直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

目前有什么主流AI笔记本电脑推荐?

回答

目前,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。这类笔记本通常配备了强大的 GPU(如 NVIDIA RTX 系列)、大容量内存和高速固态硬盘,以满足 AI 模型训练和推理的计算需求。一些知名品牌的 AI 笔记本包括:

  1. 微软(Microsoft)第11代 Surface Pro
  2. 微星(MSI) Creator/Workstation 系列
  3. 技嘉(GIGABYTE) Aero/Aorus 系列
  4. 戴尔(Dell) Precision 移动工作站
  5. 惠普(HP) ZBook 移动工作站
  6. 联想(Lenovo) ThinkPad P 系列

这些笔记本一般采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU,配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU。同时也提供了大容量内存(32GB 以上)和高速 NVMe SSD 存储选配。除了硬件配置,这些 AI 笔记本还通常预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具,为用户提供了开箱即用的 AI 开发环境。

当然,这类高端 AI 笔记本价格也相对较高,通常在 2000 美元以上。用户可以根据自身的 AI 应用需求和预算情况,选择合适的型号。同时也要关注笔记本的散热、续航等实际使用体验。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
你只知道AI相关的事情吗
我主要专注于 AI 相关的知识和问题。在 AI 领域,涵盖的内容非常广泛,包括但不限于以下方面: 基础理论:如人工智能、机器学习、深度学习的定义及其相互关系。 历史发展:AI 的发展历程和重要里程碑。 数学基础:统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(掌握条件概率、贝叶斯定理等知识)。 算法和模型:监督学习(了解线性回归、决策树、支持向量机等算法)、无监督学习(熟悉聚类、降维等算法)、强化学习(知晓其基本概念)。 评估和调优:性能评估(知道如何运用交叉验证、精确度、召回率等评估模型性能)、模型调优(学会使用网格搜索等技术优化模型参数)。 神经网络基础:网络结构(理解前馈网络、卷积神经网络、循环神经网络等)、激活函数(了解 ReLU、Sigmoid、Tanh 等常用激活函数)。 同时,AI 在各行各业有着广泛的应用场景,例如: 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:等等。
2024-12-21
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-21
小白如何学习ai
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型及原理。 生成式 AI 生成的内容叫 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习是基于有标签的训练数据学习输入和输出之间的映射关系,包括分类和回归;无监督学习是基于无标签数据自主发现规律,经典任务如聚类;强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法,神经网络可用于多种学习方式。 生成式 AI 可生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不是大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-12-21
有没有带有文件夹功能的ai
目前,带有文件夹功能的 AI 仅在 Cursor Chat 中受支持。您还可以将 Cursor 中的整个文件夹作为上下文引用,@Folders 对于希望为 AI 提供大量上下文的长上下文聊天特别有用,相关链接为:https://docs.cursor.com/chat/overviewlongcontextchat 。 此外,能联网检索的 AI 也是存在的。例如,ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网;Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型;Bing Copilot 作为 AI 助手,旨在简化在线查询和浏览活动;还有如 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 在 Excel 方面,有以下几种增强数据处理和分析能力的 AI 工具和插件: 1. Excel Labs:是 Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求,Copilot 自动完成任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 以上内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生学习 AI 的建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-21
AI应用解决方案
