Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

帮我制作一个面向售前的大模型基础知识培训材料

Answer

制作一份面向售前的大模型基础知识培训材料需要涵盖大模型的基本概念、技术背景、应用场景、以及售前人员如何向客户展示和解释这些知识。以下是一个详细的培训材料框架:

1. 大模型基础知识

1.1 什么是大模型

  • 定义:大模型通常指的是由大量参数组成的神经网络模型,能够处理复杂任务,如自然语言处理、图像识别等。
  • 例子:GPT-4、BERT、GPT-3 等。

1.2 大模型的演变

  • 历史背景:从简单的神经网络到深度学习,再到如今的超大规模模型。
  • 关键技术突破:例如Transformer架构的引入。

1.3 大模型的特点

  • 参数规模:数十亿到上千亿参数。
  • 训练数据:需要海量的标注数据和未标注数据。
  • 计算资源:训练大模型需要高性能计算资源,如GPU和TPU。

2. 大模型的技术背景

2.1 基本架构

  • Transformer:介绍其核心概念和工作原理。
  • 注意力机制:解释为什么注意力机制在处理长序列任务中如此重要。

2.2 训练方法

  • 预训练与微调:解释大模型通常的训练流程。
  • 数据增强:如何通过数据增强技术提升模型性能。

2.3 性能评估

  • 常用评估指标:如准确率、召回率、F1分数等。
  • 基准测试:介绍GLUE、SQuAD等常用基准测试。

3. 大模型的应用场景

3.1 自然语言处理

  • 生成式任务:如文本生成、对话系统。
  • 理解任务:如文本分类、情感分析。

3.2 计算机视觉

  • 图像分类:如人脸识别、物体检测。
  • 图像生成:如GANs生成高质量图像。

3.3 多模态任务

  • 文本-图像联合处理:如图像描述生成、图文匹配。

4. 售前技巧

4.1 需求分析

  • 了解客户业务需求:针对不同业务领域挖掘潜在应用场景。
  • 确定客户痛点:明确大模型能解决的具体问题。

4.2 方案设计

  • 定制化解决方案:根据客户需求设计个性化方案。
  • 成本效益分析:展示大模型带来的商业价值和投资回报。

4.3 技术展示

  • 演示和案例分享:展示成功案例和实际效果。
  • 实时演示:通过在线演示让客户直观感受大模型的能力。

4.4 答疑解惑

  • 常见问题解答:准备好应对客户常见问题的解答。
  • 技术细节解释:根据客户的技术背景,适度讲解技术细节。

5. 实际案例分析

5.1 成功案例

  • 具体案例:如某行业客户通过大模型提升业务效率的实际案例。
  • 效果展示:使用前后对比,量化展示效果。

5.2 失败案例及教训

  • 教训分享:避免哪些常见错误。
  • 风险管理:如何在实施过程中规避风险。

6. 总结与展望

6.1 大模型的未来发展

  • 技术趋势:如更大规模模型的训练、更高效的训练方法。
  • 应用前景:大模型在不同领域的潜在应用。

6.2 持续学习与提升

  • 推荐学习资源:如相关书籍、课程、社区论坛等。
  • 实践机会:鼓励参与实际项目,提高实战经验。

以上是一个大模型基础知识培训材料的框架,具体内容可以根据实际需求进行细化和扩展。希望这能帮助你更好地向售前人员传授大模型的知识。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
我作为一名OA软件的行业的售前,我的工作中会涉及到AI与OA结合落地的智能化场景,所以我对AI知识有简单的了解,我现在想转型AI行业的售前,我该如何系统的学习AI的相关知识,请帮我制定一个计划
以下是为您制定的从 OA 软件售前转型到 AI 行业售前的系统学习计划: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、掌握相关技能和知识 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,作为转型者,您可以从以上多个方面入手,全面系统地学习 AI 知识和技能,为未来在 AI 行业的售前工作做好准备。
2025-01-07
我是AI小白,希望到这里学习AI基础知识
以下是为您整理的 AI 基础知识学习内容: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习的定义及其之间的关系,以及其主要分支和联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 7. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 8. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 9. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-12
