直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我想在公司构建AI客服体系,我要准备什么内容

回答

构建AI客服体系是一个涉及多个步骤和技术的复杂过程,需要精心规划和执行。以下是您可能需要准备的内容:

  1. 需求分析

    • 确定您的客户服务需求,包括常见问题、客户查询类型和业务流程。
  2. 技术选型

    • 选择合适的AI客服技术平台,如聊天机器人、自然语言处理(NLP)引擎、机器学习工具等。
  3. 数据准备

    • 收集和整理用于训练AI模型的数据,包括常见问题、客户对话记录和业务知识库。
  4. 模型训练

    • 使用收集的数据训练AI模型,以识别和响应客户查询。
  5. 系统集成

    • 将AI客服系统与现有的客户服务平台(如CRM系统、呼叫中心、社交媒体等)集成。
  6. 用户界面设计

    • 设计用户友好的交互界面,确保客户可以轻松地与AI客服系统进行交流。
  7. 测试与优化

    • 在实际环境中测试AI客服系统的性能,并根据反馈进行优化。
  8. 员工培训

    • 对客服团队进行培训,让他们了解AI系统的工作方式,以及如何在必要时介入。
  9. 安全与合规

    • 确保AI客服系统符合数据保护法规和行业标准,保护客户隐私。
  10. 部署与监控

    • 部署AI客服系统,并建立监控机制,以跟踪系统性能和客户满意度。
  11. 持续学习

    • 实施持续学习机制,让AI系统能够根据新的客户互动不断改进。
  12. 沟通策略

    • 制定清晰的沟通策略,告知客户AI客服系统的使用和限制。
  13. 反馈机制

    • 建立客户反馈机制,收集客户对AI客服系统的意见和建议。
  14. 预算规划

    • 制定项目预算,包括技术开发、系统维护、员工培训和市场营销等费用。
  15. 项目管理

    • 建立项目管理计划,包括时间表、里程碑和风险管理策略。

构建AI客服体系是一个持续的过程,需要不断地评估、测试和优化。确保您的团队准备好应对可能出现的挑战,并利用AI技术提供更好的客户服务体验。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
是AI聪明还是人的大脑聪明
AI 和人的大脑谁更聪明是一个复杂的问题,不能简单地一概而论。 从某些方面来看,AI 具有强大的计算能力和处理大量数据的能力,能够快速准确地完成特定任务。例如,在处理复杂的数学计算、大规模数据的分析和模式识别等方面表现出色。 然而,人的大脑具有独特的智慧和能力。大脑是一个混沌系统,具有创造性、适应性、情感理解、综合判断和复杂情境处理等能力。人类能够进行抽象思维、创新创造、理解情感和道德等方面的思考。 AI 是通过学习人类大脑结构来发展的,但目前仍存在诸多不足和缺陷。例如,大模型内部也是混沌系统,即使是科学家也无法解释其微观细节。 在绘画方面,人类的绘画创作通常是线性发展的过程,先学习线稿表达、色彩搭配、光影表现等,而 AI 是以积累数据、扩散噪声、再降噪收束的路径来生图,经常会在同一张图中呈现出不同绘画级别的细节。 总之,AI 和人的大脑各有优势和局限性,不能简单地判定谁更聪明。
2024-11-22
AI到底是什么
AI 是一门令人兴奋的科学,它是指某种模仿人类思维,可以理解自然语言并输出自然语言的东西。 对于不具备理工科背景的人来说,可以把 AI 当成一个黑箱,只需要知道它是能够理解自然语言的存在即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 从历史角度看,最初计算机是按照明确定义的程序来运算的,但对于像从照片判断人的年龄这类无法明确编程的任务,就需要人工智能来解决。 在应用方面,AI 健身是利用人工智能技术辅助或改善健身训练和健康管理的方法,能根据用户情况提供定制化训练计划和建议。比如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身工具。
2024-11-22
AI知识库工具
以下是为您提供的关于 AI 知识库工具的相关信息: WayToAGI(通往 AGI 之路): 这是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库。 大家贡献并整合各种 AI 资源,让人们能轻松学习 AI 知识,应用各类 AI 工具和实战案例。 提供一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程。 追踪 AI 领域最新进展并时刻更新,无论您是初学者还是行业专家,都能在此发掘有价值的内容。 网址:https://waytoagi.com/ 体验链接:https://waytoagi.com/ 知识库在 AI 模型中的作用: 知识库就像 AI 的“活字典”,是一个非常贴切的比喻。 能解决 AI 知识“过期”的问题,AI 可随时从更新的知识库中检索相关信息,给出更准确的回答。 例如可建立包含最新新闻、科技发展、法律法规等内容的知识库,让 AI 回答最新事件的问题。 