Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

想了解关于数据标注的两个问题, 1-下国内数据标注需求的发展趋势,是否会大批量被Ai训练取代 2-国内有哪些需求基础数据标注需求的公司

Answer

数据标注是机器学习和人工智能领域的一个重要环节,尤其在训练监督学习模型时,需要大量的标注数据来训练模型。以下是对您提出的两个问题的回答:

  1. 国内数据标注需求的发展趋势

    • 自动化和AI辅助:随着AI技术的发展,自动化标注工具和AI辅助标注工具正在变得越来越流行。这些工具可以减少人工标注的工作量,提高标注效率。
    • 高质量数据需求:尽管自动化工具可以帮助标注,但它们通常需要人工审核和校正以确保数据质量。因此,对高质量、高精度标注的需求仍然很高。
    • 特定领域和细分市场:随着AI应用的深入,特定领域(如医疗、法律、金融等)对定制化和专业化的数据标注需求会增加。
    • AI模型的迭代:AI模型需要不断地迭代和优化,这意味着即使是自动化标注,也需要定期更新和维护标注数据集。
  2. 国内需求基础数据标注需求的公司

    • 百度:百度的AI开放平台提供了多种数据标注服务,支持语音、图像、文本等多种类型的数据标注。
    • 阿里巴巴:阿里巴巴的达摩院在AI领域有深入的研究,其数据标注服务支持其AI技术的发展。
    • 腾讯:腾讯的AI Lab同样需要大量的标注数据来训练和优化其AI模型。
    • 字节跳动:字节跳动的推荐算法和内容审核系统需要大量的文本和图像数据标注。

除了上述大型科技公司外,还有许多专业的数据标注公司,如数据堂、龙猫数据等,它们为各种AI应用提供定制化的数据标注服务。

随着AI技术的进步,数据标注行业也在逐渐向更高质量、更专业化的方向发展。同时,数据隐私和安全也越来越受到重视,合规性成为数据标注服务的一个重要考量因素。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
ai训练师和标注师的工作区别是什么
AI 训练师和标注师的工作存在以下区别: 1. 工作重点:标注师主要负责编辑和扩大数据集,对数据进行标注和整理;而训练师在训练模型时涉及数据清洗、数据生成、对齐等操作,需要用到 Prompt 工程的地方较多。 2. 技能要求:标注师侧重于对数据的准确理解和标注能力;训练师则需要具备更深入的技术知识,包括对模型训练原理和相关技术的掌握。 3. 工作影响:标注师的工作直接影响数据集的质量和丰富度,为模型训练提供基础;训练师的工作决定了模型的训练效果和性能。
2024-11-28
在语音数据的标注中你有什么针对你行业(车载语音助手)的特殊标注规则
在车载语音助手这一行业的语音数据标注中,特殊标注规则如下: 1. 音素覆盖:在录音开始前构建基础的文本前端,具备简单的文本转音素(G2P)系统。录音文本要保持多样性,音素或音素组合尽可能覆盖全,统计音素序列中的 NGram,避免某些音素或组合出现频次过高或过少。 2. 场景定制:收集车载播报的常用话术、专业术语(如油量、胎压等)、音乐名或歌手名、地名和新闻播报。对业务有一定理解,并在一开始就和需求方紧密沟通。 3. 文本正确性:确保录音文本拼写无误,内容正确,删除脏话、不符合宗教信仰或政治不正确的语句。
2024-11-11
AI和人工标注相关
