Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何建立个人助理AI模型

Answer

建立个人助理AI模型是一个复杂的过程,涉及到多个步骤,包括数据收集、模型选择、训练、测试和部署。以下是一些基本步骤:

  1. 确定需求:首先,你需要确定你的个人助理AI需要完成哪些任务,比如日程管理、邮件处理、信息检索等。

  2. 数据收集:AI模型需要大量的数据来学习。收集与你的需求相关的数据,例如邮件、日程安排、个人偏好等。

  3. 数据预处理:清洗和格式化数据,以便它们可以被AI模型使用。这可能包括去除无关信息、标准化文本、标注数据等。

  4. 选择模型架构:根据你的需求选择合适的AI模型架构。这可能是基于规则的系统、机器学习模型或者深度学习模型。

  5. 特征工程:确定哪些特征对于你的模型是重要的,并从数据中提取这些特征。

  6. 模型训练:使用你的数据训练AI模型。这可能需要多次迭代,以优化模型的性能。

  7. 模型评估:在独立的测试集上评估模型的性能,确保它能够准确地完成任务。

  8. 模型优化:根据评估结果调整模型参数,提高模型的准确性和效率。

  9. 集成和部署:将训练好的模型集成到你的个人助理应用中,并在实际环境中部署。

  10. 用户界面设计:设计一个用户友好的界面,让用户能够轻松地与AI助理交互。

  11. 持续学习和更新:AI模型需要不断地学习和更新,以适应用户的变化需求和新的数据。

  12. 隐私和安全:确保你的AI模型遵守数据保护法规,保护用户的隐私和安全。

  13. 反馈机制:建立一个反馈机制,让用户能够报告问题或提供改进建议。

  14. 多语言和多平台支持:如果你的AI助理需要跨语言和平台工作,确保它具备相应的支持。

  15. 可扩展性:设计你的AI模型时考虑到可扩展性,以便未来可以添加新功能或处理更多的数据。

建立个人助理AI模型是一个持续的过程,需要不断地迭代和改进。此外,你可能需要具备机器学习和软件开发的相关知识,或者与专业人士合作来完成这个任务。如果你想要使用现成的工具或服务,可以考虑使用一些提供自定义AI模型的平台,如Google的TensorFlow、Amazon的AWS AI服务等。

Content generated by AI large model, please carefully verify (powered by aily)

References

Stuart:【入门级】教你用最简单的方式搭建微信机器人

1、进入智普AI:https://open.bigmodel.cn/2、点击开始使用,注册登录。3、会让你认证,按照要求进行认证。之后点击控制台,你就会看到下方这个页面。4、点击右侧的:查看API key5、点击添加新的API key,再点击复制。*把这一串编码,暂时保存到你的微信上或别的地方,后续需要用到。

AI助理锦囊:创建你的AI助理

i.创建高级自定义能力ii.添加接口yaml描述文件实时路况信息查询Open API:角色设定你是一个全国道路通,能够调用AMAP Traffic Status API接口查询道路实时路况。语气风格与欢迎语设置欢迎词设置:我是一名路况专家,可以实时了解路况信息示例问法1:查询深圳市北环大道的路况信息示例问法2:查询查询杭州市高教路的路况信息示例问法3:查询查询北京市望京东路的路况信息一起动手

周鸿祎免费课AI系列第一讲

有了AI加持,搜索可以变成一个个人智能助理。举个例子:今天苹果宣布取消造车,你想搜索一下网上对这件事有什么评价。普通搜索会给出无数相干或者不相干的链接。但AI搜索作为你的助理,可能会用苹果造车、小米造车、理想股价等不同关键词进行无数次搜索,理解行业对苹果取消造车是什么反应、对用户有什么影响等等,然后写一篇综述,直接给你一个答案。