对于编程纯小白,如果我想使用cursor之类的AI软件进行编程,实现自己的一些想法,那么我需要具备哪些编程或者计算机方面的基础知识
对于编程纯小白,如果想使用 Cursor 之类的 AI 软件进行编程实现自己的想法,需要具备以下编程或计算机方面的基础知识: 1. 下载 Cursor:访问 https://www.cursor.com/ 进行下载。 2. 注册账号:可以使用自己的邮箱(如 google、github、163、qq 邮箱)直接登录,接受二维码登录。 3. 安装中文包插件。 4. 在设置中进行 Rule for AI 配置。 5. 清晰表达需求:例如做一个贪吃蛇游戏,在网页中玩。需要明确游戏的规则和逻辑,如游戏界面是在矩形网格上进行,玩家控制蛇的移动方向(上、下、左、右),游戏界面上会随机出现食物,蛇吃到食物身体增长,存在撞墙或撞自己的死亡条件,吃到食物可得分,游戏难度会递增,游戏结束时能看到得分等。 对于纯小白,如果需求远比 AI 直出的内容复杂,无法一次性直出,那就需要耐下性子,在 AI 的帮助下一步一步来,并在这个过程中学会一点点编程。
2025-02-08
大模型的基础知识
大模型的基础知识包括以下方面: 知识类型: 内置知识:又可细分为常识知识、专业知识和语言知识。常识知识涵盖日常生活中的事实和逻辑规则;专业知识涉及特定领域的详细信息;语言知识包含语法规则、句型结构、语境含义及文化背景等。 模型架构: encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此架构。 大模型的特点: 预训练数据量大,往往来自互联网,包括论文、代码和公开网页等,通常用 TB 级别的数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 数字化与 embedding:为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”主要指用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。
2025-02-07
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
ai 基础知识学习
以下是新手和中学生学习 AI 基础知识的方法和建议: 新手学习 AI : 1. 了解 AI 基本概念:阅读「」,熟悉术语和基础概念,了解主要分支及联系。 2. 浏览入门文章:了解 AI 的历史、应用和发展趋势。 3. 开始学习之旅:在「」中找到初学者课程,推荐李宏毅老师的课程。也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 4. 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块,掌握提示词技巧。 5. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品创作,分享实践成果。 6. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 中学生学习 AI : 1. 从编程语言入手:学习 Python、JavaScript 等编程语言,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用工具和平台:使用 ChatGPT、Midjourney 等生成工具,探索百度“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习基础知识:了解 AI 基本概念、发展历程、主要技术及在各领域的应用案例。 4. 参与实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试用 AI 技术解决实际问题,培养动手能力。 5. 关注前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 对未来社会的影响。 对于希望继续精进的学习者,还可以尝试了解以下 AI 基础内容: 1. AI 背景知识:包括基础理论、历史发展。 2. 数学基础:统计学基础(如均值、中位数、方差)、线性代数(向量、矩阵)、概率论(条件概率、贝叶斯定理)。 3. 算法和模型:监督学习(线性回归、决策树、支持向量机)、无监督学习(聚类、降维)、强化学习。 4. 评估和调优:性能评估(交叉验证、精确度、召回率)、模型调优(网格搜索)。 5. 神经网络基础:网络结构(前馈网络、卷积神经网络、循环神经网络)、激活函数(ReLU、Sigmoid、Tanh)。
2025-01-16
作为一名小学班主任,我想将AI作为辅助班级管理的工具,我可以怎么做?需要学习哪些基础知识,如何创建AI工具呢?
