Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

知识管理工具

Answer

以下是一些知识管理工具:

  • Semafind:这是一个先进的 AI 驱动的知识管理工具,用户可以通过以短句子形式存储信息,创建一个全面的知识库。其产品官网为 https://www.semafind.com/。
  • Albus:一款 AI 驱动的知识管理工具,能帮助用户以不同方式处理知识,发现新角度和问题,还可通过添加笔记和图片来组织内容,轻松控制和展示内容,快速形成主题板,允许用户探索、混合、编辑和展示内容。其官网为 https://www.albus.org/。

在搭建知识体系时,可参考以下步骤:

  • 明确需求和兴趣点,选择相关信息源,确保信息质量与相关性。
  • 通过各种工具和方法,如浏览器插件、笔记应用等,建立稳定的信息获取和存储机制。
  • 使用不同的笔记方法和工具,将收集的信息进行分类、标签化和链接,形成结构化的知识体系,便于检索和应用。
  • 通过定期复习、思考和实践,将外部信息转化为个人知识,并在实际工作和生活中应用这些知识,解决具体问题。
Content generated by AI large model, please carefully verify (powered by aily)

References

效率工具篇2-5000+个AI 项目详解

产品官网(https://www.semafind.com/)Semafind是一个先进的AI驱动的知识管理工具,彻底改变了用户组织和发现私人知识的方式。使用Semafind,用户可以通过以短句子形式存储信息,即所谓的knotes,创建一个全面的知识库。

小七姐:信息管理工具与方法

4.用得上:最终目标是将积累的知识转化为实际行动和成果。当需要解决问题或创造价值时,能够从知识库中调取相应信息,形成解决方案、产品、文章或个人生活指导等。这意味着知识不再是静态的存储,而是动态的应用于具体情境中,实现知识的价值转化。这一步将信息管理的成果落实到具体产出上,体现了知识的实践意义。🏗知识体系搭建:信息源的选择:在搭建知识体系时,首先要明确自己的需求和兴趣点,选择与之相关的信息源,确保信息的质量与相关性。信息通路的建立:通过各种工具和方法,如浏览器插件、笔记应用等,建立稳定的信息获取和存储机制,确保信息能够顺畅地流入知识体系。知识结构化:使用不同的笔记方法和工具,将收集的信息进行分类、标签化和链接,形成结构化的知识体系,便于检索和应用。知识内化与应用:通过定期的复习、思考和实践,将外部信息转化为个人知识,并在实际工作和生活中应用这些知识,解决具体问题。

AIGC Weekly #25

Albus是一款AI驱动的知识管理工具,可以帮助用户以不同的方式处理知识,发现新的角度和问题,并通过添加笔记和图片来组织内容。用户可以轻松地控制和展示他们的内容。Albus还可以快速形成一个主题板,允许用户探索、混合、编辑和展示内容。