Others are asking
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
openAI关于道德规范的调整是什么
OpenAI 在道德规范方面的调整包括以下内容: 1. OpenAI 认为通过分析 ChatGPT 和 GPT4 用户对数百万条提示的反应,能获得知识以使未来的产品符合道德规范。 2. 随着公司承担更多任务并投入更多商业活动,有人质疑其在多大程度上能集中精力完成降低灭绝风险等任务。 3. OpenAI 与数以百计的内容审核员签订合同,对模型进行教育,使其了解对用户提示做出的不恰当或有害回答。 4. 山姆·奥特曼曾强调 AI 可能带来的潜在灾难,如大规模虚假信息传播、网络攻击以及威权政府滥用等,并对 OpenAI 最初的开放性承诺进行重新考虑。 5. 公司领导层认为董事会作为非营利性控制实体的一部分,将确保营收和利润的驱动力不会压倒最初的想法。但目前 OpenAI 还不清楚 AGI 到底是什么,其定义将由董事会决定。
2025-02-18
多模态的AI工具有哪些
以下是一些多模态的 AI 工具: GPT4VAct:这是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。它可以识别网页上的元素并理解其功能,目的是自动完成一些人工操作任务以提高效率。主要特点包括有限的视觉处理能力、自动标记、鼠标和键盘操作等,但目前存在一些功能暂不支持。 Sora:是第一个能够根据人类指令生成长达一分钟视频的模型,标志着在生成式 AI 研究和开发中的重大突破。 DiT:能将视频分解为一帧帧图像并逐帧去噪生成流畅连贯的视频,不仅能生成高质量逐帧图像,还能在时间维度上保持一致性。 Topview.ai:是一款面向海外市场的多模态转换工具,作为 AI 驱动的营销视频生成工具,可自动实现模态转换,帮助社交媒体达人将素材一键转换为爆款商业短视频。
2025-02-18
想做ai产品经理如何从0到1学习ai
如果您想从 0 到 1 成为 AI 产品经理,可以按照以下步骤学习: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下案例: 90 分钟从 0 开始打造您的第一个 Coze 应用,了解 Code AI 应用开发教学,包括其背景、现状、证件照应用案例以及学习过程,重点熟悉桌面网页版的用户界面。 参考北京分队成员的经验,如枫 share、行远、管子、猫先生、Andy 等在 AI 领域的技能、经验、职业、兴趣爱好等方面的情况。
2025-02-18
我是一个ai小白,我想要在一个月内快速入行ai,需要怎么做
以下是对于您在一个月内快速入行 AI 的建议: 首先,要明白对于超出自己理解范围的事情,最简单有效的方法就是亲自尝试。学习新事物,百闻不如一练。AI 是未来必然的发展方向,其科普还有很长的路要走,但尽可能简单地试用它,是让普通人在这场 AI 浪潮中受益的最佳方式。 对于普通人来说,对 AI 最好的直观初接触主要有两个方面: 1. 思考最低成本能直接上手试的工具是什么,自己能否亲自尝试。 2. 了解现在最普遍或最好的工具是什么,以及它们能达到的效果。 虽然底层都是大模型,但 AI 工具各有侧重,不同公司也会进行各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。为了更便捷地展示 AI 的能力,让普通人能更直观地马上上手,您可以重点关注以下几种工具: 1. 聊天工具 2. 绘画工具 3. 视频工具 4. 音乐工具 如果您想要跟他人交流、一起在 AI 路上探寻,可以戳这里:
2025-02-18
哪个AI助手最好用?
目前没有直接关于“哪个 AI 助手最好用”的准确答案。但为您提供以下相关信息供参考: 在编程方面,有一些辅助编程的 AI 工具,如 GitHub Copilot,由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议;通义灵码,阿里巴巴团队推出,提供多种编程辅助能力;CodeWhisperer,亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议;CodeGeeX,智谱 AI 推出的开源免费 AI 编程助手;Cody,代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力了解开发者的整个代码库;CodeFuse,蚂蚁集团支付宝团队推出的免费 AI 代码助手;Codeium,一个由 AI 驱动的编程助手工具,可提高编程效率和准确性。