以下是关于 AI 和人工标注相关的内容: 在 Agent 相关比赛的赛道介绍中,涉及到多个与 AI 和人工标注相关的参考方向,包括: 1. 内容生成:AI 可自动编写文章并选择或生成相应图片。 2. 图像标注:AI 能识别和理解图片内容,并生成相应文字描述。 3. 图文匹配:为给定图片找到合适文字描述,或为给定文字找到匹配图片。 4. 数据可视化:将复杂数据用图表、信息图等方式可视化展示,使解读更直观简洁。 5. 设计辅助:例如生成 LOGO、海报设计等。 6. 自动化排版:根据文本内容与结构自动进行页面布局和美观排版。 7. 图文识别:借助 OCR 技术抓取图文内容后,AI 能够理解并处理。 8. 新闻和社交媒体:AI 可对大量新闻和社交媒体信息自动编辑和汇总,生成图文摘要。 9. 艺术创作:辅助绘画、音乐创作。 在 OpenAI O1 的训练中,可能采用的训练数据包括人工标注数据和合成数据。对于人工标注数据,会人工标注一批 COT 思考过程,形成<问题,思考过程(包括思考过程中出现的错误及错误修正过程),答案>,用这些数据 SFT 一下 o1 初始的模型,启动其输出模式。但人工标注存在难度大、成本高、可扩展性差的问题,优点是质量较高。之后可以采用合成数据的模式,如从人工标注的 COT 里截取片段,用 MCTS 树搜索方式补齐后续推理过程,或者对于有确定标准答案的逻辑问题,通过不断试错的模式搜索答案,这些正确或错误的答案都可用于训练 o1 模型。
2024-10-14
推荐分析PDF文档 提炼标注关键词的AI
以下是一些可以分析 PDF 文档、提炼标注关键词的 AI 产品或方法: 1. DeepL(网站):点击页面“翻译文件”按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部“更多”按钮,选择“制作双语 BPUB 电子书”、“翻译本地 PDF 文件”、“翻译 THML / TXT 文件”、“翻译本地字幕文件”。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件“Ebook Translator”。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译“Document”按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏“文件翻译”,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击“文档翻译”,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方“切换成电子书”,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-14
数据标注与Ai的大模型是怎样的环节
在 AI 领域中,数据标注与大模型有着密切的关系。 对于大模型而言: 1. 数据清洗:在训练前对数据预处理,移除或修正有偏见、歧视等不道德内容的数据。 2. 算法设计:减少偏见和不公平性,平衡数据集中不同群体的代表性。 3. 道德和伦理准则:制定明确准则指导开发和使用。 4. 透明度:对模型能力和局限性保持透明,告知用户可能的偏差和不确定性。 5. 用户反馈:允许用户反馈以识别和纠正不道德行为。 6. 持续监控:监控模型表现,确保输出符合道德和伦理标准。 7. 人工干预:在可能涉及道德伦理问题时引入人工审核和干预。 8. 教育和培训:对使用人员进行道德伦理方面的教育和培训。 在数据标注方面: 1. 数据清洗工作占据 AIGC 时代模型训练 70%80%的时间,必不可少,因为数据质量决定机器学习的上限。 2. 需筛除分辨率低、质量差、存在破损及与任务目标无关的数据,去除可能包含的水印、干扰文字等。 3. 数据标注分为自动标注和手动标注,自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注依赖标注人员。例如使用 BLIP 可对数据进行自动标注 caption。 然而,在中国的 AI 创业生态中,存在一些问题: 1. 高质量的数据处理服务稀缺。 2. 数据获取门槛低,但高质量数据获取困难,中文互联网数据质量相对较低。 总之,确保 AI 大模型的道德和伦理性以及获取高质量的数据标注是复杂且持续的挑战。
2024-09-12
数据标注会涉及哪些方面?以及现在哪些类型、行业的数据更需要标注?
