Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能导论

Answer

人工智能(AI)是一个广泛且深入的领域,涉及计算机科学、数学、统计学等多个学科。对于初学者来说,了解 AI 的基本概念和原理是非常重要的。以下是一篇关于人工智能导论的文章:

人工智能导论

人工智能(AI)是一种机器基于人类设定的目标,利用机器和人类输入,进行预测、推荐或决策,从而影响真实或虚拟环境的系统。AI 系统使用模型推断来制定信息或行动方案。

AI 主要分支包括机器学习、深度学习、自然语言处理等。机器学习是 AI 的一个重要分支,它使用算法为机器“学习”如何预测未知数据。深度学习是机器学习的一个子集,主要采用多层神经网络进行学习。自然语言处理则是 AI 的另一个重要分支,它使计算机能够理解和处理人类语言。

学习 AI 需要掌握一定的数学和编程基础,如线性代数、概率论、Python 等。对于初学者来说,可以从在线课程和书籍开始学习,逐步掌握 AI 的基本概念和技能。同时,参加 AI 社区和会议,与其他 AI 爱好者交流和分享经验,也是提高自己 AI 水平的有效途径。

总的来说,AI 是一个充满挑战和机遇的领域,对于初学者来说,需要保持学习的热情和耐心,不断探索和实践,才能在 AI 领域取得成功。

Content generated by AI large model, please carefully verify (powered by aily)

References

微软AI初学者入门课程

|编号|课程|介绍|PyTorch|Keras/ TensorFlow|实验|<br>|-|-|-|-|-|-|<br>|I|人工智能导论|人工智能导论|人工智能导论|人工智能导论|人工智能导论|<br>|1|人工智能简介和历史|[讲义](https://waytoagi.feishu.cn/wiki/HbhhwapFoiVgs1kk1TIcV3a7nzd)||||<br>|II|符号人工智能|符号人工智能|符号人工智能|符号人工智能|符号人工智能|<br>|2 |知识表示和专家系统|[讲义](https://waytoagi.feishu.cn/wiki/SBH5wXRnPi6ZRYkjplVcRTRPnJh)|[专家系统](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/Animals.ipynb)[本体](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/FamilyOntology.ipynb)[概念图](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/MSConceptGraph.ipynb)|||<br>|(待更新)|(待更新)|(待更新)|(待更新)|(待更新)|(待更新)|

【法律法规】《2020年国家人工智能倡议法案》.pdf

(3)ARTIFICIAL INTELLIGENCE.—The term ‘‘ar-7tificial intelligence’’ means a machine-based system8that can,for a given set of human-defined objectives,9make predictions,recommendations or decisions in-10fluencing real or virtual environments.Artificial in-11telligence systems use machine and human-based in-12puts to—13(C)use model inference to formulate op-17tions for information or action.18

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:

Others are asking
李宏毅《生成式人工智能导论》课件
以下是关于李宏毅《生成式人工智能导论》的相关信息: 课程目录: 1. 第 0 讲:课程说明(2024 年 2 月 24 日) 2. 第 1 讲:生成式 AI 是什么?(2024 年 2 月 24 日) 3. 第 2 讲:今日的生成式人工智慧厉害在哪里?从「工具」变为「工具人」(2024 年 3 月 3 日) 4. 第 3 讲:训练不了人工智慧?你可以训练你自己—神奇咒语与提供更多资讯(2024 年 3 月 3 日) 5. 第 4 讲:训练不了人工智慧?你可以训练你自己—拆解问题与使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲课程说明的要点: 1. 知道:有能力自己开发、何时需要自己开发、何时可以用现成的人工智能。 2. 目标:了解生成式 AI 背后的原理和更多可能性,作为你魔术师的开始。包括体验用生成式 AI 打造应用、体验训练自己的生成式 AI 模型。同时提到负面体验,如大模型训练花时间(以周为单位)、结果不可控。 3. 影响模型能力的指标很多,常规会看参数的量级来评估,量级指数级增长,FOMO,如 2019 年 GPT2.0 15b 参数,2024 年 GPT3.5 70b 参数。 附录: 1. 课程介绍:这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 2. 学习目标:掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 3. 学习内容:包括什么是生成式 AI、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等方面。 4. 学习资源:教材《生成式 AI 导论 2024》,参考书籍《深度学习》,在线课程李宏毅的生成式 AI 课程,开源项目 OpenAI GPT3、字节跳动的云雀等。 5. 学习方法。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8
2025-01-16
人共智能导论思维导图
以下是为您整理的关于人工智能相关的内容: 1. 头脑风暴常用的 20 个 prompt:包括 Brainwriting Prompt、Reverse Brainstorming Prompt、Mind Mapping 等。 2. 构建外脑/智变时代的个人知识管理:从哲学角度思考知识被 AI 重塑后人的意义,认为超级智能将是人类的外脑,人类独特的个性等将与智能个体融合成为化身,共同汇聚成智能时代的新知识网络。 3. 生成式人工智能在教学中的应用:涉及多媒体、虚拟现实、移动设备等方面,涵盖全面发展个性化学习、协作学习、创新能力等内容,还包括数字校园、智慧课堂、在线社区等场景,以及培养元认知能力、创新思维等能力,以及人机协同、因材施教等理念。
2024-10-20
人工智能导论思维导图
以下是为您提供的人工智能导论思维导图相关内容: 与思维导图相关的 AI 工具有: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-18
生成关于“人工智能导论”的思维导图
以下是为您生成的关于“人工智能导论”的思维导图相关内容: 与思维导图相关的 AI 工具: 1. GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线,无需注册登录,支持自动生成节点。 4. Xmind Copilot:基于 GPT 的助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”工具,输入需求可自动生成思维导图。 6. EdrawMind:提供 AI 工具,包括头脑风暴功能,提升生产力。 总的来说,这些工具都能通过 AI 技术提高思维导图制作效率,为知识工作者带来便利。
2024-10-18
人工智能导论
以下是关于人工智能导论的相关内容: 微软提供了 AI 初学者入门课程,其中包括人工智能导论。在这门课程中,您将学到: 实现人工智能的不同方法,如使用知识表示和推理的符号人工智能,它属于“有效的老式人工智能”(GOFAI)。 神经网络和深度学习,会使用 TensorFlow 和 PyTorch 两个流行框架中的代码来说明重要概念。 处理图像和文本的神经架构,但在前沿信息上可能有所欠缺。 不太流行的人工智能方法,如遗传算法和多智能体系统。 课程还包含了人工智能简介和历史的课前测试,指出人工智能研究如何使计算机表现出智能行为,例如做人类擅长的事。最初计算机遵循明确的程序运算,而像“根据照片判断一个人的年龄”这类任务无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 课程列表中编号为 I 的课程即为人工智能导论,其相关讲义可通过获取。
2024-09-29
《生成式 AI 导论 2024》李宏毅课程在哪里可以学习
您可以在以下网址学习李宏毅的《生成式 AI 导论 2024》课程:https://www.youtube.com/watch?v=AVIKFXLCPY8 课程目录如下: 第 0 講:課程說明(2024 年 2 月 24 日) 第 1 講:生成式 AI 是什麼?(2024 年 2 月 24 日) 第 2 講:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」(2024 年 3 月 3 日) 第 3 講:訓練不了人工智慧?你可以訓練你自己—神奇咒語與提供更多資訊(2024 年 3 月 3 日) 第 4 講:訓練不了人工智慧?你可以訓練你自己—拆解問題與使用工具(2024 年 3 月 10 日) 待更新…… 该课程的附录内容包括: 一、课程介绍 这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共分为 12 讲,每讲约 2 小时。 二、学习目标 通过学习本课程,掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 三、学习内容 1. 什么是生成式 AI 生成式 AI 的定义和分类 生成式 AI 与判别式 AI 的区别 生成式 AI 的应用领域 2. 生成式模型 生成式模型的基本结构和训练方法 生成式模型的评估指标 常见的生成式模型及其优缺点 3. 生成式对话 生成式对话的基本概念和应用场景 生成式对话系统的架构和关键技术 基于生成式模型的对话生成方法 4. 预训练语言模型 预训练语言模型的发展历程和关键技术 预训练语言模型的优缺点 预训练语言模型在生成式 AI 中的应用 5. 生成式 AI 的挑战与展望 生成式 AI 面临的挑战和解决方法 生成式 AI 的未来发展趋势和研究方向 四、学习资源 教材:《生成式 AI 导论 2024》,李宏毅