您可以根据自己的需求选择适合的工具。更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。 在其他领域,如视频问答方面,YouTube 推出了高级会员可使用的视频问答功能,通过视频下方的“Ask”按钮使用 AI 助手,支持询问关于视频的各种问题。 在照片处理方面,Cooraft 是个性化 AI 照片效果工具,能将自拍转换为 AI 风格视频、生成专业级高质量照片、添加艺术效果、制作趣味表情包、让静态照片动起来、将草图变真图等。 在购物方面,Perplexity 推出了 AI 购物助手:Shop Like a Pro,从产品搜索到下单全流程一站式完成,无需切换标签页,还具有 Buy with Pro 功能,支持直接研究商品并结账,提供免费送货服务,支持视觉搜索工具,通过拍照找到相关商品。
2025-02-18
AI助理
以下是关于 AI 助理的相关内容: 工作流: 1. 起床时,让 AI 如“马云”“马化腾”为自己排 TODO 优先级,做私董会的脑暴。 2. 工作中有傲娇的 AI 小助理加油,其 Prompt 为要阳光、会撒娇/卖萌。 3. 重点事项 bot 方面,如内容创作,拆成 bot 团队组,包括选题、标题、框架、扩写等,并分 A/B 组两个 AIbot 互相改,要点是提供反常识、梗,学习喜欢的 UP 创作方法论。 4. 优化的 bot 包括内容选题 bot、短视频脚本 bot、数据分析 bot(GPT4)、网页 Perplexity 的资料库 bot 等。 5. 优化 1:Zion、ChatO 和自动化 AIAgent 分身,基于自身知识库的 bot。 6. 优化 2:将上述知识库、Prompt 资产,全部放入飞书的知识库+多维表单中维护,等待飞书的 AI 进化。 7. 备选:筛选过的 50 多个生产力 AI,放在工具库里,待命输出。 8. 未来:把整个公司业务全部搬入飞书中,外接 MJ、ChatBot 分身,以及咨询日程预约。 9. 可能:所有流量口 bot 也介入飞书,给予飞书做数据分析和内容引擎(目前需手动)。 10. 提醒自己,关注 AI 的同时,更要关注打交道的人、利益、状态和情绪。 GPTs: GPTs 是 OpenAI 推出的工具,允许用户量身打造自己的 AI 助理。可根据需求和偏好创建定制的 ChatGPT,如帮忙梳理电子邮件或提供创意灵感等。OpenAI 已推出几种现成的 GPTs 供使用,如「The Negotiator」、「Game Time」等。用户还可上传资料来自定义 GPTs,目前 GPTs 的使用仅限于 ChatGPT Plus 的用户。此外,OpenAI 推出了 GPT Store,是类似应用商店的平台,允许用户分享他们的 GPTs,甚至可能实施收益分润制度。 在网站上增加一个 AI 助手: 只需 4 步: 1. 创建大模型问答应用:通过百炼创建大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算,快速搭建网站,模拟企业官网或其他站点。 3. 引入 AI 助手:通过修改几行代码,实现在网站中引入 AI 助手。 4. 增加私有知识:准备私有知识,让 AI 助手能回答原本无法准确回答的问题,更好应对客户咨询。
2025-02-12
如何打造医生的个人AI工具或者助理
以下是为您提供的关于打造医生个人 AI 工具或助理的一些参考: 在医疗保健领域之外,已经有许多为协助特定任务而设计的 AI 驱动工具和教练出现,比如 InterAlia 能帮助搭配服装,Prodigy AI 能提供职业建议,Poised 能提升沟通能力。未来每个人拥有理解自身生活独特背景的个性化聊天机器人并非不可能。 Sam Altman 认为,AI 模型将很快作为自主的个人助理为我们执行特定任务,例如代表您协调医疗护理。并且随着深度学习的发展,AI 会不断进步,为人们的生活带来改善。 对于教师而言,有多种专用工具推荐,如学生小组里的助教智慧学伴、月之暗面的 Kimi.ai 等。在教育应用中,存在生成式人工智能教育应用的五种境界,包括知道、学习并使用、用好提示语、定制智能体、融合驾驭等。同时,还有一些原则需要遵循,如始终邀请人工智能入席、让人始终在环路之中、像对待人一样对待人工智能并明确其类型、假设这是用过的最差的人工智能等。在人工智能时代,教学呈现出人类与人工智能/机器人联合教学成为常态、人类教师生产力等因人工智能增强、语言障碍消失、学习回归本真、学习者主动学习等重要性凸显等走向。 综合以上信息,打造医生的个人 AI 工具或助理可以参考以下思路: 1. 明确医生的具体需求和任务,例如诊断辅助、病历管理、患者沟通等。 2. 选择适合医疗场景的技术和算法,确保准确性和安全性。 3. 设计友好的用户界面,方便医生操作和交互。 4. 进行大量的医疗数据训练,以提高工具的性能和准确性。 5. 遵循相关的法律法规和伦理准则,保障患者隐私和医疗安全。
