 和 GPT3.5/4 的 token 计算方式不同,且英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。 Token 限制对 Prompt 编写的影响:理解前面的内容后,答案应在您的脑海中有雏形。
2024-11-15
上下文的含义
上下文指对话聊天内容前、后的内容信息。在 AI 领域,其英文通常翻译为 context。使用时,上下文长度和上下文窗口都会影响 AI 大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 从算法视角看,更宽的上下文窗口允许模型在推理时纳入训练数据中未找到的大量新的、特定于任务的信息,从而提高各种自然语言或多模式任务的性能。对越来越长的上下文进行数据建模的能力有着发展历程:从 Shannon 1948 提出的 2gram 语言模型、到 1990 年代和 2000 年代的现代 ngram 模型(5 个上下文 token),2010 年代的循环神经网络(RNN)达到数百个 token(Jozefowicz 等),到 2023 年 Anthropic 将上下文扩展到几十万 token。 从产品视角看,长上下文意味着 LLM 理解能力增强。从提示词到 RAG,都是为了增加给模型的上下文,进而让需求更明确,让模型理解得更好。从用数据训练模型、到指令微调,到提示词和 RAG,到大模型的超长下文,机器越来越像人了。提示词和 RAG 正在快速被弱化,但出于工程和商业考量,目前在很多领域还是主流,未来依然可能是一个混合状态。 模型上下文长度覆盖了书籍、电影、长视频等产品的通用长度,应该会引发相关链路上产品交互层的变化,这一点值得观察。 在提示词中,上下文包含外部信息或额外的上下文信息,能够引导语言模型更好地响应。
2024-10-26
语义相似的prompt
以下是为您整理的关于语义相似的 prompt 的相关内容: 在即梦 AI 视频生成中,prompt 应避免歧义和抽象,确保即梦能正确理解意图。错误案例为“举头望明月”,正确案例为“一位中国古代的男性抬头望着月亮,男人背对着镜头,忧愁的氛围,夜晚”。 介绍了多种音乐风格的提示词,如 Analog、Analogous、Angular、Animated 等,包括其定义、典型使用、示例和关联流派。 探讨了写提示词时,平时更多使用的是 Markdown 语法,它简单且大语言模型能很好理解。将 Lisp 提示词翻译成 Markdown 后,语义几乎一致,但在某些方面存在差异,如 Lisp 版本中 SVG 图形的丰富度和表现力优于 Markdown 版本,Markdown 版本会输出中间“思考”过程,有利于调试优化流程。
2024-11-25
怎样按照语义生成图像
按照语义生成图像的方法主要有以下几种: 1. 在 ComfyUI 中: 条件输入:右侧的条件输入包括语义图、文本、已有图像等,表示生成图像时的上下文信息。通过多个节点模块实现,如文本提示,用户可输入文本作为生成图像的主要条件;语义图用于输入图像的语义信息,通过“条件控制”节点实现;已有图像可作为条件输入以指导最终生成的图像。CLIP 模型对图中的文本、语义图等条件信息进行编码,并通过交叉注意力机制引导图像生成。用户可通过文本输入节点、图像输入节点等调整条件及权重以达到特定效果。 编码器和解码器:编码器将输入图像映射到潜在空间,解码器将潜在表示映射回像素空间生成输出图像。在 ComfyUI 中,编码器可以是预训练的扩散模型的一部分,用户可通过加载不同模型或自定义节点实现编码过程,通过“图像输出”节点得到最终生成结果。 2. 在 OpenAI 中: 图像生成端点:允许在给定文本提示的情况下创建原始图像,生成的图像大小可为 256x256、512x512 或 1024x1024 像素,较小尺寸生成速度更快。可使用参数一次请求 1 10 张图像。描述越详细,越有可能获得想要的结果,可探索 DALL·E 预览应用程序中的示例获取更多提示灵感。 图像编辑端点:通过上传蒙版编辑和扩展图像。遮罩的透明区域指示应编辑图像的位置,提示应描述完整的新图像,而不仅仅是擦除区域。上传的图片和遮罩必须是小于 4MB 的正方形 PNG 图片,且尺寸相同。 此外,GPT 4 也具备根据详细说明生成图像的能力,例如生成“一只青蛙跳进银行,问出纳员:你有免费的荷叶吗?出纳员回答:没有,但我们提供低利息的池塘升级贷款”的 2D 图像,以及“一个由浮岛、瀑布和桥梁组成的幻想景观,天空中有一只飞龙和一个位于最大岛上的城堡”的 3D 模型,并能完成添加、重新定位、重新着色对象和改变飞龙轨迹等任务。
2024-10-18
方言识别
以下是关于方言识别的相关信息: 在 AI 术语库中,与语音相关的术语有“Speech Recognition(语音识别)”。 语音转文本(Speech to text)支持的语言包括:南非荷兰语、阿拉伯语、亚美尼亚语、阿塞拜疆语、白俄罗斯语、波斯尼亚文、保加利亚文、加泰罗尼亚文、中文、克罗地亚文、捷克文、丹麦文、荷兰文、英国英语、爱沙尼亚文、芬兰文、法国法式英语、加利西亞語、德國語、希臘語、希伯來語、印地語、匈牙利語、冰岛语、印度尼西亚语、意大利语、日本语、卡纳达语、哈萨克语、韩语、拉脱维亚语、立陶宛语、马其顿语、马来语、马拉地语、毛里求斯语、尼泊尔语、挪威语、波斯语、波苏尼语、塔加洛语、泰米尔语、泰语、土耳其语、乌克兰语、乌尔都语。 在模型方面,Whisper 是一种通用的语音识别模型,在不同音频的大型数据集上进行训练,是多任务模型,可执行多语言语音识别、语音翻译和语言识别。目前可通过 API(模型名 whisper1)使用 Whisper v2large 模型。Whisper 的开源版本和通过 API 提供的版本目前无区别,但 API 提供了优化的推理过程,运行速度更快。更多技术细节可阅读论文(https://arxiv.org/abs/2212.04356)。 嵌入(Embedding)是文本的数字表示,可用于衡量两段文本之间的相关性。第二代嵌入模型 textembeddingada002 旨在以一小部分成本取代之前的 16 种第一代嵌入模型,可用于搜索、聚类、推荐、异常检测和分类任务。更多信息可在公告博客文章(https://openai.com/blog/newandimprovedembeddingmodel)中阅读。