以下是为您提供的 AI 应用解决方案: AI 应用主要涉及以下几个方面: 1. 辅助创作与学习: AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术辅助用户进行高质量写作,可检查语法、拼写错误并提供改进建议,进行智能润色和内容创作辅助。 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐,如淘宝拍照搜商品,通过图像识别和机器学习为用户推荐相似商品。 美食推荐平台,如大众点评智能推荐,基于用户口味偏好推荐美食。 旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,利用数据分析和机器学习提高工作效率和管理水平。 5. 销售与交易: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 此外,还有以下具体的 AI 应用: 1 20 中的部分应用: 小爱同学、Siri 等 AI 语音助手定制开发,通过语音识别和自然语言理解技术,为不同需求定制专属语音助手,可控制智能家居、回答问题等。 Keep 智能训练计划,利用数据分析和机器学习技术,根据用户数据制定个性化健身方案。 81 100 中的部分应用: AI 菜谱口味调整工具,如下厨房口味调整功能,通过自然语言处理和数据分析,根据用户反馈调整菜谱口味。 AI 语言学习纠错平台,如英语流利说纠错功能,利用自然语言处理和机器学习技术,帮助语言学习者纠正错误。 总之,这些 AI 应用为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。
2024-12-21
使用开源大模型本地化部署使用电脑配置,推荐几款笔记本电脑
以下是关于使用开源大模型本地化部署所需电脑配置及笔记本电脑推荐的相关信息: 运行大模型需要较高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 对于本地化部署,不建议使用最低配置,因为速度会非常慢。例如,用 8G 的 Mac 电脑尝试过,效果不佳。 由于本地化部署对电脑配置要求较高,不太推荐本地化安装实现。如果想使用开源大模型,可选择利用云厂商已提供好的大模型运行环境和计算能力,比如阿里云的 PAI 和 AutoDL。 在笔记本电脑选择方面,建议选择具备以下配置的机型: 1. 内存:16GB 及以上的 RAM。 2. 显卡:具有 8GB 及以上 VRAM 的独立显卡。 但具体的笔记本电脑型号还需根据您的预算和其他需求来确定。
2024-09-12
MAC笔记本电脑,有哪个网址可以下载SD的安装包?或者说MAC电脑可以使用SD吗
对于 MAC 电脑安装 Stable Diffusion(SD),推荐云端部署,相关链接为:https://qa3dhma45mc.feishu.cn/wiki/A6WYw1Nm0ikGplkuO9Ecwomqnnd 。 如果您选择本地部署,以下是一些相关步骤供您参考: 1. 进入安装页面,等待安装好。 2. 勾选如下项目,要确保包含 Python 和 C++包。 3. 更改到您想要安装的位置,然后点击右下角的安装就行。 4. 安装时间比较长,要耐心等待。 5. 安装好之后,打开 SD 文件目录下的这个文件夹。 6. 在地址栏输入“cmd”,然后回车。 7. 在打开的 dos 界面里面,将这行代码“python m pip install insightface==0.7.3 user”粘贴进来,就会自动开始安装 insightface。 8. 如果这个阶段出现错误,建议去下载使用最新的秋叶 4.2 整合包(6 月 23 号更新),下载包已更新到云盘里,后台回复【SD】就可以下载。 9. 安装完成后,重新打开我们的启动器,后台会继续下载一些模型,此时一定要保证全程科学上网。 另外,对于电脑配置能支持 SD 运行的朋友,也可以使用 B 站秋叶分享的整合包进行本地部署,具体步骤如下: 1. 打开链接 https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru 下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》——鼠标右击文件——点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘,小心 C 盘被占满!点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器——点击“发送到”——桌面快捷方式。这样下次进入就可以直接在桌面双击进入,不用每次都到文件夹里面找啦! 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”。 8. 在显存优化里,根据自己电脑的显存选择(就是上面查看的专用 GPU 内存),自己电脑是多少就选多少。 9. 回到第一个一键启动,点击右下角的一键启动。
2024-08-29
现在我想生成一张插画,需要提示词。插画内容为一位刚高考完的大学生,正在思考买什么笔记本电脑,现在在网站上查阅信息
以下是为您生成的插画提示词:一位刚结束高考、神情专注的大学生,坐在电脑桌前,面前的屏幕上显示着各种笔记本电脑的信息,他眉头微皱,手中拿着笔在本子上记录着,身旁放着几本电脑杂志。A college student who has just finished the college entrance examination, with a focused expression, is sitting at a computer desk. The screen in front of him shows information about various laptops. He frowns slightly and holds a pen in his hand, recording in a notebook. There are several computer magazines beside him.