2025-01-08
医生的ai助理
以下是关于医生的 AI 助理的相关信息: 为了在医疗保健领域产生真正的变革,AI 应像优秀的医生和药物开发者那样学习。成为顶尖医疗人才通常从多年的密集信息输入和实践开始,通过正规教育和学徒实践,获取难以在教科书中明确的知识,培养在复杂情况下确定最佳答案的直觉。对于 AI 来说,当前的学习方式及技术人员的处理方式存在问题,应通过堆叠模型训练,如先训练生物学、化学模型,再添加特定医疗数据点。 AI 智能体方面,如字节的扣子,是新一代一站式 AI Bot 开发平台,无论有无编程基础都能构建各类问答 Bot,完成从简单问答到复杂逻辑对话,开发完成后可发布到社交平台和通讯软件。创建智能体可通过简单 3 步:起名称、写介绍、用 AI 创建头像。 在医疗领域,2024 年 4 月浙江卫健委联合支付宝推出“AI 就医助理”,功能包括诊前的智能导诊、一键挂号,诊中的在线取号、排队叫号、线上缴费、AR 导航等,诊后的健康问答、指标解读、健康档案等,通过数字人的“主动服务”串联就医流程,虽从 ROI 角度看解决的痛点不足以让医院和患者付费,但可作为收集医疗数据的重要途径,实现医院、患者、企业三赢。
2025-01-08
如何用AI搭建工作助理
以下是关于如何用 AI 搭建工作助理的相关内容: 一、整体过程 构建 AI Agent 可以类比为培养一位职场新人,包括以下阶段: 1. 规划阶段:明确目标,确定 AI Agent 的具体任务,将其拆解为可管理的子任务,并设计每个任务的执行方法。 2. 实施阶段:搭建工作流程,为每个子任务设置清晰的操作指南,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:通过反复测试和调整,不断优化 AI Agent 的性能,调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 二、搭建 AI 工作流的能力 1. 学会搭建 AI 智能体:AI 智能体就像是员工,能根据设定的工作流,自动调用不同的 AI 工具,完成全流程任务,不需要人类时刻盯着指导。例如设计一个“写作助手”的 AI 智能体,输入文章的主题、风格和要求,它就能自动完成文章大纲处理、初稿撰写、修改润色和排版等工作。 三、智谱 BigModel 共学营第二期:把微信变成超级 AI 助理 1. 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 2. 参与课程至少需要有 token 体验资源包,获取资源包的方式有: 新注册用户,注册即送 2000 万 Tokens。 充值/购买多种模型的低价福利资源包: 直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay 语言资源包:免费 GLM4Flash 语言模型/ 多模态资源包: 多模态资源包: 共学营报名赠送资源包 3. 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 4. 进入智能体中心我的智能体,开始创建智能体。此流程会手把手进行编辑,完成一个简单智能体的搭建,此智能体完成特定功能。
2024-12-30
我需要一个工具 让我能够把看到的资料汇总到里面,慢慢的他就成为了我的一个智能助理,但凡我阅读过的东西,只要我能想到一点点相关内容,都能通过这个工具在里面找到汇总答案,同时还能链接到原来的文章或知识点,有这样的AI工具么
以下是为您整理的相关信息: 目前有一些工具和方法可以满足您的需求。例如: 1. 在“让机器理解世界/GPT 时代人类再腾飞·译者序”中提到,人类要学会深刻理解 AI 系统的工作方式与它的边界,AI 可以作为伙伴帮助我们充分发挥潜力。 2. 7 月 16 日 Jimmy Wong &吕立青的相关内容中,提到可以通过输入端输入不同模态的内容,包括音频、文本、视频等并消化,在输出端借助自己的知识或让 AI 助理基于收藏或保存的知识点来完成某些事情,如写文章、输出代码等。 3. 在“VIRTUAL”中,提到可以用 AI 搜索引擎如 felo.ai/search 搜索并归纳内容,用 AI 可视化工具 napkin.ai 转成图示。还提到可以像编程一样预先写好咒语(prompts),将日常工作中固定输入输出的部分写成“智能体”并不断迭代优化。很多 AI 网站都可以创建“智能体”,您可以手搓各种机器人为您工作,如出试题、找资料、画插图、专业翻译等,还能设置“常用语”“小助手”“bot”,如 Kimi.ai 。 综合来看,目前有多种方式和工具可以帮助您实现将资料汇总并成为智能助理的需求。