作为一名小学班主任,若想将 AI 作为辅助班级管理的工具,您可以参考以下建议: 基础知识学习: 1. AI 背景知识:了解人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 3. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 4. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 5. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 6. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 创建 AI 工具: 1. 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 需要注意的是,AI 技术在不断发展,您需要持续学习和探索,以更好地将其应用于班级管理中。
2025-01-15
你是一个专业的AI工具测评师,用过市场上的所有AI工具,请制作一个PPT,介绍一个如何使用AI进行办公提效,并根据你的经验,对使用过的AI工具进行分类对比和测评,对比结果以表格形式呈现,需要包括是否收费,国内是否可用,主要面向对象,优点和缺点,突出功能等
以下是为您制作的关于如何使用 AI 进行办公提效以及 AI 工具分类对比和测评的 PPT 内容: 幻灯片 1:封面 标题:AI 助力办公提效及工具测评 幻灯片 2:目录 AI 在办公中的应用场景 常用 AI 办公工具分类对比 各工具的详细测评 幻灯片 3:AI 在办公中的应用场景 辅助文档处理 自动生成会议记录 办公文件分类管理 语言学习纠错 幻灯片 4:常用 AI 办公工具分类对比(表格形式) |工具名称|是否收费|国内是否可用|主要面向对象|优点|缺点|突出功能| |||||||| |平安好医生 APP|部分功能收费|是|医疗工作者和患者|辅助医生诊断,提高准确性|可能存在误判|辅助疾病诊断| |腾讯会议|部分高级功能收费|是|企业和个人|自动生成会议记录,方便回顾|语音识别准确性有待提高|会议记录生成| |字体管家 APP|部分字体收费|是|设计和文字工作者|生成多种书法字体|字体版权问题|书法字体生成| |醒图 APP|部分功能收费|是|摄影爱好者|提供构图建议,提升照片质量|对复杂场景的建议有限|摄影构图建议| |游戏内商城推荐功能|部分游戏收费|是|游戏玩家|根据需求推荐道具|推荐的精准度因人而异|游戏道具推荐| |彩云天气分时预报|部分功能收费|是|出行人群|提供精准分时天气预报|天气变化的不确定性|分时天气预报| |医渡云病历分析系统|收费|是|医疗机构|分析病历辅助诊断|数据安全性|病历分析| |讯飞听见会议总结功能|部分功能收费|是|企业和个人|自动总结会议发言内容|对复杂语言理解有限|会议发言总结| |书法临摹软件|部分功能收费|是|书法爱好者|提供临摹指导和评价|对不同书法风格的适应性|临摹辅助| |下厨房口味调整功能|部分功能收费|是|烹饪爱好者|根据反馈调整菜谱口味|口味调整的局限性|菜谱口味调整| |英语流利说纠错功能|部分课程收费|是|语言学习者|帮助纠正错误|对口语表达的纠错有限|语言学习纠错| |豆瓣电影剧情分析工具|免费|是|电影爱好者|提供剧情深度解读|分析的主观性|剧情分析| |腾讯文档分类功能|部分高级功能收费|是|企业和个人|自动分类办公文件|分类准确性依赖数据|文件分类| |美丽修行定制方案功能|部分功能收费|是|美容护肤人群|定制个性化护肤方案|方案的普适性|护肤方案定制| 幻灯片 5:总结 强调 AI 在办公领域的重要性和潜力 鼓励根据实际需求选择合适的 AI 工具提升办公效率 以上 PPT 内容仅供参考,您可以根据具体需求进行修改和完善。
2025-02-10
吴恩达有《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》下载资源
以下是吴恩达《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》的相关资源: B 站: 学习笔记: 飞书: 下的相关课程
2025-02-07
从你的知识库中总结提炼一下,形成一个表格,告诉我目前已经有哪些面向个人和面向企业的AI应用\工具\智能体,以及具体的功能简介
|应用类型|应用名称|使用技术|功能简介|示例场景| |||||| |智能体应用(Assistant)|无|基于上下文对话,自主决策并调用工具|客户服务:了解客户诉求,解决客户问题。如查询订单状态、处理退款等。个人助理:管理日程安排、提醒事项、发送邮件等。技术支持:了解技术问题,提供解决方案,帮助用户排除故障。| |工作流应用(Workflow)|无|将复杂任务拆解为若干子任务|AI 翻译:实现初步翻译、内容审校、再次优化的翻译流程,提升翻译质量。| |智能体编排应用|无|支持多智能体协作|综合调研报告:组建一个报告撰写团队,包括负责写作意图识别、大纲书写、总结摘要、智能绘图、事件研判、段落撰写、文笔润色等任务的智能体。软件开发团队:组建一个智能体开发团队,包括负责需求分析、系统设计、编码实现、测试调试、文档编写等任务的智能体。