2024-08-21
请画出一张图,显示主流大语言 模型擅长领域
以下是主流大语言模型擅长领域的相关信息: 1. Encoderonly 模型:通常适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 2. Encoderdecoder 模型:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。 3. Decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多 AI 助手基本采用此结构,包括 ChatGPT。 大模型的特点: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,先进的大模型一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 国内大模型分类: 1. 通用模型:如文心一言、讯飞星火等,处理自然语言。 2. 垂直模型:专注特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。 大型模型主要分类: 1. 大型语言模型:专注于处理和生成文本信息。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型的不同: 1. 处理的信息类型不同:大型语言模型专注于文本信息,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型可应用于更广泛领域,如图像识别与描述、视频分析、语音识别与生成等。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 相对大型模型的“小模型”:是在相对比较下规模较小的模型,实际是被设计来完成特定任务的,如最初用于图像分类的模型,只能分辨是或不是某一个东西。
2024-12-08
现在主流的AI都具备哪些能力
现在主流的 AI 具备以下能力: 1. 对话能力:如聊天机器人,具备基本对话功能,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理能力:像推理者,具备人类推理水平,能够解决复杂问题,例如 ChatGPT 能根据上下文和文件提供详细分析和意见。 3. 执行能力:智能体不仅具备推理能力,还能执行全自动化业务,不过目前许多 AI 智能体产品在执行任务后仍需人类参与。 4. 创新能力:创新者能够协助人类完成新发明,例如谷歌 DeepMind 的 AlphaFold 模型可预测蛋白质结构,加速科学研究和新药发现。 5. 组织能力:最高级别的组织能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 AI 的应用场景广泛,包括: 1. 医疗保健: 医学影像分析:用于辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为。 信用评估:帮助金融机构做出贷款决策。 投资分析:辅助投资者做出投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:向客户推荐感兴趣的产品。 搜索和个性化:提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 以下是一些辅助写邮件的 AI 工具: 1. Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言,网站:https://www.grammarly.com/ 2. Hemingway Editor:简化句子结构提高可读性,标记复杂句和冗长句,界面简洁,重点突出,适用于改善写作风格和简洁性,网站:http://www.hemingwayapp.com/ 3. ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多种平台和集成,适合专业写作者,网站:https://prowritingaid.com/ 4. Writesonic:基于 AI 生成各种类型文本,包括电子邮件、博客文章、广告文案等,生成速度快,适合需要快速创作和灵感的用户,网站:https://writesonic.com/ 5. Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。
2024-12-06
目前市面主流的AI AGENT工具是?
目前市面上主流的 AI Agent 工具包括: 1. Ranger:通过为大模型增加工具、记忆、行动、规划等能力来实现,行业里主要用到的框架如 langchain,在 prompt 层和工具层完成主要设计。 2. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具拓展 Bot 能力边界。 3. Microsoft 的 Copilot Studio:具备外挂数据、定义流程、调用 API 和操作以及部署等功能。 4. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者按需打造产品能力。 5. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 6. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 7. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2024-11-30
目前各大主流模型的 max output token
以下是目前各大主流模型的 max output token 情况: Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开: 。此外,GPT3 和 GPT3.5/4 的 token 计算方式不同,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2024-11-24
目前主流ai软件的功能及区别
目前主流的 AI 软件具有多种功能,以下为您介绍部分软件的功能及区别: 在软件架构设计方面: Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 Gliffy:基于云的绘图工具,提供创建各种架构图功能,包括逻辑视图和部署视图。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 在其他应用方面: AI 摄影参数调整助手:利用图像识别、数据分析技术,如一些摄影 APP 的参数调整功能,根据场景自动调整摄影参数。 AI 音乐情感分析平台:通过机器学习、音频处理技术,如音乐情感分析软件,分析音乐的情感表达。 AI 家居智能照明系统:结合物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制。 AI 金融风险预警平台:运用数据分析、机器学习,如金融风险预警软件,提前预警金融风险。 AI 旅游路线优化平台:借助数据分析、自然语言处理,如马蜂窝的路线优化功能,根据用户需求优化旅游路线。 在辅助写邮件方面: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和多种语言,网站:https://www.grammarly.com/ 。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,网站:http://www.hemingwayapp.com/ 。 ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多种平台和集成,网站:https://prowritingaid.com/ 。 Writesonic:基于 AI 生成各种类型文本,包括电子邮件、博客文章、广告文案等,生成速度快,网站:https://writesonic.com/ 。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。
2024-11-20
目前国外主流的图像类AICG应用有哪些
目前国外主流的图像类 AICG 应用包括 DALL·E2、StableDiffusion 等。DALL·E2 能够根据输入的文本描述生成逼真且富有创意的图像;StableDiffusion 则以其强大的生成能力和广泛的自定义选项受到众多用户的青睐。
2024-11-13
请给我推荐介绍 适合写网络小说的AI工具?