2024-12-14
私人助理领域,如今有没有成熟的产品
在私人助理领域,目前有一些相关产品,但成熟的产品相对较少。 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少之又少。一方面是高度智能化的 Agent 能力需要打磨,概念落地还有较长一段距离;另一方面是 AI 和娱乐消费诉求的结合还几乎没有,其主要带来的是生产方式变革和效率变革。个人消费者方向,目前只看到“私人助理”场景。 Dots 是目前看到的最接近理想 AI Agent 形态的 C 端私人助理。它支持用户发送文本和图像、音频信息并理解内容,能够为用户制定计划、进行文件管理、推荐咖啡店,帮助用户访问互联网中的最新工具和服务。不过,该产品需要排队较久的 waitlist,官方也较少更新动态。其官方 twitter 为:https://twitter.com/newcomputer ,官网介绍:https://new.computer/about 。
2024-12-12
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大模型产品对比
以下是对一些大模型产品的对比介绍: 智谱清言:由智谱 AI 和清华大学推出,基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。 模型特点:在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。更擅长专业能力,但代码能力有优化空间,知识百科稍显不足,是很有竞争力的大模型。 适合应用:场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及长文本记忆相关场景,在较复杂推理应用上效果不错,也适用于广告文案、文学写作。 其他大模型产品: OpenAI 发布 GPT4 科大讯飞发布星火 1.0 及升级至星火 3.0 百度发布文心一言 1.0 及升级至 V3.5 清华开源 ChatGLM 360 发布 360 智脑 1.0 及升级至智脑 4.0 复旦开源 MOSS 元语开源 ChatYuan 阿里云发布通义千问 1.0 及开源 Qwen7B 商汤科技发布商量 1.0 及升级至商量 2.0、商量 3.0 昆仑万维发布天工 1.0 出门问问发布序列猴子 华为发布盘古 3.0 西湖心辰发布西湖大模型 云从科技发布从容大模型 理想汽车发布 MindGPT OPPO 发布 AndesGPT vivo 发布 BlueLM 小米发布大模型 MiLM 元象科技开源 XVERSE13B Google 发布多模态大模型 Gemini 上海人工智能实验室开源 InternLM20B 百川智能发布 Baichuan2—Turbo 关于大模型在营销方面的应用: 大模型在实体类产品的营销标语生成上表现较好,虚拟类产品相对欠佳。可能是因为大模型训练数据中实体类语料多,更能调用已有知识加工,而虚拟类产品非标准品,大模型认识不足。 情绪价值在营销领域有很多用武之地,除快消商品外,很多产品的营销需要反复沟通,虚拟产品对感性成交依赖更大,大模型在这方面仍有很大发展空间。
2025-02-18
我想创业,花多少钱,能够搭建一个视频领域的AI模型
在视频领域搭建 AI 模型的成本因多种因素而异。对于创业者或小公司来说,这个领域存在一定的挑战。 腾讯的混元 AI 视频模型目前只支持文生视频,且已开源免费。 在模型供应商方面,不同供应商的特点和成本有所不同: 智谱 GLM4V 是通用视觉类大模型,为拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,调用成本为 0.05 元/千 tokens。 阿里云百炼 qwenvlplus 也是通用视觉类大模型,是拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为 0.008 元/千 tokens,训练成本为 0.03 元/千 tokens。 阶跃星辰是通用视觉类大模型,响应速度快,支持视频理解,输入成本为 0.005 0.015 元/千 tokens,输出成本为 0.02 0.07 元/千 tokens。 百度 PaddlePaddle 是 OCR 垂直小模型,文本识别能力补齐增强,私有化部署有服务费,API 调用在 0.05 0.1 元/次。 此外,获取高质量数据的难度较高,大厂在该领域的护城河深厚。大公司在争取大模型 API 客户方面更具优势,且开源大模型的发展可能会影响创业公司的业务。去年为大客户定制一个大模型的最高订单额可达 1000 万元,而今年则快速降到了百万元级别乃至更低。
