Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能导论

Answer

人工智能(AI)是一个广泛且深入的领域,涉及计算机科学、数学、统计学等多个学科。对于初学者来说,了解 AI 的基本概念和原理是非常重要的。以下是一篇关于人工智能导论的文章:

人工智能导论

人工智能(AI)是一种机器基于人类设定的目标,利用机器和人类输入,进行预测、推荐或决策,从而影响真实或虚拟环境的系统。AI 系统使用模型推断来制定信息或行动方案。

AI 主要分支包括机器学习、深度学习、自然语言处理等。机器学习是 AI 的一个重要分支,它使用算法为机器“学习”如何预测未知数据。深度学习是机器学习的一个子集,主要采用多层神经网络进行学习。自然语言处理则是 AI 的另一个重要分支,它使计算机能够理解和处理人类语言。

学习 AI 需要掌握一定的数学和编程基础,如线性代数、概率论、Python 等。对于初学者来说,可以从在线课程和书籍开始学习,逐步掌握 AI 的基本概念和技能。同时,参加 AI 社区和会议,与其他 AI 爱好者交流和分享经验,也是提高自己 AI 水平的有效途径。

总的来说,AI 是一个充满挑战和机遇的领域,对于初学者来说,需要保持学习的热情和耐心,不断探索和实践,才能在 AI 领域取得成功。

Content generated by AI large model, please carefully verify (powered by aily)

References

微软AI初学者入门课程

|编号|课程|介绍|PyTorch|Keras/ TensorFlow|实验|<br>|-|-|-|-|-|-|<br>|I|人工智能导论|人工智能导论|人工智能导论|人工智能导论|人工智能导论|<br>|1|人工智能简介和历史|[讲义](https://waytoagi.feishu.cn/wiki/HbhhwapFoiVgs1kk1TIcV3a7nzd)||||<br>|II|符号人工智能|符号人工智能|符号人工智能|符号人工智能|符号人工智能|<br>|2 |知识表示和专家系统|[讲义](https://waytoagi.feishu.cn/wiki/SBH5wXRnPi6ZRYkjplVcRTRPnJh)|[专家系统](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/Animals.ipynb)[本体](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/FamilyOntology.ipynb)[概念图](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/MSConceptGraph.ipynb)|||<br>|(待更新)|(待更新)|(待更新)|(待更新)|(待更新)|(待更新)|

【法律法规】《2020年国家人工智能倡议法案》.pdf

(3)ARTIFICIAL INTELLIGENCE.—The term ‘‘ar-7tificial intelligence’’ means a machine-based system8that can,for a given set of human-defined objectives,9make predictions,recommendations or decisions in-10fluencing real or virtual environments.Artificial in-11telligence systems use machine and human-based in-12puts to—13(C)use model inference to formulate op-17tions for information or action.18

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:

Others are asking
李宏毅《生成式人工智能导论》课件
以下是关于李宏毅《生成式人工智能导论》的相关信息: 课程目录: 1. 第 0 讲:课程说明(2024 年 2 月 24 日) 2. 第 1 讲:生成式 AI 是什么?(2024 年 2 月 24 日) 3. 第 2 讲:今日的生成式人工智慧厉害在哪里?从「工具」变为「工具人」(2024 年 3 月 3 日) 4. 第 3 讲:训练不了人工智慧?你可以训练你自己—神奇咒语与提供更多资讯(2024 年 3 月 3 日) 5. 第 4 讲:训练不了人工智慧?你可以训练你自己—拆解问题与使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲课程说明的要点: 1. 知道:有能力自己开发、何时需要自己开发、何时可以用现成的人工智能。 2. 目标:了解生成式 AI 背后的原理和更多可能性,作为你魔术师的开始。包括体验用生成式 AI 打造应用、体验训练自己的生成式 AI 模型。同时提到负面体验,如大模型训练花时间(以周为单位)、结果不可控。 3. 影响模型能力的指标很多,常规会看参数的量级来评估,量级指数级增长,FOMO,如 2019 年 GPT2.0 15b 参数,2024 年 GPT3.5 70b 参数。 附录: 1. 课程介绍:这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 2. 学习目标:掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 3. 学习内容:包括什么是生成式 AI、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等方面。 4. 学习资源:教材《生成式 AI 导论 2024》,参考书籍《深度学习》,在线课程李宏毅的生成式 AI 课程,开源项目 OpenAI GPT3、字节跳动的云雀等。 5. 学习方法。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8
2025-01-16
人共智能导论思维导图
以下是为您整理的关于人工智能相关的内容: 1. 头脑风暴常用的 20 个 prompt:包括 Brainwriting Prompt、Reverse Brainstorming Prompt、Mind Mapping 等。 2. 构建外脑/智变时代的个人知识管理:从哲学角度思考知识被 AI 重塑后人的意义,认为超级智能将是人类的外脑,人类独特的个性等将与智能个体融合成为化身,共同汇聚成智能时代的新知识网络。 3. 生成式人工智能在教学中的应用:涉及多媒体、虚拟现实、移动设备等方面,涵盖全面发展个性化学习、协作学习、创新能力等内容,还包括数字校园、智慧课堂、在线社区等场景,以及培养元认知能力、创新思维等能力,以及人机协同、因材施教等理念。
2024-10-20
人工智能导论思维导图
以下是为您提供的人工智能导论思维导图相关内容: 与思维导图相关的 AI 工具有: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-18
生成关于“人工智能导论”的思维导图
以下是为您生成的关于“人工智能导论”的思维导图相关内容: 与思维导图相关的 AI 工具: 1. GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线,无需注册登录,支持自动生成节点。 4. Xmind Copilot:基于 GPT 的助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”工具,输入需求可自动生成思维导图。 6. EdrawMind:提供 AI 工具,包括头脑风暴功能,提升生产力。 总的来说,这些工具都能通过 AI 技术提高思维导图制作效率,为知识工作者带来便利。
2024-10-18
人工智能导论
以下是关于人工智能导论的相关内容: 微软提供了 AI 初学者入门课程,其中包括人工智能导论。在这门课程中,您将学到: 实现人工智能的不同方法,如使用知识表示和推理的符号人工智能,它属于“有效的老式人工智能”(GOFAI)。 神经网络和深度学习,会使用 TensorFlow 和 PyTorch 两个流行框架中的代码来说明重要概念。 处理图像和文本的神经架构,但在前沿信息上可能有所欠缺。 不太流行的人工智能方法,如遗传算法和多智能体系统。 课程还包含了人工智能简介和历史的课前测试,指出人工智能研究如何使计算机表现出智能行为,例如做人类擅长的事。最初计算机遵循明确的程序运算,而像“根据照片判断一个人的年龄”这类任务无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 课程列表中编号为 I 的课程即为人工智能导论,其相关讲义可通过获取。
2024-09-29
《生成式 AI 导论 2024》李宏毅课程在哪里可以学习
您可以在以下网址学习李宏毅的《生成式 AI 导论 2024》课程:https://www.youtube.com/watch?v=AVIKFXLCPY8 课程目录如下: 第 0 講:課程說明(2024 年 2 月 24 日) 第 1 講:生成式 AI 是什麼?(2024 年 2 月 24 日) 第 2 講:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」(2024 年 3 月 3 日) 第 3 講:訓練不了人工智慧?你可以訓練你自己—神奇咒語與提供更多資訊(2024 年 3 月 3 日) 第 4 講:訓練不了人工智慧?你可以訓練你自己—拆解問題與使用工具(2024 年 3 月 10 日) 待更新…… 该课程的附录内容包括: 一、课程介绍 这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共分为 12 讲,每讲约 2 小时。 二、学习目标 通过学习本课程,掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 三、学习内容 1. 什么是生成式 AI 生成式 AI 的定义和分类 生成式 AI 与判别式 AI 的区别 生成式 AI 的应用领域 2. 生成式模型 生成式模型的基本结构和训练方法 生成式模型的评估指标 常见的生成式模型及其优缺点 3. 生成式对话 生成式对话的基本概念和应用场景 生成式对话系统的架构和关键技术 基于生成式模型的对话生成方法 4. 预训练语言模型 预训练语言模型的发展历程和关键技术 预训练语言模型的优缺点 预训练语言模型在生成式 AI 中的应用 5. 生成式 AI 的挑战与展望 生成式 AI 面临的挑战和解决方法 生成式 AI 的未来发展趋势和研究方向 四、学习资源 教材:《生成式 AI 导论 2024》,李宏毅
2024-09-03
人工智能生成内容(AIGC)感悟600字