数据标注涉及以下方面: 1. 从量到质的转变:早期大模型训练侧重依靠大量算力和大规模数据集提升性能,如今数据质量成为提高模型性能的关键瓶颈,更需注重提高数据质量和相关性。 2. 向知识密集型转变:多模态模型需处理多种类型数据,如文本、图像、声音等,这使数据标注过程更细致复杂,需要更高水平的理解和分析能力,不再是简单的劳动力作业。 3. 对标注方式的理解:大模型的数据标注不仅关注清晰的行业术语,还需要能被模型理解的标注方式,可能涉及更多上下文的理解和语义分析。 4. 对业务的理解:目前数据服务依赖于标注员对业务的理解,通用型数据需求减少,更多是公司内部独有的数据内容和词语,能承接大模型数据标注的服务商不多。 现在更需要标注的数据类型和行业包括: 1. 多模态模型相关的数据,如同时包含文本、图像、声音等多种类型的数据。 2. 公司内部独有的、与特定业务相关的数据。 在数据标注过程中,还需注意数据隐私与安全问题,如数据加密与计算效率的权衡等。
2024-09-12
如何根据虑库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构呢
很抱歉,目前没有关于如何根据您提到的库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构的具体内容。但我可以为您提供一些一般性的思路和步骤: 首先,需要对库存水平、需求预测、补货成本和库存持有成本等数据进行详细的收集和分析。 对于线性规划方法,您可以建立一个目标函数,例如最小化总成本(包括补货成本和库存持有成本),同时满足库存水平和需求预测的约束条件。通过求解这个线性规划问题,得到最优的库存调整策略。 动态规划则是将问题分解为多个阶段,在每个阶段根据当前状态和决策选择来优化未来的结果。在库存调整中,可以根据不同时期的库存和需求情况,逐步做出最优决策。 随机优化适用于需求存在不确定性的情况。您可以建立概率模型来描述需求的不确定性,然后通过优化算法找到在不确定性条件下的最优库存策略。 不过,具体的应用和实现需要根据您的实际业务情况和数据特点进行深入研究和定制化的建模。
2025-01-06
那么,在这个网站里是否有可以满足我需求的AI工具呢?
以下是一些可能满足您需求的 AI 工具: TXYZ 网站:是一个帮助搜索、查询专业文献并进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。它是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 TXYZ 的按钮。用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到自己想要的答案和内容,并在对话中提供论文参考,给出可信的背书。 辅助编程的 AI 工具: GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 制作网站的 AI 工具选择考虑因素: 目标和需求:确定您的网站目标(例如个人博客、商业网站、在线商店)和功能需求。 预算:有些工具提供免费计划或试用版,但高级功能可能需要付费订阅。 易用性:选择一个符合您技术水平的工具,确保您能够轻松使用和管理网站。 自定义选项:检查工具是否提供足够的自定义选项,以满足您的设计和功能需求。 支持和资源:查看是否有足够的客户支持和学习资源(如教程、社区论坛),帮助您解决问题。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-28
ai可以如何帮忙撰写 产品需求文档
以下是一些利用 AI 帮忙撰写产品需求文档的工具和方法: 1. :可以生成产品需求文档(PRD)的原型图、解决方案流程图、时序图、页面结构图、测试用例等,还能帮助生成数据字段、优化 PRD 文档、评估功能的价值、生成 SQL 代码和周报思路等。 2. ChatPRD、WriteMyPRD、Uizard、tldraw 等工具:可以通过人类语言描述想要的产品,得到 80%的完成稿,然后进行修改和发布。 3. 产品经理还可以借助一些其他相关的 AI 工具,如: :用于个性化调色。 :将博客文章转化为播客。 :高效存储和检索图片。 此外,Lenny 认为人工智能(AI)将对产品管理的高级技能产生影响,如在产品塑造工作方面,AI 可通过分析市场、数据、客户需求和未来的见解制定超级智能的计划,产品经理则要擅长选择合适的数据和提出正确问题。在目标设定和跟踪方面,AI 工具能基于战略、业务要求和限制智能地建议应优化的目标,产品经理成为超级智能建议的编辑者。 同时,还有一些针对产品经理的其他 AI 工具集,如: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard() 项目管理:Taskade(taskade.com) 写邮件:Hypertype() 会议信息:AskFred() 团队知识库:Sense() 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI() 企业自动化:Moveworks(moveworks.com)
2024-12-28
在coze创建一个符合我需求的智能体(带工作流)之前,需要梳理什么内容