Others are asking
知识库管理工具
以下是关于知识库管理工具的相关内容: 使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写良好的描述,说明其包含的内容和特点。 3. 配置索引方式:Dify 提供三种索引方式,包括高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式,如需更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库以保持时效性。 创建并使用知识库: 维护知识库内容:为提升召回准确率,可删除、新增或修改知识库内容。 管理知识库:在知识库页面可看到已创建的知识库及相关信息,单击知识库或编辑图标进入详情页面,可进行新增内容、删除内容、更新单元内分段、开启引用等操作。 使用知识库: 在 Bot 内使用: 1. 登录。 2. 在左侧导航栏工作区区域选择进入指定团队。 3. 在 Bots 页面选择指定 Bot 并进入详情页。 4. 在 Bot 编排页面的知识库区域单击加号图标添加指定的知识库。 5. (可选)添加后可在自动调用下拉界面内调整配置项,包括最大召回数量、最小匹配度、调用方式等。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可查看知识库命中并召回的分片内容。 在工作流内使用: 1. 登录。 2. 在左侧导航栏工作区区域选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内选择添加 Knowledge 节点。
2024-12-31
提示词管理工具
以下是一些提示词管理工具: Learning Prompt:授人以渔,是非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网站地址为。 FlowGPT:国外最大的 prompt 站,内容超全面,更新快,网站地址为。 LangChain Hub:LangChain 推出的提示词上传、浏览、拉取和管理的工具。很快也会添加代理功能。目前需要邀请码才能使用,没有的话可以浏览别人提交的提示词,筛选项丰富,不止支持问题类型,也支持筛选提示词生效的模型。页面内不只有提示词,也有对应的向量数据检索或者搭配的 json 格式之类的,还可以进行版本管理。网站地址为
2024-09-14
有哪些不错的AI项目管理工具
以下是一些不错的 AI 项目管理工具: 1. 项目管理和任务跟踪工具: Jira、Trello 等已开始集成 AI 功能,可辅助制定计划、分配任务、跟踪进度。 2. 文档和协作工具: 微软的 Copilot 可集成到 Office 套件中,为项目文档撰写、编辑等提供帮助。 云存储服务如 Google Drive 也开始提供 AI 驱动的文档管理和协作功能。 3. 风险管理和决策支持工具:可帮助识别和分析项目风险,并提供决策建议。 4. 沟通和协作工具:AI 助手可辅助进行团队沟通协调、客户关系维护等。 5. 创意生成工具:如文心一格、Vega AI 等,可快速生成创意图像素材。 此外,还有以下具体的产品经理 AI 工具: 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(hypertype.co) 6. 会议信息:AskFred(fireflies.ai/apps) 7. 团队知识库:Sense(senseapp.ai) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(ellie.ai) 11. 企业自动化:Moveworks(moveworks.com) 另外,著名的项目管理工具 Height 发布了他们的 AI 功能 Height Copilot,具有自动主持站会、将反馈创建为待执行任务、总结历史对话内容、提醒并防止重复创建任务、起草版本发布说明、一键生成针对任务的建议和利用 AI 进行头脑风暴等功能。
2024-09-10
给我推荐一个知识管理工具AI 助手,方便我每天将学习到的新概念和知识博客整理提炼
以下为您推荐使用 Coze 和飞书多维表格来打造专属 AI 智能体,提升知识管理效率: 写在开头,最近学习 AI 时,每天都有大量新内容来不及看,起初将文章都丢进微信文件传输助手,但时间一长出现诸多问题,如分不清阅读状态、遗忘收藏原因等。调研常见的稍后读解决方案,如 Pocket、Instapaper、简悦、Notion 等,要么与个人知识管理体系不符,要么步骤复杂、依赖人工归纳管理,不如文件传输助手方便。基于此,研究智能体时灵光一现,给自己定制一个 AI 稍后读助手,帮助摆脱归纳工作,自动整理阅读清单,并按个人兴趣推荐阅读计划。
2024-08-31
prompt 管理工具
以下是一些与 prompt 管理工具相关的信息: 文本类 Prompt 网站: Learning Prompt:授人以渔,有非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址是。 FlowGPT:国外最大的 prompt 站,内容全面且更新快,网址是。 提示管理工具: LangChain Hub:LangChain 推出的提示词上传、浏览、拉取和管理的工具。 PromptPal:专为 AI 领域中的初创公司和个人开发者设计的提示管理工具,作为集中化平台,便于开发者在 AI 项目中管理提示,实现无缝协作和工作流程优化,开发指向。 Midjourney 中的 Prompts:Prompts 是 Midjourney Bot 中的指令,用于启动新任务或创建图像组,可以是简单单词或短语,也可以是更详细的指令和参数。Midjourney Bot 会根据提供的 Prompt 生成图像网格,您可以选择其中图像并进行修改和操作。您可以。
2024-08-29
如何搭建定制知识库
以下是关于如何搭建定制知识库的相关内容: 要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互支持的 Token 数量有限,约 4096 个,相当于 3000 个单词或 2300 个汉字,容量对于多数领域知识不够。为处理大量领域知识,OpenAI 提供了 embedding API 解决方案,可参考 OpenAI embedding documents。 embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。向量是用一串数字表示大小和方向的量,在计算机科学和数据科学中通常用列表表示。向量之间的距离是度量相似性的方法,常见的如欧几里得距离。在 OpenAI 词嵌入中,靠近的向量词语在语义上相似。 LlamaIndex 是更高一层 LangChain 的抽象,之前叫 GPT Index。之前的文章中的例子使用了 LlamaIndex 包,它简化了 LangChain 对文本分割和查询的接口,并提供了更丰富的 Data Connector。LlamaIndex 只针对 GPT Model 做 Index,而 LangChain 可对接多个 LLMs,可扩展性更强。参考 https://gptindex.readthedocs.io/en/latest/ 在基于大模型+知识库的 Code Review 实践中,对于自定义知识库飞书文档(自定义),没有格式要求,能看懂正确代码即可。可直接使用 LangChain 提供的文档加载类,对有权限的飞书文档进行获取,使用 CharacterTextSplitter/RecursiveCharacterTextSplitter 将文本分割成固定长度的块(chunks),方法有两个主要参数:chunk_size 控制每个块的长度,如设置为 1024,则每个块包含 1024 个字符;chunk_overlap 控制相邻两个块之间的重叠长度,如设置为 128,则每个块会与相邻块重叠 128 个字符。 因为大模型有足够多的数据,想让大模型按要求执行就需要用到“Prompt 提示词”。 最近各家大厂接连放大招,AI 技术和应用突飞猛进,GPT4 接口已支持最大 32K 输入,AI 的开发和使用门槛会越来越低。垂直领域知识库的搭建和优化可能更多是业务问题,而非技术问题。