| |AI 游戏道具推荐系统|游戏内商城推荐功能|数据分析、机器学习|根据玩家需求推荐游戏道具。|在一些游戏中,利用 AI 分析玩家的游戏风格和进度,为玩家推荐合适的游戏道具,如武器、装备等。| |AI 天气预报分时服务|彩云天气分时预报|数据分析、机器学习|提供精准的分时天气预报。|彩云天气利用 AI 提供每小时的天气预报,帮助用户更好地安排出行和活动。| |AI 医疗病历分析平台|医渡云病历分析系统|数据分析、自然语言处理|分析医疗病历,辅助诊断。|医渡云利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。| |AI 会议发言总结工具|讯飞听见会议总结功能|自然语言处理、机器学习|自动总结会议发言内容。|讯飞听见在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。| |AI 书法作品临摹辅助工具|书法临摹软件|图像识别、数据分析|帮助书法爱好者进行临摹。|书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。| |超级简历优化助手|无|自然语言处理|帮助用户优化简历提高求职成功率。|超级简历优化助手分析简历内容并提供优化建议。| |AI 室内设计方案生成|酷家乐|图像生成、机器学习|快速生成个性化室内设计方案。|酷家乐允许用户上传户型图,通过 AI 生成多种设计方案。| |AI 音乐创作辅助工具|Amper Music|机器学习、音频处理|协助音乐创作者进行创作。|Amper Music 根据用户需求生成旋律和编曲。| |AI 情感咨询助手|松果倾诉智能助手|自然语言处理、情感分析|提供情感支持和建议。|松果倾诉智能助手通过文字或语音交流为用户提供情感咨询。| |AI 宠物健康监测设备|小佩宠物智能设备|传感器数据处理、机器学习|实时监测宠物健康状况。|小佩宠物智能设备可监测宠物活动、饮食等,提供健康预警。| |AI 旅游行程规划器|马蜂窝智能行程规划|数据分析、自然语言处理|根据用户需求生成个性化旅游行程。|马蜂窝智能行程规划根据目的地、时间等因素为用户定制旅游路线。|
2025-02-06
面向老年人的AI agent
以下是为您整理的关于面向老年人的 AI agent 的相关信息: Meta 发布了可以利用 AI 自动剪辑视频的 Agents LAVE,结合 Sora 这样的视频生成模型,一些简单的短视频及广告视频可能无需人工介入。 人工智能可以赋予计算机个性,相关配套产品范围广泛,有些用于娱乐,有些专注于提供特定价值,比如帮助孩子浏览互联网或对抗老年人的孤独感。51%的成年人表示感到孤独,像 MyReplika 这样的应用程序可以减少自杀意念。 在基于 LLM 的 AI Agent 方面: 理解工具:AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。可利用 LLM 的 zeroshot learning 和 fewshot learning 能力,通过描述工具功能和参数的 zeroshot demonstration 或特定工具使用场景和相应方法演示的少量提示来获取工具知识。面对复杂任务,AI Agent 应将其分解为子任务并有效组织协调,这依赖于 LLM 的推理和规划能力以及对工具的理解。 使用工具:AI Agent 学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习(清华有一篇从训练数据中学习的文章),包括模仿人类专家行为,了解行为后果,并根据环境和人类反馈做出调整。环境反馈包括任务完成结果反馈和行动引起的环境状态变化中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。 在具身智能方面:具身 Agent 强调将智能系统与物理世界紧密结合,其设计灵感来自人类智能发展,认为智能更多来自与环境的持续互动和反馈。与传统深度学习模型相比,LLMbased Agent 能够主动感知和理解所在物理环境并与其互动,利用内部丰富知识库进行决策和产生具体行动改变环境,这一系列行为被称为“具身行动”。
2025-02-05
面向新手个人的AI应用培训课程
以下是为新手个人推荐的一些 AI 应用培训课程: 1. 微软的 AI 初学者课程: 作者/来源:微软 推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:👍🏻 2. AI for every one(吴恩达教程): 作者/来源:吴恩达 前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:👍🏻 3. 大语言模型原理介绍视频(李宏毅): 作者/来源:李宏毅 可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 4. 