像热门的 AI 搜索,就是将整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。 产品经理 AI 工具集: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(https://uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(https://www.hypertype.co/) 会议信息:AskFred(http://fireflies.ai/apps) 团队知识库:Sense(https://www.senseapp.ai/) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(https://www.ellie.ai/) 企业自动化:Moveworks(moveworks.com)
2024-11-22
我想做ui设计来模仿微信做一个app,想找各种图标素材 怎么用ai找这些素材
以下是使用 AI 找模仿微信做 App 所需图标素材的方法: 1. 对于直播礼物风格图标:可以在素材网站上找到喜欢的 icons 风格,然后喂图给 Midjourney 机器人,并加上关键词,如“喂图 + 耳机图标等。 2. 对于主题应用 icons:使用关键词“icon design,light texture,glow,Dribbble,3D,frostedglass effect,3d,ui,ux,–upbeta –q 2 –v 4”。 3. 对于 B 端图标:可以喂图加上关键词“A data icon,blue gradient frosted glass,frostedglass building,white transparent technology sensewhite city building scene,data line link,chip,OCrenderer,big data,industrial machinery,high detailight gray background with simple linear details,studio lighting,3d,c4d,pure white background,8k”。 4. 对于音乐软件 UI 设计:使用关键词“music app ui design,ux design,white,light,bright,data,modern,smooth,behance,dribbble,–upbeta –q 2 –v 4”。 需要注意的是,Midjourney 生成的图片可能在某些方面不够规范或完善,只能作为风格参考。
2024-11-22
怎么用ai写脚本
以下是关于如何用 AI 写脚本的一些指导: 首先,明确您要写的故事类型和来源。故事来源可以有两种路径: 1. 原创(直接经验):包括您或您周围人的经历、您做过的梦、您想象的故事等等。 2. 改编(间接经验):比如对经典 IP、名著、新闻进行改编或二创。 在剧本写作方面: 编剧是有一定门槛的手艺,不能单纯依赖剧作理论和模板,而应先大胆地写和实践,再结合看书学习,不断总结经验。对于短片创作,由于篇幅较小、情节和角色相对简单,可以从自己或朋友的经历改编入手,或者对触动您的短篇故事进行改编。多与他人讨论您的故事,有助于修改和进步。 如果您想用 AI 把小说做成视频,大致的制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说,提取关键场景、角色和情节。 2. 生成角色与场景描述:利用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:借助 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,并添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,提升视频质量。 8. 审阅与调整:观看视频,根据需要调整某些场景或音频。 9. 输出与分享:完成编辑后,输出最终视频并在所需平台分享。 需要注意的是,具体操作步骤和所需工具可能因项目需求和个人偏好有所不同,AI 工具的可用性和功能也可能变化,建议访问相关工具网址获取最新信息和使用指南。 另外,对于担心 AI 削弱孩子思考力的问题,如果使用方法正确,AI 反而能助力拓展思维边界。比如将提问方式从封闭性改为开放性,或者让 AI 帮助提出更多拓展思考的问题。在 AI 辅助写作文时,可以让孩子提交与 AI 共同完成作文的聊天记录,重点关注孩子能否说清 AI 作文的优缺点以及如何修改。
2024-11-22
如何起步开始学习ai设计
以下是关于如何起步开始学习 AI 设计的一些建议: 1. 阅读相关文章: 如 ,了解市场动态和生成式 AI 商业模式的相关问题。 ,认识到尽早学习的重要性,避免被其他熟练掌握 AI 动力设计技巧的设计师超越。 ,了解设计的当前状态、常见问题及实用技巧。 ,学习最佳实践和利用 UX 策略使 AI/ML 系统更易于解释和透明。 2. 利用工具: 了解星流一站式 AI 设计工具,在入门模式下,熟悉右侧生成器的图片参考部分,如快速参考、风格迁移、Tile 分块、重新上色等功能。 掌握基础模型,包括星流通用大模型及基础模型 F.1、基础模型 XL、基础模型 1.5 等,了解它们在效果和生成速度上的差异。 了解增强模型,可通过收藏、查看例图和选择风格等方式进行使用。