以下是一些适合写网络小说的 AI 工具及相关信息: 工具与网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。 网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。 网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。 网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址: 将小说制作成视频的一般流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-12-21
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
哪个智能体能够根据用户的购物历史、浏览行为和偏好,提供个性化的产品推荐。
以下智能体能够根据用户的购物历史、浏览行为和偏好提供个性化的产品推荐: 1. 电子商务网站:通过收集用户的购物历史和浏览习惯等数据,使用机器学习和数据挖掘技术进行分析,从而推荐相似产品。 2. 基于人工智能的语音助手:可以分析用户行为、偏好以及历史购买记录,为用户提供更个性化的商品推荐,提升购物体验。 3. 中小企业:利用 AI 分析客户行为数据,包括购买历史、浏览记录、反馈等,基于分析结果生成个性化的产品推荐和服务。 4. 扣子模板中的个性化推荐引擎:利用人工智能和机器学习算法,根据用户的历史行为和偏好,实时推荐最相关的产品或服务,以提升转化率。
2024-12-20
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
免费的图生视频软件有推荐吗
以下是为您推荐的免费图生视频软件: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果您熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 3. Kaiber:这是一款视频转视频 AI,能够将原视频转换成各种风格的视频。 此外,您还可以通过以下途径获取更多相关信息: 1. 更多的文生视频的网站可以查看: 2. Vidu 全球上线,Web 端访问:https://www.vidu.studio/ ,具有极速生成、动漫风格、角色可控、精准理解、大片质感等特点。 关于 SVD 图生视频模型的下载和使用: 1. 下载模型:最新模型在前面,建议除开第一个模型都下载。 https://huggingface.co/stabilityai/sv3d/ 【Stable Video 3D模型,最新模型,生成图片 3D 旋转视频,暂时没测试是否能支持】 https://huggingface.co/stabilityai/stablevideodiffusionimg2vidxt11/ 【SVD 1.1 XT 版,支持生成 1024x576 分辨率每秒 14 帧视频,优化了文件大小,提高生成效率】 https://huggingface.co/stabilityai/stablevideodiffusionimg2vidxt 【SVD 1.0 XT 版,支持生成 1024x576 分辨率生成每秒 25 帧视频】 https://huggingface.co/stabilityai/stablevideodiffusionimg2vid 【SVD1.0 版,支持生成生成 1024x576 分辨率每秒 14 帧视频】 2. 放置模型:下载好的 SVD 图生视频模型放置在指定文件夹下。 3. 使用方法:Controlnet 中上传原图选择深度,预处理器可选择不同算法,右侧深度模型记得选择深度模型,获得需要的深度图。结合大模型和提示词,利用文生图就可以生成图片。然后上传制作好的图片,选择 SVD 图生视频大模型,设置参数,生成视频。 内容由 AI 大模型生成,请仔细甄别。
2024-12-19
我完全没有AI基础,请帮我推荐一些资料学习
以下是为完全没有 AI 基础的您推荐的学习资料: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-19