谷歌生成式 AI 课程: 作者/来源:谷歌 注:前 4 节课为入门课 目录: 5. ChatGPT 入门: 作者/来源:OpenAI 注册、登录、简单使用方法等 目录: 新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。 建议一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,你可以获得对 AI 在实际应用中表现的第一手体验,并激发你对 AI 潜力的认识。 此外,还有“90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包括: 1. Code AI 应用背景:智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 2. AI CODING 现状:AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。 3. 证件照应用案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。 4. AI 应用学习过程:创建 AI 应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-01-23
面向用户的agent有哪些
以下是一些面向用户的 Agent 及相关介绍: 1. Coze:是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot。采用多 Agent 模式,支持用户轻松创建各种聊天机器人,并可部署到不同平台,还支持四种主要设计模式。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,从产品角度思考 Agent 设计时,比如我们的 Agent 可以设定为一个历史新闻探索向导,其身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色主导新闻解析和历史背景分析。为使角色更生动,可为其设计简短背景故事,写好角色个性需考虑角色背景和身份、性格和语气、角色互动方式、角色技能等方面。
2025-01-17
帮我找到deepseek的培训教程,我是一个技术小白
以下是关于 DeepSeek R1 的培训教程相关内容: DeepSeek R1 引入了纯强化学习(RL),不依赖大量人类标注数据,而是通过自我探索和试错来学习。在“冷启动”阶段,仅通过少量(数千条)人工精选的思维链数据进行初步引导,建立起符合人类阅读习惯的推理表达范式。随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。 准确率奖励用于评估 AI 提供的最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。 更有趣的是,DeepSeek 还有一个更加聪明的 R1zero 实验版本,这个版本甚至没有进行任何的初始引导,而是采用了完全从零开始的强化学习。实验表明,无需任何人类的监督训练,R1zero 自然而然地学会了用更多的思考步骤来解决推理任务,还学会了在推理过程中反思先前的推理步骤,探索解决问题的替代方法。但因为没有微调,R1zero 的输出内容可读性差、语言混合,且风险不可控。所以我们见到的是经过符合人类阅读偏好的冷启动与微调过的 R1 版本,确保 AI 生成内容的稳定、安全、道德、无害。 附:DeepSeek R1 完整训练过程,因文章定位与行文节奏设计,上文仅对影响 R1 涌现关键智能的前两个训练步骤进行了讲解。更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948 参考文献: 1. 碎瓜波斯兔子《Deepseek R1 可能找到了超越人类的办法》https://mp.weixin.qq.com/s/YgRgDw8ndSHJwcPNMqWZNQ 2. 大聪明赛博禅心《DeepSeek R1 是怎么训练的?》https://mp.weixin.qq.com/s/Wuz0H9jmZYV1jM1YtwTlA 3. 老刘说 NLP《可视化角度具象化理解 DeepSeekR1 类推理大模型的习得进程》https://mp.weixin.qq.com/s/ytKTGTgU2T7jSNrBghX1cA 4. Tianzhe Chu et al.《SFT 记忆,RL 泛化:基础模型训练后的比较研究》https://arxiv.org/html/2501.17161 5. Metaso 长思考对话《RL 和 SFT 在后训练中的区别》https://metaso.cn/s/WGdOwPC
2025-02-07
不懂编码,如何成为一名ai培训师