在 Coze 创建一个符合需求的智能体(带工作流)之前,需要梳理以下内容: 1. 规划: 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 例如,在搭建“结构化外文精读专家”Agent 时,要从制定关键方法与流程开始梳理任务目标。另外,搭建整理入库工作流时,新建工作流“url2table”,包括开始节点输入 url(无需额外配置)、变量节点引入 bot 变量中保存的飞书多维表格地址、插件节点获取页面内容等。
2024-12-21
我需要在coze创建一个符合我需求的智能体(带工作流)全流程,要求流程完整(从创建之前的工作)
以下是在 Coze 创建一个符合您需求的智能体(带工作流)的全流程: 1. 打开 Coze 官网 https://www.coze.cn/home ,注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入 bot 的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流可处理和生成图像相关功能;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料,表格可存储结构化数据,照片可作为图像素材库。 记忆系统:变量可存储对话过程中的临时信息,数据库可管理持久化的结构化数据,长期记忆可保存重要的历史对话信息,文件盒子可管理各类文档资料。 交互优化(底部区域):开场白可设置初次对话的问候语,用户问题建议可配置智能推荐的后续问题,快捷指令可设置常用功能的快速访问,背景图片可自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 4. 创建图像工作流: 图像流分类:图像流分为智能生成、智能编辑、基础编辑三类。Coze 的图像流很像 ComfyUI,但是比 ComfyUI 更普世化,更简单易上手。 空间风格化插件:空间风格化插件有个参数,image_url 就是毛坯房的图片地址;Strength 提示词强度,就是提示词对效果图的影响度;Style 生成效果的风格,比如新中式、日式、美式、欧式、法式等等。 工作流流程:按照构架配置工作流,调试工作流,毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点解析:开始节点就对应配置三项内容,提示词优化。 5. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求,自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url,由于希望收到用户输入的待收藏 url,就开始流程,所以不需要额外配置(至于如何判断哪些用户输入是需要收藏的 url,则交由外层 bot 的大模型判断)。 变量节点:引入 bot 变量中保存的飞书多维表格地址,为了便于维护充当稍后读存储地址的飞书多维表格链接,我们需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容,这一步直接把开始节点的{{BOT_USER_INPUT}},引入到参数{{url}}中;随便设置{{timeout}}为 60000。 6. 人设和回复逻辑:技能 1 中 3 项中的编译数字来源,然后点击右上角发布,机器人就可以不知疲倦地给您出图了。
2024-12-21
帮我梳理coze创建一个符合我需求的带工作流的智能体全流程,要求流程完整
以下是用 Coze 创建带工作流的智能体的全流程: 1. 打开 Coze 官网(https://www.coze.cn/home)。 2. 创建图像工作流: 图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试效果,可使用调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,包括提示词优化。 人设和回复逻辑中,技能 1 中 3 项中的编译数字来源,然后点击右上角发布。 3. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 3.1 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 3.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,将链接存储在 bot 的变量中,并在工作流运行时进行引用。 3.3 插件节点:获取页面内容,把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2024-12-21
如何进行数据分析