2024-11-22
我要做GPTs
做 GPTs 的原因主要有以下几点: 1. 从社会层面看,虽然 AI 信息充斥,但大多数人对其了解有限,直接面对大模型时交流有限。而 Character.ai 因创造具体角色,数据居高不下,这表明需要明确的引导,而 GPTs 的创作者们可以做到这一点。 2. 对于平台来说,需要场景反哺产品,也需要先行者带动,形成双赢的共存生态。 3. 从从业者角度,如作者自身,虽有丰富经验,但在做 LLMs 应用时面临诸多问题,如找不到落脚点、技术与业务的断档等。懂技术的人不懂业务,熟悉业务的人对新技术没概念。 4. 从产品角度,普通用户的简单交流大模型难以明白其意图,而 GPTs 通过对话引导逐步获取用户信息,将生成高质量 Prompt 的过程拆解为以一轮对话为最小单元任务的重复,解决了用户说什么以及低门槛生成高质量 Prompt 的问题。
2024-11-21
我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。
以下是使用 WebUI 为图像添加噪音的详细步骤: 1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。 2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。 3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。 4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
2024-11-18
我有一张图像,我要如何用stable Diffusion给它添加噪音
要使用 Stable Diffusion 给一张图像添加噪音,以下是相关的原理和过程: 在 Stable Diffusion 中,与 GAN 等生成式模型一样,它学习拟合训练集分布,并能够生成与训练集分布相似的输出结果。但与 GAN 相比,SD 模型训练过程更稳定,且具备更强的泛化性能,这归功于其核心的前向扩散过程和反向扩散过程。 在前向扩散过程中,SD 模型持续对一张图像添加高斯噪声直至变成随机噪声矩阵。而在反向扩散过程中,SD 模型进行去噪声过程,将一个随机噪声矩阵逐渐去噪声直至生成一张图像。 Stable Diffusion 的整个训练过程在最高维度上可以看成是如何加噪声和如何去噪声的过程,并在针对噪声的“对抗与攻防”中学习到生成图片的能力。 其训练逻辑为: 1. 从数据集中随机选择一个训练样本。 2. 从 K 个噪声量级随机抽样一个 timestep t。 3. 将 timestep t 对应的高斯噪声添加到图片中。 4. 将加噪图片输入 UNet 中预测噪声。 5. 计算真实噪声和预测噪声的 L2 损失。 6. 计算梯度并更新 SD 模型参数。 在训练时,需要把加噪的数据集输入模型中,每一次迭代用 random 函数生成从强到弱各个强度的噪声,通常会生成 0 1000 一共 1001 种不同的噪声强度,通过 Time Embedding 嵌入到训练过程中。Time Embedding 由 Timesteps(时间步长)编码而来,引入 Timesteps 能够模拟一个随时间逐渐向图像加入噪声扰动的过程。每个 Timestep 代表一个噪声强度(较小的 Timestep 代表较弱的噪声扰动,而较大的 Timestep 代表较强的噪声扰动),通过多次增加噪声来逐渐改变干净图像的特征分布。 以下是一个简单的加噪声流程示例:首先从数据集中选择一张干净样本,然后再用 random 函数生成 0 3 一共 4 种强度的噪声,然后每次迭代中随机一种强度的噪声,增加到干净图片上,完成图片的加噪流程。 在训练过程中,首先对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。接着,让 SD 模型学习去噪过程,最后抽象出一个高维函数,这个函数能在纯噪声中不断“优化”噪声,得到一个干净样本。其中,将去噪过程具像化,就得到使用 UNet 预测噪声,并结合 Schedule 算法逐步去噪的过程。加噪和去噪过程都是逐步进行的,假设进行 K 步,那么每一步,SD 都要去预测噪声,从而形成“小步快跑的稳定去噪”。与此同时,在加噪过程中,每次增加的噪声量级可以不同,假设有 5 种噪声量级,那么每次都可以取一种量级的噪声,增加噪声的多样性。
2024-11-18
我要用数字人AI做教学讲课