2025-02-18
你的底层大模型用的是哪个?
目前常见的大型语言模型多采用右侧只使用 Decoder 的 Decoderonly 架构,例如我们熟知的 ChatGPT 等。这些架构都是基于谷歌 2017 年发布的论文“attention is all you need”中提出的 Transformer 衍生而来,其中包括 Encoder 和 Decoder 两个结构。 大模型的特点在于: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 大模型之所以能有效生成高质量有意义的回答,关键在于“大”。例如 GPT1 的参数规模是 1.5 亿,GPT2 Medium 的参数规模是 3.5 亿,到 GPT3.5 时,参数规模达到惊人的 1750 亿,参数规模的增加实现了量变到质变的突破,“涌现”出惊人的“智能”。 大模型的预训练机制是指其“脑袋”里存储的知识都是预先学习好的,预训练需要花费相当多的时间和算力资源。在没有其他外部帮助的情况下,大模型所知道的知识信息总是不完备且滞后的。
2025-02-18
搭建个人知识库的具体操作是什么?
搭建个人知识库的具体操作如下: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载不同类型的文档。 文本分割器把文档切分为指定大小的块。 存储涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 通过检索算法找到与输入问题相似的嵌入片。 把问题以及检索出来的嵌入片一起提交给 LLM 生成答案。 2. 本地知识库进阶: 若要更灵活掌控知识库,需使用 AnythingLLM 软件,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离。 操作包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 3. 使用 embeddings: 将文本转换成向量能节省空间,可理解为索引。 把大文本拆分成小文本块,通过 embeddings API 转换成向量,在向量储存库保存向量和文本块作为知识库。 用户提问时,问题先转成向量,与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。 例如,对于“此文作者是谁?”的问题,通过比较向量可找到关联度高的文本块。
2025-02-13
我想用deepseek 写微信公众号文章,我将要写的主题告诉他,让它为我生成个人角度的文章,我要写的主题一般围绕着软件分享,技术分享等。请你根据我的要求为我写一份适用的提示词
以下是为您生成的适用于使用 DeepSeek 写微信公众号文章的提示词: 我要写一篇关于软件分享或技术分享的微信公众号文章,文章标题要足够吸引人,以便能广泛传播。文章内容要详细且有条理,先介绍分享的软件或技术的基本情况,包括其功能、特点和优势;然后结合实际案例或个人使用体验,阐述其在实际应用中的效果和价值;最后总结并展望其未来的发展前景。请为我生成这样一篇完整的文章。
2025-02-12
个人知识库
以下是关于个人知识库的相关内容: 使用 GPT 打造个人知识库: 将文本拆分成小文本块(chunk),通过 embeddings API 转换成 embeddings 向量,在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,问题先转换成问题向量,与向量储存库中的文本块向量比对,提取关联度高的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如对于“此文作者是谁?”的问题,可根据向量关联度提取相关文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。” 理解 embeddings: embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 向量是数学中表示大小和方向的量,通常用一串数字表示,在计算机科学和数据科学中常用列表表示。 向量之间的距离有多种计算方式,常见的是欧几里得距离。 在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。 手把手教你本地部署大模型以及搭建个人知识库: 思路来源于视频号博主黄益贺。 作者按照视频进行实操并附加了关于 RAG 的额外知识。 读完本文可学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 的信息流转、RAG 的概念及核心技术、通过 AnythingLLM 搭建本地化数据库等。