以下是关于如何进行数据分析的详细步骤: 1. 明确数据分析的目标:确定目标是理解业务、优化业务还是预测未来。 2. 收集整理与清洗相关数据:通过公司的数据库、营销工具、调查问卷等方式收集销售数据、客户反馈、财务报告等方面的数据,完成后做简单的数据清洗。 3. 让 ChatGPT 学习相关数据含义和用法:将不同来源的数据输入到 ChatGPT 中进行学习,让其能够理解这些数据的含义和用法,包括销售额、销售量、客户满意度、市场份额、竞争情况、营销费用等信息。 4. 进行数据分析给出重要结论:通过 ChatGPT 生成的结果,分析不同来源的数据,得出以下重要结论: 提高销售额和市场份额的营销策略和活动,如降低产品价格、提供更好的售后服务、优化产品设计和功能、增加市场推广力度等。 影响客户满意度和忠诚度的因素,如产品质量、服务质量、品牌形象、价格竞争力等。 影响财务报告的因素,如销售额、毛利率、净利润、营销费用占比等。 5. 根据汇报对象身份进行可视化调整:报告可以包括销售趋势、客户分析、竞争分析、市场细分、营销效果评估等方面的信息。针对不同身份的人的营销报告有所不同。 在使用 ChatGPT 助力数据分析时,流程如下: 1. 第一个用户提示:限定 SELECT SQL,告诉它不要用 SELECT来查询全部列,且仅回复一条 SELECT SQL 语句。至少查询两列:数据项、数据值,且不能直接查询如 mediumtext/longtext 这样的长类型字段,可以用 count/substring 等函数查询这些长类型列。 2. 系统提示是表结构信息,如有难以理解的字段可以告诉 GPT 字段的意义,有多个表可分开描述。 3. 需校验 GPT 生成的 SQL,不通过直接返回提示:抱歉,不支持此类请求。通过再执行 SQL 查询数据。 4. 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式:conclusion、keyMap、title。keyMap 的作用是数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,用于映射数据渲染图表。由于支持多维数据,单维度数据和多维度数据的提示分开定义,根据结果数据 tableData 的维度,用条件运算符选择对应的提示,再传递给 GPT。 5. 结果数据 tableData 是跟随接口一起返回到前端,已经通过 SQL 查询的数据,不能让 GPT 又生成一次,否则非常耗时。 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。流程描述得比较详细,更多讲述开发时的一些问题、重点和技巧。
2025-01-09
从评审导师的角度优化“人工智能驱动企业供应链效率影响研究——基于专精特新中小企业的实证数据”这个工商学术研究生学位论文题目
作为评审导师,以下是对这个论文题目的一些优化建议: “人工智能对专精特新中小企业供应链效率的驱动作用及影响研究——基于实证数据分析” 这样的表述更加清晰地突出了人工智能的驱动作用,并且明确了是基于实证数据进行的分析。您觉得如何?
2025-01-08
coze工作流中数据库如何应用?主要是返回数据
在 Coze 工作流中,数据库的应用如下: 工作流由多个节点构成,节点是基本单元。Coze 平台支持的节点类型包括数据库节点。 数据库节点的输入:用户可以定义多个输入参数。 数据库节点的输出:如果数据库是查询作用,则输出会包含查询出来的内容。通过 SQL 语句告诉数据库要执行的动作,这里的 SQL 语句可以让 AI 自动生成并进行适当改动。 注意事项:Coze 平台的逻辑是数据库与 bot 绑定,使用数据库功能时,需要在 bot 中设置相同名称和数据结构的数据库进行绑定。 测试工作流:编辑完成的工作流无法直接提交,需要进行测试。点击右上角的“test run”,设定测试参数,查看测试结果,完成后发布。 相关参考文档和示例: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本示例: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent 在【拔刀刘】自动总结公众号内容,定时推送到微信的案例中,循环体内部的数据库节点用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的 url 和开始节点的 key(重命名为 suid)。查询数据库需要文章 url 和用户的 suid 两个值来判断这名用户的这篇文章是否推送过。记得设置输出项“combined_output”。同时,Coze 平台中使用数据库功能需要在 bot 中设置相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。
2025-01-08
有哪些优质的法律大模型数据集