数字人 AI 用于教学讲课具有诸多优势: 1. 突破时空限制:可以让历史人物如牛顿亲自授课《牛顿运动定律》,白居易讲述《长恨歌》背后的故事,学生能与任何历史人物对话交流,不受时空约束。 2. 个性化教学:能根据学生的学习情况、兴趣和偏好提供定制化学习计划和资源,因材施教,提高学习效率和成果,缓解教育资源不平等问题。 3. 提高参与感:数字教师博学多能、善解人意且不受情绪左右,基本可实现一对一辅导,让学生参与感更高。 4. 丰富教学形式:如卡尔的 AI 沃茨的数字人课程,包含 15 节视频课,持续更新并增加最新内容,还有课外社群辅导。课程回顾了 2023 年数字人领域的破圈事件,如 AI 马斯克对谈 AI 乔布斯等。 5. 优化工作流:数字人的出现能在制作个人 IP 短视频、配音、直播、智能客服、虚拟偶像等领域完成赋能。 关于数字人课程的学习: 1. 推荐卡尔的 AI 沃茨的数字人课程,建立了完整的数字人学习体系。 2. 报名方式可通过扫码查看课程详细内容和介绍。 在与 AI 交互方面: 1. 对于提示词工程和学习提示词,有人持反对观点,认为像打字和写作一样,不断尝试和大模型交互是最佳方法。 2. 和大模型交互不一定需要遵循规则,未达成目的可锲而不舍地开新窗口再尝试,或更换模型。 3. 用 Markdown 格式清晰表达问题有助于提高与大模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-11-17
我现在是一个AI小白,我想学习AI相关知识,我要怎么进阶学习?
对于 AI 小白的进阶学习,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作自己的作品。 分享实践后的经验和成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的体验,激发对 AI 潜力的认识。 同时,您还需要掌握以下基础知识: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-14
我要用Sd做图片细化,要怎么做?给出具体方法
以下是使用 SD 做图片细化的具体方法: 1. 对于更精确的蒙版,如人物的眼睛或配饰等,可使用 Segment Anything 中的 GroundingDINO。启用 GroundingDINO 后,AI 会自动下载模型,若没有魔法,可去云盘下载并放到指定文件目录下。在检测提示词中输入相关内容,如“eye”,AI 可自动检测并设置蒙版,还可通过预览箱体得到编号来选择调整单一部分。选择要修改的蒙版上传到重绘蒙版中,并添加提示词,如“闭眼”,点击生成即可完成修改。 2. 给人物换背景时,加载生成的背景蒙版。大模型选择 revAnimated_v122,正向提示词可设为“简单背景、花、国画、工笔”,蒙版模式选择“重绘非蒙版内容”。若头发部分没抠好,可将其放入图生图中,使用 tile 模型做整体细化,还能给人物衣服添加国风元素。 3. SD 扩图时,若原本图片尺寸为 1152x1152 需增高高度,可设置为(1152x1526)。ControlNet 设置方面,若无法识别处理,可采取以下措施:提高 ControlNet 的权重(增加预处理权重,降低引导介入时机直到为 0,增加引导终止时机直到为 1);降低重绘幅度(高清修复大图时使用);把原始的黑白二维码叠加在二维码上方(正片叠底,保留 4 个定位点,擦去其他地方),调节透明度;使劲抽卡。 4. SD 放大通常重绘幅度设置在 0.3 以下,使用 tile 模型时可提高重绘幅度,如保持重绘幅度为 1 放大 1.5 倍绘图,能加强画面细节且不崩坏。对于草图,可将其导入 ControlNet 中,添加提示词进行细化,还可通过改变控制模式和增加关键词来优化效果,如实现随机提示词转换,用提示词对参考图做出调整。
2024-11-09
智能客服系统实现回复图片,不只是回复文字
以下为您介绍一个基于 COW 框架的 ChatBot 实现步骤,其最新版本支持的功能包括: 1. 多端部署:可接入个人微信、微信公众号、企业微信应用。 2. 基础对话:私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT3、GPT3.5、GPT4、文心一言模型。 3. 语音识别:可识别语音消息,通过文字或语音回复,支持 azure、baidu、google、openai 等多种语音模型。 4. 图片生成:支持图片生成和图生图(如照片修复),可选择 DellE、stable diffusion、replicate、Midjourney 模型。 5. 丰富插件:支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结等插件。 6. Tool 工具:与操作系统和互联网交互,支持最新信息搜索、数学计算、天气和资讯查询、网页总结,基于实现。 7. 知识库:通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用,基于 LinkAI 实现。 项目地址 项目地址 该项目的图片生成功能或许能满足您智能客服系统实现回复图片的需求。
2024-11-22
智能客服
