Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI在医疗药品零售领域的应用

Answer

AI 在医疗药品零售领域有着多方面的应用前景:

  1. 药品推荐系统 利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。
  2. 药品库存管理 通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。
  3. 药品识别与查询 借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。
  4. 客户服务智能助手 基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。
  5. 药店运营分析 AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。
  6. 药品质量监控 通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。
  7. 药品防伪追溯 利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。

总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
AI生成故事对使用AI有什么好处
AI 生成故事对使用 AI 具有以下好处: 1. 提高效率:显著缩短创作时间,大幅降低制作成本。例如,传统 3D 动画制作可能需要十年以上的学习和制作时间,而 AI 视频生成工具能快速将抽象想法具体化。 2. 降低创作门槛:即使没有专业绘画技能,用户也能通过输入文本描述生成故事。 3. 提升视觉质量:能够优化和提升故事的视觉呈现效果。 4. 快速原型设计:帮助创作者在详细创作之前快速可视化故事概念和布局。 然而,AI 生成故事也存在一些局限性,如在一致性方面面临挑战,尤其对于完全依赖 AI 生成的叙事性视频,维持角色和场景的一致性较为困难。针对这一问题,可以采取一些策略来缓解,如保持角色关键特征和外轮廓的一致、保持角色位置的一致性、减少需要观众记住的角色数量等。
2025-03-10
个人微信接入ai合规吗
个人微信接入 AI 存在一定风险和合规问题。微信端的这种接入属于非常规使用,可能会有封号危险,不建议使用主力微信号接入。 在操作过程中,需要注意以下几点: 1. 接入大模型 API 实现时需要单独付费。 2. 对大模型生成的内容要注意甄别,确保所有操作均符合相关法律法规的要求。 3. 禁止将此操作用于任何非法目的。 4. 处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 此外,关于将 AI 接入微信的实现步骤,可参考以下内容: 1. 注册 AI 模型: 进入智普 AI:https://open.bigmodel.cn/ 。 点击开始使用,注册登录。 按照要求进行认证,点击控制台,查看 API key,添加新的 API key 并复制保存。 2. 注册云服务器: 新用户点击去注册腾讯云: 。 微信扫码注册,首次注册选择第一个。 选择地域和镜像(宝塔 8.1.0),点击立即试用。 进入腾讯云服务台,登录(可微信扫码登录)。 复制 sudo/etc/init.d/bt default 并粘贴回车,保存输出内容。 返回服务器控制台,在防火墙菜单栏添加规则,手动输入相关内容并确定。
2025-03-09
ai写作
以下是关于 AI 写作的相关内容: 一、如何用 AI 写出比人更好的文字 作者陈财猫从自身经历出发,分享了以下观点: 1. AI+内容创作是现阶段最好的赛道:基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,认为该赛道有完美的产品模型匹配和产品市场匹配,且天花板高。 2. AI 写作的实践成果:业务包含营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 3. 定义好文字:好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。 4. 用 AI 写出好文字的方法:选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 5. 对 AI 创作的看法:AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活,或自身是受害者。作者期望 AI 能力进一步提升,改变每个人的生活。 二、AI 写作变现指南 1. 项目启动: 确定目标客户群体,如大学生、职场人士、自媒体从业者等。 选择合适的 AI 写作工具,以满足不同客户的需求。 2. 准备阶段: 学习并实践 AI 写作技术,通过书籍、在线课程等资源提升写作技能。 构建团队,培养和扩充团队成员,以提高运营效率。 3. 商业模式构建: 确定服务内容,如提供论文、报告、文案等直接写作服务。 制定质量控制标准,确保写作内容满足客户要求。 4. 运营与推广: 在淘宝等电商平台上开设店铺,展示并销售写作服务。 建立写作培训社群,分享写作技巧和 AI 应用经验,提升品牌影响力。 通过社交媒体和线下活动进行品牌和社群建设。 与绘画团队、其他写作工作室等合作,共同开发新项目。 5. 项目优化与发展: 持续关注 AI 技术进展,提升服务质量和效率。 根据市场需求,拓展新的服务和产品。 收集客户反馈,不断优化和改进服务。 三、内容仿写 AI 工具 以下是几款中文的内容仿写 AI 工具: 1. 秘塔写作猫:https://xiezuocat.com/ 写作猫是 AI 写作伴侣,帮你推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错的同时一并给出修改建议,智能分析文章的各类属性,用人工智能为你的文章正负情感、情绪强度和易读性打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 笔灵 AI 写作是得力的智能写作助手,心得体会、公文写作、演讲稿、小说、论文十八般武艺样样精通,算是一本适合打工人和学生党的武林秘籍啦!支持一键改写/续写/扩写,智能锤炼打磨文字,使之更加符合你的需求,让创作更上一层楼。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 智能创作助手 Effidit(Efficient and Intelligent Editing)是由腾讯 AI Lab 开发的一个创作助手,探索用 AI 技术提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看这里:https://www.waytoagi.com/sites/category/2 (内容由 AI 大模型生成,请仔细甄别。)
