Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前有什么主流AI笔记本电脑推荐?

Answer

目前,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。这类笔记本通常配备了强大的 GPU(如 NVIDIA RTX 系列)、大容量内存和高速固态硬盘,以满足 AI 模型训练和推理的计算需求。一些知名品牌的 AI 笔记本包括:

  1. 微软(Microsoft)第11代 Surface Pro
  2. 微星(MSI) Creator/Workstation 系列
  3. 技嘉(GIGABYTE) Aero/Aorus 系列
  4. 戴尔(Dell) Precision 移动工作站
  5. 惠普(HP) ZBook 移动工作站
  6. 联想(Lenovo) ThinkPad P 系列

这些笔记本一般采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU,配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU。同时也提供了大容量内存(32GB 以上)和高速 NVMe SSD 存储选配。除了硬件配置,这些 AI 笔记本还通常预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具,为用户提供了开箱即用的 AI 开发环境。

当然,这类高端 AI 笔记本价格也相对较高,通常在 2000 美元以上。用户可以根据自身的 AI 应用需求和预算情况,选择合适的型号。同时也要关注笔记本的散热、续航等实际使用体验。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
会画图的AI有哪些
以下是一些可以画图的 AI 工具: 1. 对于绘制 CAD 图: CADtools 12:是 Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 ParaMatters CogniCAD:根据输入自动生成 3D 模型。 主流 CAD 软件如 Autodesk 系列、SolidWorks 等的生成设计工具。 2. 绘制示意图: Lucidchart:强大的在线图表制作工具,集成 AI 功能,可绘制多种示意图。 Microsoft Visio:专业图表绘制工具,AI 功能可优化图表设计。 Diagrams.net:免费开源的在线图表绘制工具。 3. 绘制逻辑视图、功能视图、部署视图: Lucidchart:流行的在线绘图工具,支持多种视图创建。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合使用创建逻辑视图。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 draw.io(diagrams.net):免费在线图表软件,支持多种图表创建。 PlantUML:文本到 UML 转换工具,自动生成多种视图。 Gliffy:基于云的绘图工具,支持创建架构图。 Archi:免费开源工具,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持多种视图创建。 需要注意的是,这些工具通常需要一定的相关知识和技能才能有效使用。对于初学者,建议先学习基本技巧,然后尝试使用这些工具提高设计效率。
2025-01-23
写综述论文的ai?
在论文写作领域,AI 技术的应用发展迅速,能提供多方面的辅助,以下是一些相关的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题可参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 对于不会代码但想在 20 分钟内上手 Python + AI 的朋友,可循序渐进完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 请注意,AI 工具可辅助但不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-01-23
我是一个AI小白,想系统学习AI,实现的目标是成为AI领域小能手,如果能用于变现则更好,我需要从什么开始学习,周期大概是多少?适合做哪些变现的项目呢