智能客服相关信息如下: GPT 智能客服: GPTs 是 GPT 的一种 ID 账号形态,类似微信公众号,用户可开发自己垂类应用。其开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action)。GPTs 实现了目前最强的智能客服,具有对话流畅、多观点融合、答案准确等特点,但不太擅长推理计算。实现原理是将 FAQ 上传到知识库,让 GPTs 具有客服应答能力。猜测类似检索增强生成技术(RAG),将知识库(knowledge)和问题(prompt)一起做 embedding,扔给 LLM 作答。 源地址: 零成本、零代码搭建智能微信客服: 平台选择扣子(官网地址:https://www.coze.cn)。扣子是新一代一站式 AI Bot 开发平台,无论是否有编程基础,都可以在扣子平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话,还可以将搭建的 Bot 发布到各类社交平台和通讯软件上。
2024-11-18
智能客服应如何实践
以下是关于智能客服实践的相关内容: 零成本、零代码搭建一个智能微信客服的实操步骤: 1. 访问微信客服 https://kf.weixin.qq.com/,点击开通。 2. 勾选同意,点击下一步。 3. 按步骤填写,勾选同意,注册企业微信。 4. 注册成功后,会出现“企业未认证,累计仅可接待 100 位客户,认证后可提升接待上限”的提醒,个人测试无需认证,不影响使用。 5. 完成上述步骤后,已成功 50%,接下来是复制粘贴操作: 点击配置>到微信客服的企业信息,复制企业 ID >到 coze 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(如果为空,点击“随机获取”),到 coze 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 第一次设置回调地址时,目前需要企业认证才可以接入微信客服。若企业未认证,配置回调 URL 时会报错:回调域名校验失败。之前未认证就发布过微信客服的不受影响。第一次设置成功后,后续修改在特定页面进行。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。 ChatGPT 在智能客服中的应用: 1. 承担客服功能:告诉 ChatGPT 具体客服身份,要求其解答用户问题的同时,进行私域流量转化。 2. 管理社区互动:模拟运营人的语言风格,与用户进行更自然的互动,提高用户参与度和满意度。同时支持对社区中的评论和问题进行自动分类,帮助运营团队更有效地解决问题和满足用户需求。 3. 监测舆情和热点:从多个来源抓取互联网上的热门话题、新闻和社交媒体动态,并对抓取到的文本数据进行深度分析,识别热门话题和趋势,帮助内容运营团队及时了解市场变化。实时监测品牌、产品或服务的网络声量,识别潜在的负面舆情,并提醒运营团队采取措施。但因 ChatGPT 并不支持实时搜索,以上内容需要借助第三方插件完成。
2024-11-05
智能客服
智能客服相关信息如下: GPT 智能客服: GPTs 是 GPT 的一种 ID 账号形态,类似微信公众号,用户可开发自己垂类应用。其开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action)。GPTs 实现了目前最强的智能客服,具有对话流畅、多观点融合、答案准确等特点,但不太擅长推理计算。实现原理是将 FAQ 上传到知识库,让 GPTs 具有客服应答能力。猜测类似检索增强生成技术(RAG),将知识库(knowledge)和问题(prompt)一起做 embedding,扔给 LLM 作答。 零成本、零代码搭建智能微信客服: 平台选择扣子(官网地址:https://www.coze.cn)。扣子是新一代一站式 AI Bot 开发平台,无论是否有编程基础,都可以在扣子平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话,还可以将搭建的 Bot 发布到各类社交平台和通讯软件上。
2024-11-04
AI 搭建本地客服
以下是关于 AI 搭建本地客服的相关信息: 对于期望在本地环境利用 AI 技术搭建客服系统的用户,有以下参考方案和平台可供选择: 本地部署资讯问答机器人:可以通过 Langchain + Ollama + RSSHub 实现 RAG 系统,为用户提供具有实际操作价值的参考。 AI 工具使用方法: 目前市面上的 AI 工具分为线上和线下本地部署两种。 线上的优势在于出图速度快,不吃本地显卡配置,无需下载大型模型,还能查看其他创作者的作品,但出图分辨率有限。 线下部署的优势是可以添加插件,出图质量高,但使用时电脑可能宕机,配置不高可能会爆显存导致出图失败。 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉的优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 您可以根据自身需求选择适合的方案和平台进行进一步探索和应用。需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-25
智能客服