2025-01-22
如何搭建私人知识库
搭建私人知识库可以参考以下方法: 1. 基于 GPT 搭建: 给 GPT 输入(投喂)定制化的知识,但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识不够。 OpenAI 提供了 embedding API 解决方案,embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 将大文本拆分成若干个小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,当用户提出问题时,将问题先通过 embeddings API 转换成问题向量,然后与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt(问题/提示词),发送给 GPT API。 2. 本地部署大模型搭建: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用,在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 的应用包括文档加载(从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案)。 文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理。
2025-01-22
我是一名数据产品经理,想转行ai产品经理,该从哪里入手。你的知识库里有哪些可以帮到我。最好把他们列举出来,具体一些最好有步骤
以下是为您整理的从数据产品经理转行 AI 产品经理的相关知识和建议: 一、AIPM 技能树 1. 理解产品核心技术 了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通 掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性 在产品规划阶段,能更准确地判断某些功能的技术可行性。 4. 把握产品发展方向 了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力 发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力 掌握相关知识,提升数据分析能力。 二、AI 提示词工程师岗位技能要求 1. 学历和专业背景 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 AI 工具 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目经验 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术理解 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析与决策 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 技术关注 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程能力 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 三、AI 市场与 AI 产品经理分析 当前有两个场景: 1. 企业(包括传统企业和互联网企业)如何实现 AI 转型或用好 AI。 2. 产品经理如何转型 AI 产品经理。 希望以上内容对您有所帮助。
2025-01-21
我想学习AI的入门知识
以下是为新手学习 AI 提供的入门知识: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于不会代码的新手,还可以尝试了解以下作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-01-21
我想学习人工智能知识,从哪里开始呢?
对于新手学习人工智能,建议您从以下几个方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-21
适合小白的AI知识库
以下是适合小白的 AI 知识库内容: 通识篇: 现有常见 AI 工具小白扫盲: 文章链接: 视频链接:(1 小时 32 分开始) 适用人群:对 AI 都没太多概念的纯纯小白 简要说明:给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量 AI 常见名词、缩写解释: 文章链接: 适用人群:对 AI 都没太多概念的纯纯小白 简要说明:给看不懂“黑话”和诸多缩写的小白,请善用这张表+多问 AI 对话工具(如豆包 or Kimi)结合食用 工具入门篇: (Prompt)现成好用的 Prompt: 文章链接: 适用人群:完全没有 AI 使用经验,只下载过 kimi、豆包、chatgpt 一类对话软件的小白 简要说明:想直接拿好用的提示词拿来用用的小伙伴,可以从这里开始,有很多可以直接复制、粘贴的优秀 prompt 案例,它们都有完整的结构。 (AI Agent)Agent 工具 小白的 Coze 之旅: 文章链接: 视频链接:Coze 之旅 1.0: 适用人群:完全没有编程基础,但对 AI 已有一点概念的小白 简要说明:为纯粹小白补的分享 AI AGENT 搭建平台,为什么是它、怎么 30 分钟就能开始用它 (AI Pic)现在主流的 AI 绘图工具网站: 文章链接: 适用人群:完全没接触过 AI 出图、只是听说过的小伙伴 简要说明:为纯粹的小白提供一个工具列表和扫盲 (AI Tools)数据工具 多维表格小白之旅: 文章链接: 视频链接: 适用人群:Excel 重度使用者、手动数据处理使用者、文件工作者 简要说明:用表格 + AI 进行信息整理、提效、打标签,满足 80%数据处理需求 (AI Code)编程工具 Cursor 的小白试用反馈: 文章链接: 适用人群:0 编程经验、觉得编程离我们很遥远的小白 简要说明:通过 AI 工具对编程祛魅,降低技术壁垒 (AI Music)音乐工具 Suno 的小白探索笔记: 文章链接: 适用人群:0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白 简要说明:AI 赋能音乐创作,无需乐理知识即可参与音乐制作
2025-01-20