2025-03-09
如何通过与AI的对话获取高质量的信息?有没有相关书籍或者文章推荐,请给出相关链接。
以下是关于如何通过与 AI 的对话获取高质量信息以及相关书籍和文章推荐的内容: 在与 AI 对话获取高质量信息方面: 作为普通用户,语言在大模型中不是关键,核心是向量空间中的游走脉络,输出时的语言翻译是次要的,且训练语料的中英文差异在于 embedding 环节。 通过合适的模型、prompt 和 test 入口表达,用大模型公式调试出好效果以替代垂类模型,但微调垂类模型可能使大模型泛化能力下降,需分场景看待。 写提示词未挖掘出大模型的天花板,还有提升空间。 相关书籍和文章推荐: 从数学、作家、代码、原理角度写大模型的四本书。 介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章。 关于 AI 知识库及学习路径的介绍中提到的经典必读文章,如软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 获取信息的渠道: 可以关注赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,订阅获取最新信息并投稿。 可通过“通往 AGI 之路”知识库获取相关内容,该知识库涵盖了 AI 多方面知识及社区共创项目,如人工智能简史、AI 会话简史等,还有 10 篇精选文章助于理解 AI。 您还可以通过参加社区共创项目,如 AIPU、CONFIUI 生态大会,每月的切磋大会等活动,以及新活动 AIPO,与他人交流获取更多信息。同时,鼓励整理学习笔记并分享交流,以促进对知识的吸收和理解。
2025-03-09
通往GAI之路中AI提示词板块李继刚的提示词如何使用
李继刚的提示词使用方法如下: 从最佳实践中的收录内容开始学习,其结构化提示词能让模型给出更优质、完整的答案。 操作时可点开并复制相关提示词,将复制内容丢进大语言模型对话,会有不同效果。 近期提示词有升级,李继刚老师将提示词玩到新高度,cloud 等大语言模型可直接显示编译结果内容。 输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 李继刚老师会在 13 号讲创作思路。 从工程视角看,一个提示词就能用于写游戏,如现在的 AI 编程(如 CURSOR)能做出开源小游戏,可拿来使用、交流并研究内容、优化改造。
2025-03-09
每一款ai的优势是什么
以下是一些常见 AI 的优势: Notion AI(免费可用):可在笔记和文档中直接接入 AI 能力,能让工作更迅速,写作更出色,思考更伟大。 Guidde AI(免费可用):作为生成式 AI 平台,使团队能够以 11 倍的速度传递专业知识,与客户或员工共享。 Arc Max:能在任何网页寻求 AI 辅助,具备智能标签页、下载重命名、集成 ChatGPT 等功能,可优化浏览体验,是一个节省时间的 AI 功能套件。 Trickle(免费可用):可以帮助总结和整理截图,提取洞察以便于搜索和查询,将视觉混乱的图片转化为智能档案,允许用户截取任何内容,并在以后轻松地检索和使用其内容。 此外,像 GPT4 功能全面,还具备代码解释器等特色功能;Claude 在写作和深度洞察方面备受好评;Gemini 则擅长提供清晰的解释。Claude 3 的上下文窗口超过 150,000 字,而 GPT4 的上下文窗口能够处理 8,000 至 32,000 字的内容。 在科学领域,AI 也展现出诸多优势,例如: 计算机视觉模型可用于拼凑出 5500 万光年外的首个黑洞图像。 英国的一家 AI 公司训练的神经网络能预测蛋白质结构,解决了长期困扰科学家的难题,并推进了结构生物学领域的发展。 深度学习 AI 有望改善乳腺癌筛查,提高检测效率。 AI 机器人能提高农业生产效率。
2025-03-09
药品零售上市企业如何接入DeepSeek?应用场景有哪些?
目前没有关于药品零售上市企业接入 DeepSeek 以及其应用场景的相关内容。但一般来说,企业接入新的技术或系统需要进行充分的前期调研和规划。对于药品零售上市企业接入 DeepSeek,可能需要考虑与自身业务流程的匹配度、数据安全和合规性等方面。应用场景可能包括但不限于药品库存管理的优化、客户需求预测、销售趋势分析等,具体还需根据企业的实际情况和 DeepSeek 的功能特点来确定。
2025-02-11
ai在零售领域的应用
AI 在零售领域的应用包括以下方面: 1. 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 2. 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 3. 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 4. 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 5. 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 6. 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 7. 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 此外,在更广泛的零售领域,AI 还具有以下应用: 1. 产品推荐:分析客户数据,向每个客户推荐他们可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果并为每个客户提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供聊天机器人服务,回答客户的问题并解决他们的问题。
2025-02-07
AI 在零售商超的落地场景和工具分别是哪些?