以下是一些优质的法律大模型数据集: 1. ChatLaw: 地址: 简介:由北大开源的一系列法律领域的大模型,包括 ChatLaw13B(基于姜子牙 ZiyaLLaMA13Bv1 训练而来),ChatLaw33B(基于 Anima33B 训练而来,逻辑推理能力大幅提升),ChatLawText2Vec,使用 93w 条判决案例做成的数据集基于 BERT 训练了一个相似度匹配模型,可将用户提问信息和对应的法条相匹配。 2. LaWGPT: 地址: 简介:该系列模型在通用中文基座模型(如 ChineseLLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。 3. LexiLaw: 地址: 简介:LexiLaw 是一个基于 ChatGLM6B 微调的中文法律大模型,通过在法律领域的数据集上进行微调。该模型旨在为法律从业者、学生和普通用户提供准确、可靠的法律咨询服务,包括具体法律问题的咨询,还是对法律条款、案例解析、法规解读等方面的查询。 4. Lawyer LLaMA: 地址: 简介:开源了一系列法律领域的指令微调数据和基于 LLaMA 训练的中文法律大模型的参数。Lawyer LLaMA 首先在大规模法律语料上进行了 continual pretraining。在此基础上,借助 ChatGPT 收集了一批对中国国家统一法律职业资格考试客观题(以下简称法考)的分析和对法律咨询的回答,利用收集到的数据对模型进行指令微调,让模型习得将法律知识应用到具体场景中的能力。
2025-01-08
我使用了豆包,也学习了简单的提示词,但大数据反馈的结果并不好,很多数据分析,文档优化效果并不理想。我该怎么办
以下是一些可能有助于您改善大数据反馈结果和提升数据分析、文档优化效果的建议: 1. 像“给 Prompt 打分”的示例中那样,找专业的“Prompt 药剂师”对您的提示词进行详细分析,给出准确的评分和改进建议,以提升提示词的质量。 2. 对于数据分析和文档优化任务,要清晰明确地向模型阐述需求。例如,提供大模型可访问的数据源或上传数据表格,通过清晰的提示词说明需要从哪些维度分析数据,以及期望的分析结果输出格式。然后观察生成结果,不断迭代和优化提示词。 3. 对于“大模型幻觉”问题,目前虽无法完全消除,但可以通过其他第三方信息源和知识来检验生成内容是否准确。 4. 若想提高大模型的对话能力,可在 AGI 中搜索“结构化”获取相关文章。另外,如果您指的上下文 token 长度是大模型的记忆窗口,通常是无法延长的,因为这是设定好的。 5. 在用 ChatGPT 写剧本并希望其学习现有成功剧本时,要精心设计提问,清晰准确地表达您的需求,例如明确指出需要总结的规律以及在后续创作中的应用方式。
2025-01-08
表格数据分析
以下是关于表格数据分析的相关内容: 大模型招投标文件关键数据提取方案 预处理模块设计: 去除噪音信息:过滤掉页眉、页脚、版权声明等无关紧要的信息。 规范化文本:处理特殊符号、空白字符、异常换行等,确保文本格式整洁。 日期格式统一:通过正则表达式或日期识别工具将多种日期表示方式统一转换为标准的 ISO 格式(如“YYYYMMDD”)。 货币与金额格式化:统一货币单位和金额数字的格式,例如将“壹仟元”转换为“1000 CNY”,或将“$1,000”转换为“1000 USD”。 特殊符号处理:对招投标文件中的特殊符号进行规范化处理。 表格数据处理:使用表格解析工具(如 pdfplumber 或 pythondocx)提取表格结构和数据,并转化为 CSV 或 JSON 格式方便后续处理。 ChatGPT 助力数据分析:实际案例与技巧 流程: 1. 第一个用户提示:限定 SELECT SQL,要求不要用 SELECT查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),且不能直接查询长类型字段,可用 count/substring 等函数查询。 2. 系统提示是表结构信息,如有难以理解的字段可告知 GPT 字段意义,多个表可分开描述。 3. 校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 4. 数据分析的用户提示:限定返回的 JSON 格式(conclusion、keyMap、title)。keyMap 用于数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,以映射数据渲染图表。由于支持多维数据,单维度数据和多维度数据的 prompt 需分开定义,根据结果数据 tableData 的维度,用条件运算符选择对应的 prompt 传递给 GPT。 5. 结果数据 tableData 跟随接口返回到前端,已通过 SQL 查询的数据,不能让 GPT 再次生成,否则耗时。 58 数据分析 161 万 示例表格数据: |名称|二级分类|三级分类|网址|2 月|3 月|4 月|5 月|6 月|7 月|8 月|9 月|10 月|11 月|迷你图|11/5 月1| |||||||||||||||||| |1|帆软数据|数据分析||https://www.fanruan.com/||||65|64|65|73|62|63|56||O2/I21| |2|RATH|数据分析||https://kanaries.net/|5.4|14|17|32|44|62|54|11|20|33||O3/I31| |3|rows.com|数据分析||https://rows.com/visionfd1f404d||||8|92|118|80|62|34|28||O4/I41| |4|亚信科技数智产品|数据分析||https://www.asiainfo.com/zh_cn/digital_intelligence_product_system.html||||43|30|58|47|41|29|23||O5/I51| |5|神策数据|数据分析||https://www.sensorsdata.cn/||||23|18|21|22|16|17|21||O6/I61|