2025-02-12
写一篇关于个人AI生存协作的探索指南
以下是一篇关于个人 AI 生存协作的探索指南: 一、相关研究和报告 1. 平安证券发布的《AI 系列深度报告(六):AI 智能眼镜:AI 技术应用落地新风口,25 年有望迎来新品密集发布》指出,AI 技术推动终端创新,AI 智能眼镜成为新风口,具有轻薄、功能聚焦视听、佩戴舒适等特点,预计 2025 年新品将密集发布,销量有望翻倍。 2. 腾讯研究院发布的《2025 年 AI 转型的进展洞察报告》深入探讨了 AI 转型的定义、内涵、应用现状、投资情况、挑战与风险以及未来展望。报告指出企业对生成式 AI 的探索集中在核心业务环节,但在职能性环节成熟度更高,应用时以多目标为导向,优先聚焦提升核心能力和优化现有业务。 二、基础篇 过去一年持续进行了关于 AI 协作探索的研究和分享,包括 AI 产品的流量和竞争视角分析等。 三、协同智能的七种武器 1. 认知层/武器一:As Team,Be Leader 2. 视角层/武器二:AI as Person 3. 视角层/武器三:AI as ME 4. 视角层/武器四:AI as Alien 5. 实践层/武器五:AI as Tool 6. 实践层/武器六:AI as Mirror&Coach 7. 实践层/武器七:AI as Coworker&Friend 四、拓展阅读 包括 Gamma embed、AIGC 行业、AI 变革、公司/产业实践等方面的内容。 五、人类价值的低替代、提升方向和方式重塑 在领导决策、创新思维、沟通能力等方面,思考和创新占 70%,想法的实现执行和与 AI 协作执行占 30%。
2025-02-12
架设个人AI
以下是关于架设个人 AI 的相关信息: 大圣是一位 AI 超级个体打造者,主业为程序员,专注于 AI Agent、AI 编程以及 AI 写作领域,热爱写作与分享,擅长将复杂的 AI 知识通俗易懂地讲解。他计划一年内将自己的工作流全部 AI 化以实现十倍提效,目前的工作流主要包括阅读与写作、自媒体个人 IP、做公开课程与付费课程以及女儿日常陪伴。 用 Coze 免费打造自己的微信 AI 机器人的步骤: 设计 AI 机器人时,要确定功能范围。 编写【prompt】提示词,设定 Bot 的身份和目标。 创建【知识库】,整理“关键字”与“AI 相关资料链接”的对应关系并存储,创建知识库路径为个人空间知识库创建知识库,支持本地文档、在线数据、飞书文档、Notion 等类型,本次使用【本地文档】,按照操作指引上传文档、分段设置、确认数据处理,可在内容中加上特殊分割符“”便于自动切分数据,分段标识符号选择“自定义”,内容填“”,若内容有误可编辑或删除。 创建【工作流】,告诉 AI 机器人处理信息的流程,创建工作流路径为个人空间工作流创建工作流,工作流设计好后先试运行,无误后发布,若任务和逻辑复杂,可结合“节点”工具,如调用【大模型】总结分析知识库内容、调用【数据库】存储用户输入信息、调用【代码】处理复杂逻辑等,工作流不必复杂,能实现目的即可,所以在设计 Bot 前确定目的和功能范围很重要。
2025-02-12
现在个人应用场景下最新的产品是什么
在个人应用场景下,最新的产品包括以下方面: 个人实操案例: 产品使用场景:为本篇文章配图,通过不同提示词生成搞笑图片等。 产品开发场景:搭建 AI 访谈 bot,以了解做 AI 朋友的访谈意愿和产出内容质量水平;对内容推荐机制感兴趣,希望 bot 具备内容推荐能力。实现方案有简单和复杂之分,复杂方案需考虑用户识别、记录存储入库可查看等问题,在扣子搭建 bot 时存在工作流触发不成功导致访谈记录未成功存储入库的情况。由于要发布到公众号作为订阅号助手,目前部署的是扣子版本,回复关键词【元器】可体验元器版本。 AIGC 落地应用: 筛选出 5 大应用场景、17 个细分方向、40+大模型案例。 使用场景分为改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 五个方向。 产品形态分为插件(Chat GPT/Chrome 等)、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区四种。目前产品大多分布在 PC 端。
2025-02-11