2025-02-24
怎么让AI识别对话,并生成结构化数据存储到我的软件系统里
要让 AI 识别对话并生成结构化数据存储到软件系统里,可以参考以下方法: 1. 基于结构化数据来 RAG:如果原始数据本身就是结构化、标签化的,不必将这部分数据做向量化。结构化数据的特点是特征和属性明确,可用有限标签集描述,能用标准查询语言检索。以餐饮生活助手为例,流程包括用户提问、LLM 提取核心信息并形成标准查询、查询结构化数据、LLM 整合回复。 2. 利用 Coze 平台设计 AI 机器人:创建好 Bot 后,从“个人空间”入口找到机器人,进行“编排”设计。Coze 平台常用的概念和功能包括提示词(设定 Bot 身份和目标)、插件(通过 API 连接集成服务)、工作流(设计多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。设计 Bot 时要先确定目的,比如“AI 前线”Bot 的目的是作为 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效站内信息检索服务。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可查阅该指南。
2025-02-18
自动语音识别加字幕
以下是关于自动语音识别加字幕的相关内容: 制作 AI 数字人视频添加字幕的方法: 在显示区域,拖动背景图的角将其放大到适合尺寸,如覆盖视频窗口,并将数字人拖动到合适位置。点击文本 智能字幕 识别字幕,然后点击开始识别,软件会自动将文字智能分段并形成字幕。至此,数字人视频完成,可点击右上角“导出”按钮导出视频备用。 文旅片添加字幕的方法: 选择朗诵男生或清爽男生的音色进行朗读,点击开始朗读自动生成音频。鼠标右键点击当前音轨,找到识别字幕/歌词,耐心等待生成对应文本字幕。操作复杂的部分可观看录制的视频。若剪映的识别字幕功能需要 VIP,可准备好字幕文件,点击本地字幕并导入文件。 视频自动字幕工具推荐: 1. Reccloud:免费的在线 AI 字幕生成工具,可上传视频精准识别,能翻译字幕并生成双语字幕,处理过 1.2 亿+视频,识别准确率接近 100%。 2. 绘影字幕:一站式专业视频自动字幕编辑器,提供字幕制作和翻译服务,支持 95 种语言,准确率高达 98%,可自定义字幕样式。 3. Arctime:能对视频语音自动识别并转换为字幕,支持自动打轴,支持 Windows 和 Linux 等主流平台及 SRT 和 ASS 等字幕功能。 4. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 您可根据自身需求选择适合的工具。
2025-02-14
意图识别如何通过提示词实现
通过提示词实现意图识别通常有以下几种方式: 1. 准备特定于任务的数据集,对模型进行 Finetuning,以提升其在特定意图识别任务上的表现。但此过程需要较多训练数据和计算资源。 2. 使用 Prompttuning 方法,通过精心设计的提示词来引导模型识别和响应用户意图。这种方法具有灵活性和快速适应性。 3. 对用户的指令通过提示词进行分类,以识别不同的意图,然后根据识别出的意图执行相应动作,最终输出 JSON 格式的结果。 4. 对用户提问进行分类,如分为导航类、信息查询类、交易类、本地信息类等,匹配更准的信息源和更好的回复提示词。例如搜索“笔记本电脑”,提取出“shopping”意图,挂载相关电商平台信息源进行更小范围搜索,并加载匹配的提示词模板控制大模型回答内容。 5. 利用大模型提供的 Function Calling 能力进行意图识别。 但目前主流的实现方案,不管是成熟的大模型还是微调的小模型,准确度都不够高。
2025-02-11
通过图片,识别其中的内容,然后生成可以编辑的PPT文件,使用什么AI工具可以完成?
以下是一些可以通过图片识别其中内容并生成可编辑 PPT 文件的 AI 工具: 1. 增强版 Bot:这是一个基于 AI 驱动的智能创作平台,能够实现一站式内容生成,包括图片、PPT、PDF 等。您可以在对话框输入诉求,如“帮我生成一篇包含以上架构风格的完整 PPT”,它会为您生成幻灯片内容和相关模板选择。 2. Gamma:在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片,还支持嵌入多媒体格式,如 GIF 和视频。网址:https://gamma.app/ 3. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素。网址:https://www.xdesign.com/ppt/ 4. Mindshow:AI 驱动的 PPT 辅助工具,提供一系列的智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 5. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 6. GPT4、WPS AI 和 chatPPT:卓 sir 在完成 PPT 作业时使用的三个 AI 工具。
2025-02-08
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07