2025-01-08
AI创作新手入门步骤
以下是为 AI 创作新手提供的入门步骤: 一、了解基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、开始学习之旅 在「」中,能找到为初学者设计的系列课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按自己节奏学习,并争取获得证书。 三、选择感兴趣模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。可根据自身兴趣选择特定模块深入学习,同时一定要掌握提示词技巧,因其上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品进行创作,并在知识库分享实践后的作品和文章。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式,获得实际应用中的第一手体验,激发对 AI 潜力的认识。 六、具体案例 1. 对于编程方面,可参考元子的 30min Cursor AI 编程上手步骤。 突破对“不会编程”的限制,不断探索与 AI 的边界。 作者将更新多篇相关文章,如第一弹“一点小小的震撼——cursor 黑客松”等。 可通过与作者交流。 2. 对于 AI 3D 创作,可参考 Tripo AI 入门手册。 注册/登录:点击下方网址免费体验(国内可访问),输入邮箱地址获取验证码完成注册登录,或使用谷歌账户直接登录。登录后可查看用户名和拥有的点数。 界面介绍:Tripo 的界面简洁,上方是工具导航栏,中间是公共作品展示区,底部是生成模型的工作区域,包括输入框和创建按钮。其中「Create」是创作主战场,「My Models」是个人作品库,「Favorite」是私人收藏列表。 希望以上步骤和内容能帮助您顺利入门 AI 创作。
2025-01-09
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习,同时掌握提示词的技巧。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 6. 持续学习和跟进: AI 发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白,学习模式为输入→模仿→自发创造。但其中的学习内容可能因 AI 发展而变化,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。该日记中的学习资源免费开源,且学习时间灵活,不必有压力,能学多少算多少。
2025-01-09
Use what AI tool to do ppt
以下是一些可以用于制作 PPT 的 AI 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,允许用户通过输入简单的文本描述来生成专业的 PPT 设计。可能包含丰富的模板库和设计元素,用户可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,以帮助用户更高效地创建演示文稿。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 此外,还有一些组合使用的方式,如 Claude+Gamma.app 可以帮助快速寻找符合条件的论文、提取精炼论文中某部分信息、找到适合的 PPT 制作工具并教会使用。另外,GPT4、WPS AI 和 chatPPT 组合使用也能完成 PPT 制作任务。
2025-01-09
目前比较强势的ai有哪些
目前比较强势的 AI 有以下几种: 1. ChatGPT:在整个前 50 名列表中每月流量占比 60%,估计每月访问量为 16 亿次,每月用户数为 2 亿(截至 2023 年 6 月),是全球访问量排名第 24 的网站。 2. CharacterAI:已成为第二大产品,规模约为 ChatGPT 的 21%,在移动领域表现出色,其 DAU 可与 ChatGPT 相媲美,留存率明显更高。 3. Google 的 Bard 和 Quora 的 Poe:属于普通 LLM 聊天机器人类别,均位列前 5 名。 4. 内容生成工具:如 Midjourney 和 ElevenLabs。图像生成是更广泛的内容生成类别中的主要用例,占流量的 41%,其次是产消者写作工具(占 26%)和视频生成(占 8%)。 5. 模型中心:如 Civitai(用于图像)和 Hugging Face,虽然列表中只有 2 个网站,但带来了显著流量,均排名前 10。
2025-01-09
如何零基础学习ai
以下是零基础学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是零基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2025-01-09
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-09