智能客服相关信息如下: GPT 智能客服: GPTs 是 GPT 的一种 ID 账号形态,类似微信公众号,用户可开发自己垂类应用。开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action)。GPTs 实现目前最强的智能客服,具有对话流畅,多观点融合,答案准确等特点,不太擅长推理计算。其实现原理是将 FAQ 上传到知识库,让 GPTs 具有客服应答能力。OpenAI 未发布相关论文,猜测类似检索增强生成技术(RAG),将知识库(knowledge)和问题(prompt)一起做 embedding,扔给 LLM 作答。 零成本、零代码搭建智能微信客服: 平台选择扣子(官网地址:https://www.coze.cn)。扣子是新一代一站式 AI Bot 开发平台,无论是否有编程基础,都可以在扣子平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话,还可以将搭建的 Bot 发布到各类社交平台和通讯软件上,让更多用户与搭建的 Bot 聊天。
2024-10-11
如何利用飞书构建RAG系统
以下是关于如何利用飞书构建 RAG 系统的相关内容: RAG 的常见误区: 随意输入任何文档就能得到准确回答:这是常见误区,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,需要专业知识和持续优化。 RAG 完全消除了 AI 的幻觉:虽然 RAG 可以显著减少幻觉,但并不能完全消除,只要有大模型参与,就有可能产生幻觉。 RAG 不消耗大模型的 Token 了:从大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出,所以 RAG 仍然消耗大模型的 Token。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 RAG 性能提升策略和评估方法(产品视角): 前言:RAG 是检索增强生成的缩写,是结合检索模型和生成模型的技术,核心目的是把知识告诉给 AI 大模型,让其“懂”我们,核心流程是根据用户提问从私有知识中检索相关内容,与用户提问一起放入 prompt 中提交给大模型,常见应用场景如知识问答系统。
2024-11-20
数据中心运维服务的智能体构建
以下是关于数据中心运维服务智能体构建的相关内容: 一泽 Eze:Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率 逐步搭建 AI 智能体: 1. 创建 Bot。 2. 填写 Bot 介绍。 3. 切换模型为“通义千问”(测试下来,通义对提示词理解、执行效果最好)。 4. 把配置好的工作流(如整理入库、选择内容)添加到 Bot 中。 5. 新增变量{{app_token}}。 6. 添加外层 bot 提示词(可按需求和实际效果优化调整)。完成上述步骤后,能在「预览与调试」窗口与 AI 稍后读智能体对话并使用全部功能。 智能体在品牌卖点提炼中的应用 搭建一个智能体帮助提炼卖点: 1. 确定智能体的结构:按照市场营销的逻辑组织智能体的结构。 2. 搭建完整智能体: 以品牌卖点提炼六步法为核心的流程,包括探索、排列、抽取、收敛、确认、应用流程。 加入其他分析助手,如品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等。 还包括一些在后续品牌卖点应用过程中有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。
2024-11-19
AI村民构建的AI小镇资料
以下是关于 AI 小镇“离谱村”的相关资料: 离谱村之歌: 村民阿飞创作的村歌,歌词中描绘了离谱村村民不种田,只搞 AI 的狂欢。代码是他们的麦田,数据是他们的酒,机器学习、深度神经等技术他们玩得转,算法优化、模型训练如同游戏般简单。从早到晚只有键盘的敲击声,AI 的梦想正在成形。村里有智能机器人、自动车等未来元素,村民用 AI 种菜、放牛,智能管家解决烦恼。离谱村的夜因 AI 灯光而明亮,这里的故事将传遍每个角落,其 AI 成果让世界震撼。 离谱村的共创故事: 离谱村是由 WaytoAGI 孵化的 900 人共创项目,目前是用飞书做整体协同。一部完全由 AI 制作完成的短片《离谱村的故事》获得了 MIT 电影黑客松的 Best Video 第一名。其中的配音是用 Audiobox 捏出来的,为保证离谱熊声线的一致性,还用了 GPTsovits 对其声音做了专属训练。有专门的离谱村百科和村民目录用于素材管理,接下来会引入离谱家人的共创内容。 离谱村介绍: WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,涵盖 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,包含赛事和活动促进大家动手实践,有 1000 万的访问量。离谱村是 WaytoAGI 孵化的千人共创项目,参与者不分年龄层,通过 AI 工具创作出各种作品。离谱村是一个没有被定义的地方,每个人心中都有自己想象中的样子,它不仅是物理空间,更是灵魂的避风港,激励着人们发挥想象力创造独特生活方式。