AI 在零售商超的落地场景主要包括: 1. 产品推荐:通过分析客户数据,为每个客户推荐可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果,为客户提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供服务,回答客户问题并解决他们的问题。 相关工具如下: 1. 市场分析工具:利用 AI 分析市场趋势、消费者行为和竞争对手情况。 2. 关键词优化工具:分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计工具:根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成工具:撰写有说服力的产品描述和营销文案。 5. 图像识别和优化工具:帮助选择或生成高质量的产品图片。 6. 价格策略分析工具:分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析工具:了解客户需求,优化产品和服务。 8. 个性化推荐工具:根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人工具:提供 24/7 客户服务。 10. 营销活动分析工具:分析不同营销活动的效果。 11. 库存管理工具:预测需求,优化库存管理。 12. 支付和交易优化工具:分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销工具:在社交媒体上找到目标客户群体,进行精准营销。 14. 直播和视频营销工具:分析观众行为,优化直播和视频内容。
2025-01-08
AI目前在制造业和零售领域有什么案例吗?
在制造业领域,AI 的应用案例包括: 预测性维护:可用于预测机器故障,避免工厂停机。 质量控制:能够检测产品缺陷,提升产品质量。 供应链管理:有助于优化供应链,提高效率并降低成本。 机器人自动化:用于控制工业机器人,提高生产效率。 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 在零售领域,AI 的应用案例包括: 舆情、投诉、突发事件监测及分析。 品牌营销内容撰写及投放。 自动化库存管理。 自动生成或完成 SKU 类别选择、数量和价格分配。 客户购物趋势分析及洞察。
2024-08-29
AI在建材类零售和电子商务可以有哪些应用
在建材类零售和电子商务中,AI 可以有以下应用: 1. 产品推荐:通过分析客户数据,为客户推荐可能感兴趣的建材产品。 2. 搜索和个性化:改善搜索结果,为每个客户提供个性化的购物体验,使其能更精准地找到所需建材。 3. 动态定价:根据市场需求和建材的供应情况等因素,动态调整建材产品价格。 此外,在更广泛的零售和电子商务领域,AI 还有以下应用: 1. 客户获取成本不断上升的情况下,品牌可以利用 AI 工具降低成本、转化更多购物者并提高客户保留率。 2. 对于完全在线运营的企业,很容易将 AI 工具整合到工作流程的许多部分中。例如,在房地产行业,有工具使代理商能够虚拟布置房产,帮助物业经理将潜在客户转化为预定的参观。 需要注意的是,以上是基于一般零售和电子商务中的 AI 应用情况进行的推测和总结,在建材类领域的具体应用可能会因行业特点有所不同。
2024-08-19
有哪些AI在电商和零售行业的运用?
AI 在电商和零售行业有以下运用: 产品推荐:通过分析客户数据,为每个客户推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化的购物体验。 动态定价:根据市场需求动态调整产品价格。 舆情、投诉、突发事件监测及分析:及时了解市场动态和客户反馈。 品牌营销内容撰写及投放:提高营销效果。 自动化库存管理:优化库存管理策略,降低成本。 客户购物趋势分析及洞察:为决策提供参考。
2024-07-11
AI怎么应用于医疗门诊问题
AI 在医疗门诊中有以下应用: 1. 医学影像分析:用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:加速药物研发进程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每位患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提升手术的精度和安全性。 需要注意的是,湖南省医保局明确禁止使用人工智能生成医疗处方。
2025-03-07
AI医疗
AI 在医疗领域有广泛的应用,包括以下方面: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:加速药物研发过程,如识别潜在药物候选物和设计新治疗方法。 3. 个性化医疗:分析患者数据,为每个患者提供个性化治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 在医疗健康生物制药的研究方面,AI 也发挥着重要作用,取得了以下最新进展: 1. AI 提前三年诊断胰腺癌。 2. 两名高中生与医疗技术公司合作,发现与胶质母细胞瘤相关的新靶基因。 3. AI 帮助抗衰老,筛查出高效的药物候选物。 4. 使用 AI 寻找阿尔兹海默症的治疗方法。 5. AI 帮助早期诊断帕金森。 在蛋白质结构预测和蛋白质合成方面,过去两周有大量突破: 1. AlphaFold 是一种表现出色的 AI 系统,为科学家和药物开发提供巨大帮助。 2. Meta 的蛋白质结构预测 AI 模型 ESMFold 已进行 7 亿次预测。 3. 多伦多大学研究人员开发新的 AI 系统,创造出自然界中不存在的蛋白质。 4. 华盛顿大学的 David Baker 教授团队开发基于 DALLE 的人工智能系统 RF Diffusion,用于生成合适的蛋白质结构。 5. 洛桑联邦理工学院的科学家们开发基于神经网络的新工具 PeSTo,可预测蛋白质相互作用。 6. 萨里大学开发人工智能系统,用于识别个体细胞中的蛋白质模式。 7. 肯特大学的研究团队使用名为 talin 的蛋白质制成凝胶,目标是将其制成防弹材料。 相关文献参考: 1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm 2. https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 3. https://www.sciencedirect.com/science/article/pii/S0958166923000514