对于您这样的 AI 小白,想要系统学习 AI 并实现成为领域小能手甚至变现的目标,以下是一些建议: 1. 学习模式:可以采用输入→模仿→自发创造的模式。先广泛输入知识,然后进行模仿,最后尝试自发创造。 2. 学习内容:去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。但要注意,一些旧的学习材料可能已经不适用。 3. 时间安排:学习时间不必每天依次进行,可以在有空的时候学习。 4. 学习状态:保持良好的学习状态,有意愿和动力去学。 5. 费用方面:学习资源大多是免费开源的。 新手学习 AI 可以这样做: 1. 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台按自己节奏学习并获取证书。 3. 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 学习周期因人而异,取决于您的学习时间投入、学习效率和理解能力等因素。 关于变现项目,比如可以尝试用 GPT 和 SD 制作图文故事绘本、小说推文等,但要注意项目可能存在的不确定性。
2025-01-23
面向新手个人的AI应用培训课程
以下是为新手个人推荐的一些 AI 应用培训课程: 1. 微软的 AI 初学者课程: 作者/来源:微软 推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:👍🏻 2. AI for every one(吴恩达教程): 作者/来源:吴恩达 前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:👍🏻 3. 大语言模型原理介绍视频(李宏毅): 作者/来源:李宏毅 可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 4. 谷歌生成式 AI 课程: 作者/来源:谷歌 注:前 4 节课为入门课 目录: 5. ChatGPT 入门: 作者/来源:OpenAI 注册、登录、简单使用方法等 目录: 新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。 建议一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,你可以获得对 AI 在实际应用中表现的第一手体验,并激发你对 AI 潜力的认识。 此外,还有“90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包括: 1. Code AI 应用背景:智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 2. AI CODING 现状:AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。 3. 证件照应用案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。 4. AI 应用学习过程:创建 AI 应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-01-23
AI原生组织
以下是关于“AI 原生组织”的相关内容: 目前大多数的“AI 应用/AI 转型”还在走“数字化转型”的老路,把 AI 往现有流程上一套,讲“固化流程”“节约成本”的故事。但在技术加速迭代的当下,这样做基本等于“做出来就是过时的”,会凝固企业的业务模式,剥夺企业主动进化的能力。 现在这种情况更多反映出人们对于 AI 的焦虑,希望 AI 拿来就能用、马上起效果。但不能止于焦虑,AI 的力量应用于对未来业务的重新定义,这才是“AI 原生公司”的做法。比如在电力发明时,不应从“如何让电力赋能马车”出发,而应从“电力能创造和满足什么新的需求”出发。 AGI 的五个等级中,“组织”是最高级别,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2025-01-23
3d模型自动生成的ai 啊
在 3D 模型生成方面,AI 主要完成了对 3D 模型生成流程的“一步到位”。工作流中的每一个环节几乎都需要一位或一组 3D 美术工程师来完成,而使用 3D 生成模型可以直接完成一个可调整的 3D 粗模,大大提升效率。 以下为一些 AI 生成 3D 模型的工具介绍: 1. 3dfy.ai: 概览:是一家专注于开发先进技术的公司,能将稀疏数据转化为逼真的三维世界,领导团队由计算成像领域资深专家组成。 使用场景:数字 3D 互动体验流行度提升,但受 3D 内容可用性限制,其技术能利用稀疏数据自动创建高质量 3D 模型。 目标用户:数字内容创作者和艺术家、游戏开发者和动画制作人、教育和培训行业专业人士、医疗行业、建筑和工程领域。 应用案例:暂未提及。 2. xiaohu.ai 相关 3D 信息: MakeACharacter:一键生成 3D 数字人,可自定义面部特征,基于真实人类扫描数据,使用 Unreal Engine 渲染,支持中英文提示,兼容多个行业应用。 Rodin Gen1:3D 原生生成模型,拥有 1.5B 参数,可实现 3Dto3D 生成,生成 3D 模型及物理基础渲染材质,支持 3D LoRA 技术。 Skybox AI 0.9 版本更新:可以从文本提示或草图生成 360 度 3D 世界,使用 NeRF 技术,增强图像的空间深度和真实感,提供不同分辨率的 3D 网格下载。 扫描物体生成 3D 模型:使用 APP 扫描物体,完成 3D 全貌捕获,创建 AR QR 码,展示物体于任何地点,在苹果新品官网展示中有应用。