2024-11-13
如何构建自己的AI助理?
构建自己的 AI 助理可以参考以下步骤: 1. 确定功能范围: 支持用户发送“关键字”,自助获取您分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“您的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能发布在您的微信公众号上,作为“微信客服助手”。 2. 准备相关内容: 根据 AI 助理的目的和核心能力,编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 等格式。 创建自己的【知识库】,用于回答 AI 相关知识。 创建【工作流】,控制 AI 按照要求处理信息。 准备好自己的微信公众号,以便发布机器人。 3. 设计详细步骤: 先展示 AI 助理的【最终效果】界面。 构建 AI Agent 还可以类比为培养一位职场新人,包括规划阶段明确目标,将具体任务拆解为可管理的子任务并设计执行方法;实施阶段搭建工作流程,为子任务设置操作指南并验证输出质量;优化阶段通过反复测试和调整,优化性能,直到稳定输出高质量结果。您可以设定一个任务目标,动手构建专属的 AI 助理。
2024-11-08
我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?
以下是建立自己的知识库的步骤和相关格式: 1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。 2. 选择格式并填写信息: 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。 格式并非关键,重要的是理解影响 RAG 输出质量的因素。 例如可以选择本地文档(问答对可选择表格)。 参考。 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 3. 使用知识库:关于使用知识库,可以查看教程。
2024-11-06
如何构建有效的知识库
构建有效的知识库可以参考以下方法: 使用 Dify 构建知识库: 1. 准备数据: 收集需要纳入知识库的文本数据,包括文档、表格等格式。 对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集: 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式: Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用: 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化: 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。 定期更新知识库,增加新的内容以保持知识库的时效性。 总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。 知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。于 2012 年 5 月 17 日被 Google 正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将 Web 从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。 其关键技术包括: 1. 知识抽取: 实体抽取:命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状的知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示: 属性图 三元组 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识的质量。 知识更新:不断迭代更新,扩展现有知识,增加新的知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 手把手教你本地部署大模型以及搭建个人知识库: 如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有 Open WebUI 的能力,并且额外支持了以下能力:选择文本嵌入模型、选择向量数据库。 安装地址:https://useanything.com/download 当我们安装完成之后,会进入到其配置页面,这里面主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: AnythingLLM 中有一个 Workspace 的概念,我们可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 4. 测试对话。当上述配置完成之后,我们就可以跟大模型进行对话了。
2024-11-04