2025-03-05
临床医疗deepseek使用手册
以下是关于 DeepSeek 在临床医疗方面的使用手册: 使用案例: 借助 AI 分析好的文章: 找出最喜欢的文章,投喂给 deepseek R1(适合大多数有推理模型的 AI)。 第一次询问:请从写作角度分析这篇文章。 第二次询问:请再从读者角度分析这篇文章。 第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对自己写的文章点评:“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。” 根据文章内容对作者心理侧写:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 提升 DeepSeek 能力的方法: 用 Coze 做效果对比测试。 使用步骤: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不太稳定)。 特别鸣谢: 李继刚:【思考的七把武器】在前期为我提供了很多思考方向。 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源。 Claude 3.5 Sonnet:最得力的助手。
2025-02-13
目前最好的用于医疗的AI
目前在医疗领域,有以下一些出色的 AI 应用: 1. 蛋白质结构预测和合成方面: AlphaFold 是由 DeepMind 开发的 AI 系统,在蛋白质结构预测方面准确度超过其他系统,为科学家和药物开发提供巨大帮助。 Meta 的蛋白质结构预测 AI 模型 ESMFold 截至目前已经进行了 7 亿次预测。 多伦多大学研究人员开发了利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质的新 AI 系统。 华盛顿大学的 David Baker 教授的团队开发了基于 DALLE 的人工智能系统 RF Diffusion,用于根据科学家的需求生成合适的蛋白质结构。 洛桑联邦理工学院的科学家们开发了基于神经网络的新工具 PeSTo,可以预测蛋白质如何与其他物质相互作用,速度快且通用性强。 在 Surrey 大学开发了一种人工智能系统,用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 肯特大学的研究团队使用名为 talin 的蛋白质制成凝胶,该凝胶具有吸收冲击的能力,目标是将其制成防弹材料。 2. 疾病诊断与预测、药物研发以及个性化医疗方面: 麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin,它能有效杀灭对现有抗生素产生耐药性的细菌,且不会使细菌产生新的耐药性。研究者通过训练集让 AI 学习分子特点,总结规律,从大量分子中识别出符合要求的分子,之后实验证明其有效性,很快将用于临床。 为了在医疗保健中产生真正的改变,AI 应像人类一样学习,投资创建模型生态系统,例如“专家”AI,通过学校教育和经验获得有助于在复杂情况下确定最佳答案的直觉。不应仅仅依靠大量数据和生成模型解决所有问题,而应通过堆叠模型进行训练,如先训练生物学、化学模型,再添加特定于医疗保健或药物设计的数据点。
2025-02-10
在医疗场景,现在有哪些应用
在医疗场景中,AI 有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 疾病的诊断与预测:例如利用大模型进行疾病的早期诊断和病情发展预测。 6. 新药物发现:如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 7. 中医应用:将人工智能与中医结合,辅助看诊,提高诊疗效率,未来有望实现 24 小时独立问诊开药。 8. 医学问答:像 DoctorGPT 这样的模型,能够准确回答各种医学问题。
2025-01-20
AI医疗
AI 在医疗领域有广泛的应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能加速药物研发过程,如识别潜在药物候选物和设计新治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术精度和安全性。 在医疗健康生物制药的研究方面,AI 也发挥着重要作用,取得了一些最新进展: 1. 提前三年诊断胰腺癌。 2. 两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因。 3. 帮助筛选抗衰老的高效药物候选物。 4. 用于寻找阿尔兹海默症的治疗方法。 5. 帮助早期诊断帕金森。 为了在医疗保健中产生真正的改变,AI 应像人类一样学习。成为医疗领域顶尖人才通常需要多年密集信息输入和实践学习,AI 也应投资创建模型生态系统,如“专家”AI,通过分层训练模型,而非仅依靠大量数据和生成模型解决所有问题。就像医学生从基础课程开始,科学家需要多年化学和生物学学习及实践指导,这种学习方式有助于培养处理细微差别决策的直觉。
2025-01-07