2025-01-23
使用开源大模型本地化部署使用电脑配置,推荐几款笔记本电脑
以下是关于使用开源大模型本地化部署所需电脑配置及笔记本电脑推荐的相关信息: 运行大模型需要较高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 对于本地化部署,不建议使用最低配置,因为速度会非常慢。例如,用 8G 的 Mac 电脑尝试过,效果不佳。 由于本地化部署对电脑配置要求较高,不太推荐本地化安装实现。如果想使用开源大模型,可选择利用云厂商已提供好的大模型运行环境和计算能力,比如阿里云的 PAI 和 AutoDL。 在笔记本电脑选择方面,建议选择具备以下配置的机型: 1. 内存:16GB 及以上的 RAM。 2. 显卡:具有 8GB 及以上 VRAM 的独立显卡。 但具体的笔记本电脑型号还需根据您的预算和其他需求来确定。
2024-09-12
MAC笔记本电脑,有哪个网址可以下载SD的安装包?或者说MAC电脑可以使用SD吗
对于 MAC 电脑安装 Stable Diffusion(SD),推荐云端部署,相关链接为:https://qa3dhma45mc.feishu.cn/wiki/A6WYw1Nm0ikGplkuO9Ecwomqnnd 。 如果您选择本地部署,以下是一些相关步骤供您参考: 1. 进入安装页面,等待安装好。 2. 勾选如下项目,要确保包含 Python 和 C++包。 3. 更改到您想要安装的位置,然后点击右下角的安装就行。 4. 安装时间比较长,要耐心等待。 5. 安装好之后,打开 SD 文件目录下的这个文件夹。 6. 在地址栏输入“cmd”,然后回车。 7. 在打开的 dos 界面里面,将这行代码“python m pip install insightface==0.7.3 user”粘贴进来,就会自动开始安装 insightface。 8. 如果这个阶段出现错误,建议去下载使用最新的秋叶 4.2 整合包(6 月 23 号更新),下载包已更新到云盘里,后台回复【SD】就可以下载。 9. 安装完成后,重新打开我们的启动器,后台会继续下载一些模型,此时一定要保证全程科学上网。 另外,对于电脑配置能支持 SD 运行的朋友,也可以使用 B 站秋叶分享的整合包进行本地部署,具体步骤如下: 1. 打开链接 https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru 下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》——鼠标右击文件——点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘,小心 C 盘被占满!点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器——点击“发送到”——桌面快捷方式。这样下次进入就可以直接在桌面双击进入,不用每次都到文件夹里面找啦! 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”。 8. 在显存优化里,根据自己电脑的显存选择(就是上面查看的专用 GPU 内存),自己电脑是多少就选多少。 9. 回到第一个一键启动,点击右下角的一键启动。
2024-08-29
现在我想生成一张插画,需要提示词。插画内容为一位刚高考完的大学生,正在思考买什么笔记本电脑,现在在网站上查阅信息
以下是为您生成的插画提示词:一位刚结束高考、神情专注的大学生,坐在电脑桌前,面前的屏幕上显示着各种笔记本电脑的信息,他眉头微皱,手中拿着笔在本子上记录着,身旁放着几本电脑杂志。A college student who has just finished the college entrance examination, with a focused expression, is sitting at a computer desk. The screen in front of him shows information about various laptops. He frowns slightly and holds a pen in his hand, recording in a notebook. There are several computer magazines beside him.
2024-08-21
目前在各个应用领域,主流的AI工具有哪些,请分别介绍.