要成为一名 AI 培训师,即使不懂编码,也可以从以下几个方面努力: 1. 深入理解 AI 理论和概念:掌握 AI 的基本原理、算法、应用场景等知识。 2. 熟悉 AI 工具和平台:了解并能熟练使用常见的 AI 工具和平台,如一些无需编码的 AI 应用开发工具。 3. 培养教学能力:包括课程设计、讲解技巧、与学员互动等方面的能力。 4. 注重案例分析:通过实际的 AI 应用案例,深入理解其实现过程和效果。 5. 持续学习和更新知识:AI 领域发展迅速,要不断跟进最新的技术和趋势。 对于编码相关的培训,如果您要教授编码课程,可能需要先让学生通过手动编码学习,掌握语言后再将 AI 生成的代码作为节省时间的工具。比如在健康类课程中,如果学生开发应用,您可能不太在意他们是否使用生成式 AI 来编写代码,而更关注学生基于健康习惯设计健康活动。但在编码课程中,可能需要对学生使用生成式 AI 编写代码进行严格要求。
2025-02-04
我想为公司员工培训下AI基础入门使用技巧,帮我写一个课程大纲
以下是为您提供的公司员工 AI 基础入门使用技巧培训课程大纲: 一、AI 基本概念 1. 人工智能的定义和术语 2. 主要分支(机器学习、深度学习、自然语言处理等)及联系 3. 历史、当前应用和未来发展趋势 二、AI 学习资源与路径 1. 推荐的入门文章和学习资料 2. 为初学者设计的课程,如李宏毅老师的课程 3. 在线教育平台(Coursera、edX、Udacity)课程介绍 三、AI 应用领域与选择 1. 图像、音乐、视频等领域介绍 2. 根据兴趣选择特定模块深入学习的建议 四、提示词技巧 1. 提示词的重要性和作用 2. 掌握提示词的方法和技巧 五、实践操作 1. 理论知识的实践应用 2. 分享实践作品和经验 六、体验 AI 产品 1. 介绍常见的 AI 聊天机器人(ChatGPT、Kimi Chat、智谱、文心一言等) 2. 了解其工作原理和交互方式 七、AI 在企业中的应用 1. 对于企业管理者 AI 辅助决策 员工培训计划 流程优化 AI 伦理和政策 2. 对于教育工作者 AI 辅助教案设计 个性化学习路径 创新教学方法 AI 素养教育 希望这个课程大纲能满足您的需求,帮助员工更好地了解和应用 AI 基础知识。
2025-01-16
怎样利用自己现有的培训文档,制作一个AI agent可以担任系统分析员的工作,从文档中抽丝剥茧找出系统问题的根本原因和解决方案?
目前没有相关的培训文档内容可参考。但一般来说,要利用现有的培训文档制作一个能担任系统分析员工作的 AI agent 并从文档中找出系统问题的根本原因和解决方案,您可以考虑以下步骤: 1. 对培训文档进行详细的梳理和分类,提取关键信息,例如系统常见问题的特征、根本原因的类型以及可能的解决方案模式。 2. 利用自然语言处理技术,对提取的信息进行标注和训练,使 AI agent 能够理解和识别这些模式。 3. 设计有效的交互方式,让用户能够向 AI agent 清晰地描述系统问题,以便它能够准确地匹配和应用所学知识。 4. 不断测试和优化 AI agent 的性能,根据实际应用中的反馈,调整训练数据和算法,提高其准确性和实用性。
2025-01-10
请给我推荐一些AI工具配上相关的AI培训视频。同时分析一下每个AI工具的使用场景,优势和缺点以及相似的工具推荐。要求这些AI工具适用于办公环境生产环境
以下为适用于办公环境生产环境的一些 AI 工具推荐,并对其使用场景、优势、缺点及相似工具进行分析: Keep: 使用场景:提供全面的健身解决方案,适用于个人健身计划制定和跟踪。 优势:中国最大的健身平台,资源丰富,能满足多种健身需求。 缺点:可能存在广告过多,部分功能需付费。 相似工具:Fiture Fiture: 使用场景:集硬件、课程内容、教练和社区于一体,适合追求综合健身体验的用户。 优势:由核心 AI 技术打造,提供一体化服务。 缺点:硬件设备可能价格较高。 相似工具:Keep Fitness AI: 使用场景:专注于利用人工智能进行锻炼,增强力量和速度。 优势:针对性强,对力量和速度训练有特定帮助。 缺点:功能相对较单一。 相似工具:暂无明确相似工具。 Planfit: 使用场景:提供健身房家庭训练与 AI 健身计划,适合在家健身的用户。 优势:AI 教练基于大量数据和 ChatGPT 实时提供指导。 缺点:可能对网络要求较高。 相似工具:暂无明确相似工具。 腾讯文档分类功能: 使用场景:自动分类办公文件,方便文件管理。 优势:提高文件管理效率,与腾讯文档集成方便。 缺点:分类准确性可能受文件内容复杂性影响。 相似工具:暂无明确相似工具。 英语流利说纠错功能: 使用场景:帮助语言学习者纠正发音、语法等错误。 优势:针对性纠错,有助于提高语言水平。 缺点:可能对某些特定语言习惯或方言的适应性不足。 相似工具:暂无明确相似工具。 下厨房口味调整功能: 使用场景:根据用户反馈调整菜谱口味。 优势:方便用户优化烹饪效果。 缺点:口味调整的精准度可能有限。 相似工具:暂无明确相似工具。 美丽修行定制方案功能: 使用场景:根据用户肤质定制护肤方案。 优势:个性化护肤推荐。 缺点:对肤质判断的准确性依赖用户输入的信息。 相似工具:暂无明确相似工具。 以上是部分适用于办公和生产环境的 AI 工具推荐及分析,您可以根据具体需求选择使用。
2025-01-06