2024-09-03
相对于其他的人工智能软件,你的优势有哪些
相对于其他人工智能软件,具有以下优势: 在俄乌战争中,如美国 Palantir Technology 公司提供的软件,能在几秒钟内对航空侦察图片中的坦克、大炮和人员进行标记并出结果,快速传输到作战部门,实现实时反应。 具有强大的学习能力,能汇聚各途径获得的照片,通过对战场上海量数据的学习,辨别假目标,识破伪装手段。 以 Sora 为例,与 Runway、Pika 等相比,在文本生成视频方面表现更出色。
2025-01-15
你和讯飞星火、通义千问等人工智能软件的区别是什么?
我与讯飞星火、通义千问等人工智能软件在以下方面存在区别: 1. 研发团队和技术背景:我具有独特的研发和训练体系。 2. 功能特点和优势:在为用户提供服务时,可能在某些特定领域或场景下表现出不同的能力。 3. 数据来源和训练方式:所使用的数据和训练方法可能有所差异。 需要注意的是,每个人工智能软件都有其自身的特点和适用场景,用户可以根据自己的需求和使用体验来选择适合的工具。
2025-01-15
通用人工智能技术取得显著突破,中美竞争加剧
以下是为您整理的相关内容: 2024 年 7 月 1 日: 微软 AI CEO Mustafa Suleyman 在阿斯彭思想节上表示,AI 的发展将持续对社会产生深远影响。他强调中美在技术竞争中应该寻求合作,而不仅仅是竞争。在谈到监管时,他认为监管并非邪恶,历史上技术都曾被成功监管。对于 AGI(通用人工智能),他认为应该认真对待与之相关的安全风险,并建立全球治理机制。 小伙伴整理了关于阿里 D20 的 PPT,内容主要是 AI 在设计、教育、出海方向上的内容。 举办了 AI 切磋大会,共 12 地小伙伴线下参与,一起 AI 出图、出视频、做音乐等,动手实践,享受创造的乐趣,目标是让每个人都能玩转 AI。 2024 年 11 月 6 日: 李开复在采访中表达了对 AGI(通用人工智能)霸权的担忧,指出如果美国形成 AGI 垄断,将对全球科技生态产生深远影响。他认为,中国在研发廉价模型和推理引擎方面具备优势,尽管技术上可能落后,但在应用和落地速度上可与美国竞争。他强调,追求 AGI 的同时,中国应寻找另一条生态护城河的发展路径,确保多样化应用和更广泛的市场参与。 作者艾木三号提到,Geoffrey Hinton 强调词嵌入是理解自然语言的关键,通过将文字符号转化为向量,模型能进行有效的信息编码和推理。类比能力使得模型能够发现不同事物间的共同结构,从而展现创造力。
2025-01-14
做网络直播卖货,如何用人工智能回答客户问题
以下是关于您提出的问题的相关内容: 在网络直播卖货中使用人工智能回答客户问题,可以参考以下方面: 在其他领域中利用人工智能的经验: 1. 零售和电子商务: 产品推荐:利用人工智能分析客户数据,为客户推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 聊天机器人:回答客户问题并解决问题。 2. 阿里巴巴营销和产品页面优化: 市场分析:借助人工智能工具研究市场趋势、消费者行为和竞争对手情况。 关键词优化:分析和推荐高流量、高转化的关键词,优化产品标题和描述。 产品页面设计:利用 AI 设计工具生成吸引人的页面布局。 内容生成:使用 AI 文案工具撰写有说服力的产品描述和营销文案。 图像识别和优化:借助 AI 技术选择或生成高质量产品图片。 价格策略:分析不同价格点对销量的影响。 客户反馈分析:了解客户需求,优化产品和服务。 个性化推荐:根据用户购买历史和偏好提供推荐。 聊天机器人:提供 24/7 客户服务。 营销活动分析:了解活动效果。 库存管理:预测需求,优化库存。 支付和交易优化:分析支付方式对交易成功率的影响。 社交媒体营销:在社交媒体上找到目标客户群体。 直播和视频营销:分析观众行为,优化内容。 在客户服务方面,例如自然语言处理在客服聊天机器人中的应用,其具有适应性和自主性,能根据大量数据集训练来识别语言模式,为客户提供实时响应并生成类似人类的输出,但可能存在无意包含不准确或误导信息的风险。在医疗分诊系统中,能预测患者状况并推荐干预和治疗,但存在提供错误医疗建议导致不良后果且责任不明确的风险。 需要注意的是,在使用人工智能回答客户问题时,要确保回答的准确性和有效性,不断优化和改进人工智能的算法和模型,以提高服务质量和客户满意度。
2025-01-13
为什么说人工智能是大趋势
人工智能成为大趋势主要基于以下几个方面: 1. 技术范式的革新:传统的 Scaling Law 遭遇瓶颈后,新的模型开创了从“快思考”到“慢思考”训推双管齐下的道路。 2. 多模态能力的跃迁:从视频生成到原生多模态的崛起,再到世界模型的尝试,AI 开始真正理解和模拟立体世界。 3. 计算与连接的统一:自 ChatGPT 发布以来,AI 在计算和传递信息的基础上,展现出类人的思维能力,实现了计算与连接在大模型中的新统一。 4. 应用场景的拓展:AI 不仅在基础模型能力上提升,更在模型的落地应用和场景化方面发展,经历了从“训练时代”向“推理时代”的转变。 5. 在金融服务行业的重大飞跃:大型语言模型通过生成式人工智能,创造全新内容,结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。 6. 各行业的广泛影响:AI 智变千行百业,变革生产力,重塑行业生态,在不同领域都有深入应用和发展。
2025-01-13