以下是一些主流的 AI 工具及其应用领域的介绍: 1. AI 菜谱口味调整工具:如“下厨房口味调整功能”,使用自然语言处理和数据分析技术,市场规模达数亿美元。它能根据用户反馈调整菜谱口味,例如增加甜度、减少辣味等。 2. AI 语言学习纠错平台:像“英语流利说纠错功能”,运用自然语言处理和机器学习,市场规模达数十亿美元。可帮助语言学习者纠正发音、语法等错误,并提供纠正建议和练习。 3. AI 电影剧情分析系统:例如“豆瓣电影剧情分析工具”,借助数据分析和自然语言处理,市场规模达数亿美元。能够分析电影剧情,为用户提供深度解读。 4. AI 办公文件分类系统:比如“腾讯文档分类功能”,采用数据分析和机器学习,市场规模达数亿美元。可自动分类办公文件,方便管理。 5. AI 美容护肤方案定制平台:“美丽修行定制方案功能”,利用图像识别和数据分析,市场规模达数亿美元。能根据用户肤质定制护肤方案,包括产品推荐和使用顺序。 6. AI 游戏道具推荐系统:在一些游戏中的“游戏内商城推荐功能”,通过数据分析和机器学习,市场规模达数亿美元。可根据玩家需求推荐游戏道具,如武器、装备等。 7. AI 天气预报分时服务:“彩云天气分时预报”,运用数据分析和机器学习,市场规模达数亿美元。提供精准的分时天气预报,帮助用户更好地安排出行和活动。 8. AI 医疗病历分析平台:“医渡云病历分析系统”,借助数据分析和自然语言处理,市场规模达数十亿美元。可分析医疗病历,为医生提供辅助诊断建议。 9. AI 会议发言总结工具:“讯飞听见会议总结功能”,使用自然语言处理和机器学习,市场规模达数亿美元。能够自动总结会议发言内容,方便回顾和整理。 10. AI 书法作品临摹辅助工具:“书法临摹软件”,利用图像识别和数据分析,市场规模达数亿美元。帮助书法爱好者进行临摹,提供临摹指导和评价。 11. 超级简历优化助手:“AI 简历优化工具”,运用自然语言处理,市场规模达数亿美元。帮助用户优化简历,提高求职成功率。 12. 酷家乐等设计软件:“AI 室内设计方案生成”,借助图像生成和机器学习,市场规模达数十亿美元。能快速生成个性化室内设计方案。 13. Amper Music:“AI 音乐创作辅助工具”,采用机器学习和音频处理,市场规模达数亿美元。协助音乐创作者进行创作,可根据用户需求生成旋律和编曲。 14. 松果倾诉智能助手:“AI 情感咨询助手”,通过自然语言处理和情感分析,市场规模达数亿美元。为用户提供情感支持和建议,通过文字或语音交流。 15. 小佩宠物智能设备:“AI 宠物健康监测设备”,利用传感器数据处理和机器学习,市场规模达数十亿美元。可实时监测宠物健康状况,提供健康预警。 16. 马蜂窝智能行程规划:“AI 旅游行程规划器”,借助数据分析和自然语言处理,市场规模达数十亿美元。能根据用户需求生成个性化旅游行程。
2025-01-20
目前主流的AI大模型有哪些
目前主流的 AI 大模型主要有以下几种: 1. OpenAI 系列:包括 GPT3.5 和 GPT4 等。GPT3.5 在 11 月启动了当前的 AI 热潮,GPT4 功能更强大。ChatGPT 也属于 OpenAI 系列。 2. 微软 Bing:使用 GPT4 和 GPT3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,能创建和查看图像,还能在网页浏览器中阅读文档,并连接到互联网。 3. 谷歌 Bard:由各种基础模型驱动,最近是 PaLM 2 模型。 4. Anthropic Claude 2:其特点是有非常大的上下文窗口,不太可能恶意行事。 此外,大模型的架构也有所不同,如 encoderonly 模型(代表模型是 BERT)、encoderdecoder 模型(代表是 google 的 T5)、decoderonly 模型(适用于自然语言生成任务,如故事写作和博客生成,众多 AI 助手包括 ChatGPT 都属于此类)。大模型的“大”体现在预训练数据量大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练)和参数多(如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数)。
2025-01-07
主流TTS-语音合成技术
语音合成(Speech Synthesis)是将文本转换为可听的声音信息,赋予了像人一样说话的能力,是人机交互的重要接口。一般而言,语音合成的概念比文语转换(TexttoSpeech,TTS)涵盖范围更广,包括 TTS、歌唱合成等领域,但多数情况下可混用。提供了一些端到端语音合成模型的样例,可感受目前语音合成的发展。 人类通过一整套发音器官合成语音,肺相当于动力源,喉相当于调制器,声道相当于滤波器,口唇相当于扩音器。研究人员提出以源滤波器(sourcefilter)模型为代表的多种模型建模该过程,语音中有清音和浊音,分别由声带周期性振动对应的周期声源和声带不振动时紊乱气流对应的非周期声源产生。 当代工业界主流语音合成系统包含文本前端和声学后端两部分。文本前端将输入文本转换为层次化的语音学表征,主要有文本规范化、韵律分析和文本转音素等模块。声学后端基于文本前端给出的层次化语言学表征生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。端到端声学后端通常包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。声学模型负责将语言学特征转换为中间声学特征(如梅尔频谱),直接决定合成语音的韵律;声码器将中间声学特征转换为语音波形,直接决定合成语音的音质。
2025-01-07
主流TTS-语音合成技术
语音合成(Speech Synthesis)是将文本转换为可听的声音信息,赋予了像人一样说话的能力,是人机交互的重要接口。一般而言,语音合成的概念比文语转换(TexttoSpeech,TTS)涵盖范围更广,包括 TTS、歌唱合成等领域,但多数情况下可混用。提供了一些端到端语音合成模型的样例,可感受目前语音合成的发展。 人类通过一整套发音器官合成语音,肺相当于动力源,喉相当于调制器,声道相当于滤波器,口唇相当于扩音器。研究人员提出以源滤波器(sourcefilter)模型为代表的多种模型建模该过程,语音中有清音和浊音,分别由声带周期性振动对应的周期声源和声带不振动时紊乱气流对应的非周期声源产生。 当代工业界主流语音合成系统包含文本前端和声学后端两部分。文本前端把输入文本转换为层次化的语音学表征,主要有文本规范化、韵律分析和文本转音素等模块。声学后端基于文本前端给出的层次化语言学表征(linguistics feature)生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。端到端声学后端通常包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。声学模型负责将语言学特征转换为中间声学特征(如梅尔频谱),直接决定合成语音的韵律;声码器将中间声学特征转换为语音波形,直接决定合成语音的音质。
2025-01-07
国外比较主流的大模型有哪些
国外比较主流的大模型有: 1. GPT4Turbo:OpenAI 于 2023 年 11 月 7 日发布的 GPT4 的升级版本。 2. GPT4(网页版):OpenAI GPT4 官方网页版本,支持联网功能。 3. GPT4(API):OpenAI GPT4 官方 API 版本,不支持联网功能。 4. Claude2:Anthropic 官方发布的模型。 5. Geminipro:Google 官方发布的模型。 6. GPT3.5Turbo:OpenAI 的模型。 7. Llama_2_13B_Chat:Meta 发布的模型。
2025-01-03
ai换装,目前主流工具有哪些
目前主流的 AI 换装工具包括:InterAlia(https://interalia.vcflab.org/)。需要注意的是,虽然底层都是大模型,但 AI 工具各有侧重,不同公司也会进行各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。
2025-01-02
制作ai视频的应用推荐
以下是为您推荐的制作 AI 视频的应用: 1. 对于专业创作者(艺术家、影视人等): 低成本动捕能够大幅降低后期制作的门槛和成本,自动识别背景生成绿幕、视频主体跟随运动等能够辅助视频编辑,为后期制作增加更多空间。 目前该应用主要集中在音乐 MV、短篇电影、动漫等方向。 一些 AI 视频平台也积极寻求创意合作,为创作者提供免费支持。例如@valleeduhamel 使用现有的素材、Gen1 和大量合成创作了新电影《After Light》的过程分享,Ammaar Reshi 的团队使用 Stable WarpFusion+Davinci Resolve 制作完整的动漫剧情。 2. 对于自媒体、非专业创作者: 对于科技、财经、资讯类重脚本内容的视频制作,Invideo AI、Pictory 等产品在发力脚本生成分镜、视频,帮助创作者降低视频素材制作门槛。 Gamma AI 已经实现了文章高效转 PPT 的能力,若能结合 Synthesia、HeyGen AI、DID 等产品的 Avatar、语音生成能力也可快速转化为视频内容。 OpusClip 提供的长视频转短视频致力于解决创作者将同一个素材在不同平台分发导致制作成本升高的痛点。 3. 对于企业客户: 对于没有足够视频制作资金的小企业、非盈利机构来说,AI 视频生成可以为其大幅缩减成本。 如果您想用 AI 把小说做成视频,制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 制作 AI 视频的相关工具推荐: 1. 最佳动画工具:用于在视频中为人脸制作动画的 DiD(https://www.did.com/),用于从文本创建视频的 Runway v2(https://app.runwayml.com/)。 2. 最佳语音克隆:ElevenLabs(https://beta.elevenlabs.io/speechsynthesis)。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。同时,深度伪造是一个巨大的问题,这些系统需要合乎道德地使用。
2025-01-23
推荐3个ai 提示词工具
以下为您推荐 3 个 AI 提示词工具: 1. OpenPromptStudio:这是一款帮助撰写 MJ 和 SD 提示词的工具,支持将大段的 Prompt 提示词翻译成单词块、可拖拽单词块调整顺序、点击隐藏单词块使其在大段 Prompt 中消失、点击空白处新建单词块、提示词词典连接个人 Notion 数据库。整体交互设计出色,准确洞察了大家写提示词时的痛点。访问地址:https://moonvy.com/apps/ops/ 。 2. Majinai: 。 3. 词图: 。
2025-01-22
AI相关的书籍推荐
以下是为您推荐的与 AI 相关的书籍: 神经科学相关: 《认知神经学科:关于心智的生物学》(作者:Michael S. Gazzaniga;Richard B. Lvry;George R. Mangun):世界权威的认知神经科学教材,涵盖认知神经科学的多个方面。 《神经科学原理》(作者:Eric R. Kandel;James H. Schwartz):系统介绍神经元的细胞和分子生物学等内容。 《神经生物学:从神经元到脑》(作者:John G. Nicholls 等著):涵盖神经科学的方方面面。 Python 和 AI 相关: Python 方面: 《Python 学习手册》:名声在外。 《Python 编程》:对新手友好。 AI 方面: 《人类简史》:“认知革命”相关章节有价值。 《深度学习实战》:梳理了 ChatGPT 爆发前的 AI 信息与实践。
2025-01-22
推荐一个数据分析的AI产品
以下为您推荐一些数据分析的 AI 产品: 1. PandasAI:让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业,并符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 3. 医渡云病历分析系统:利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 4. 讯飞听见会议总结功能:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。
2025-01-21
推荐一个数据分析的AI产品
以下为您推荐一些数据分析的 AI 产品: 1. PandasAI:让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业,且平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 3. 医渡云病历分析系统:利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 4. 讯飞听见会议总结功能:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。
2025-01-21
推荐一下CAD的AI工具
以下是一些可以用于 CAD 绘图的 AI 工具: 1. CADtools 12:这是一个 Adobe Illustrator 插件,为 AI 添加了 92 个绘图和编辑工具,涵盖图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能帮助创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可协助创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,可根据用户输入的设计目标和约束条件自动产生多种设计方案。 使用这些工具通常需要一定的 CAD 知识和技能。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后再尝试使用这些 AI 工具来提高设计效率。 如果您想获取关于 AI 生成 CAD 图的相关资料,可以参考以下几个方面: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关论文,了解 AI 在 CAD 领域的应用和研究成果。 2. 专业书籍:查找与 AI 在 CAD 领域相关的专业书籍,了解其应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程,在 YouTube 等视频平台上查找教程和演示视频。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等相关论坛和社区,与专业人士交流学习。 5. 开源项目和代码库:探索 GitHub 等开源平台上的 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等 AI 模型在 CAD 设计中的应用。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例,了解实际项目中的应用和效果。 在学习和研究过程中,掌握相关基础知识和技术细节非常重要。通过阅读学术论文、参加在线课程、观看教程视频和交流学习,您可以逐步掌握 AI 在 CAD 领域的应用和实现。随着 AI 技术的发展,其在 CAD 设计中的应用将越来越广泛,为设计师和工程师提供更多辅助和支持。
2025-01-21