以下是为您生成的 600 字左右关于人工智能生成内容(AIGC)的感悟: AIGC 作为当今科技领域的热门话题,正以惊人的速度改变着我们的生活和工作方式。 AIGC 强调的是利用人工智能技术生成各种内容,包括文本、图像、音频和视频等。它并非简单的技术堆砌,而是多种先进技术融合的成果。例如,Transformer 模型在语言处理和多模态领域的应用,为 AIGC 提供了强大的支撑。 从原理上看,AIGC 涉及多种生成算法,如 VAE、GAN、FlowModel 和 Diffusion Model 等。这些算法使得机器能够创造出具有一定质量和创意的内容。同时,还有像 IS 和 FID 这样的评价指标来衡量生成图片的质量。 在实际应用中,AIGC 展现出了巨大的潜力。它可以自动撰写新闻文章,为媒体行业带来效率的提升;能够生成艺术画作,为艺术创作注入新的活力;可以创作音乐,丰富音乐领域的多样性;还能制作视频游戏内容,为娱乐产业增添新的元素。 ChatGPT 作为 AIGC 在文本生成领域的杰出代表,充分展示了 AIGC 的强大能力。它通过预训练和大量的数据投喂,能够与用户进行流畅且相关的文本交流,仿佛在玩“文字接龙游戏”。 然而,AIGC 也面临一些挑战和问题。比如生成内容的准确性和可靠性需要进一步提高,版权和伦理问题也需要引起重视。但不可否认的是,AIGC 为我们开启了一扇充满无限可能的大门,让我们对未来充满期待。随着技术的不断进步和完善,相信 AIGC 将在更多领域发挥重要作用,为人类创造更多的价值。
2025-03-01
人工智能生成内容(AIGC)的突破、对齐及产业培育,感悟
以下是关于人工智能生成内容(AIGC)的突破、对齐及产业培育的感悟: 一、原理与概念 1. 人工智能(AI):是一种目标,让机器展现智慧,简称 AI。 2. 生成式人工智能(GenAI):目标是让机器产生复杂有结构的内容,简称 GenAI。 3. 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 4. 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因有很多层所以叫深度),神经网络可用于多种学习方式。 5. 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。 6. ChatGPT:是 AIGC 技术的一个应用实例,是美国 OpenAI 公司开发的基于大型语言模型的对话机器人,能根据用户输入生成连贯且相关的文本回复。 二、AIGC 的特点与应用 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 三、相关概念的关系与区别 AGI、GenAI、AIGC 几个概念有所区别与联系,具体可参考相关图示。更多概念可问 Kimi、通义千问、文心一言等大模型。 四、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-03-01
新手如何更好使用该网站,主要了解人工智能或者AGI进展,主流软件的学习和应用
对于新手想要更好地使用该网站来了解人工智能或 AGI 进展以及主流软件的学习和应用,以下是一些相关内容: AE 软件: 基本功能:可通过图层软件抠元素加插件做特效,如利用 auto field 自动填充工具,轨道遮罩功能让图层按特定形状变化等。 与 AI 结合运用:如用 runway 生成烟花爆炸素材,结合 AE 的图层混合模式、遮罩等功能实现特效可控的画面。 其他应用:用内容识别填充功能处理视频画面,如抹掉入镜的人;从素材网站获取粒子素材为画面添加氛围感。 学习路径:可在 B 站找丰富的 AE 软件入门课程自学,也可从包图网下载工程文件学习。 学习方法:通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习 AE,还可参考模板。 与 AI 的关系:AI 出现后,AE 使用减少,有些动效可用 AI 完成。 在短剧中的应用:在火焰、文字、光线等方面有少量应用。 AI 相关技术与活动: AI 音乐创作:通过输入更高级的词汇与 AI 音乐对话能产生更好效果,有 AI 音乐的版块、挑战、分享会和教程,可通过王贝加入 AI 音乐社区。 数字人语音合成:介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是 JPT service。 Config UI 的应用:能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。 社区共创项目:包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 作业与报名:作业是询问对 AI 方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。 线下寄送物料组织活动:会给大家寄送线下活动物料,在学校内组织。 AI 春晚即将开始:去年 300 人 30 天共创了 AI 春晚,今年的也即将开始,可报名参与多种岗位。 AIPO 活动及相关挑战:10 月 20 日的 AIPO 活动,可提前构思展示项目,有会话和视频相关的挑战赛。 共学活动与技能提升:接下来 10 天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。 硬件机器人材料购买:若搞硬件机器人,部分材料需尽快购买。 自媒体发布与流量扶持:在小红书发布活动内容带特定标签有流量扶持,作品也可发布在 GitHub 等平台。 活动奖项与历史玩法:设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO 路演等玩法,之前在多个城市举办过 AI 切磋大会。 工具使用与新大赛预告:可使用多种 AI 工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。 AI 音乐和数字人语音合成: AI 音乐方面,提到草爷、格林 king、狗哥带大家入门,有相关课程与教程,且淘宝上有套壳工具抄袭。社区伙伴做的 AI 音乐专辑不错。 数字人语音合成部分提到声音克隆,有新的声音克隆且音质很不错。 提到了微软新出的成果、阿里的 Cozy voice(指出其泛化能力不强)、大家常用的 GPT solve it、刚举办的 AI 3D 活动。 以小田的 config UI 基础工作流一日谈展开,讲述了多个案例,如许建拍摄场景图成本降低,郭佑萌在图书出版行业提升效率,影楼可进行换装等操作,文旅文创场景有有趣的合影生成方式,还提到该工作流岗位稀缺且社区有课程可供学习。 AJ 介绍平台资源,包括共学课程、专栏报告、数据等,还提及就业创业及一些企业专栏的内容。
2025-02-28
人工智能法律
以下是关于人工智能法律的相关内容: 《人工智能权利法案蓝图》提出了人工智能权利法案的相关内容。 《全球人工智能治理大变局之欧盟人工智能治理监管框架评述及启示》中提到: 1. 欧盟人工智能监管体系对中国的启示包括纳入道德伦理和人权考量的以风险为基准的统一人工智能治理。但伦理道德和人权的高度概括性、抽象性和不确定性给融入人工智能治理带来挑战,我国《科技伦理审查办法(试行)》是积极探索,但人工智能的特殊性可能无法体现,且“不可接受的风险”和“高风险”的界定存在不确定性和模糊性,以风险为基准的人工智能管理框架成效有待观望和研讨。 《人工智能法案》的相关规定包括: 1. 通过适当的设计、测试和分析,在开发前和整个开发过程中,用适当的方法(如让独立专家参与)证明对健康、安全、基本权利、环境、民主和法治的合理可预见风险的识别、减少和缓解,以及开发后剩余不可缓解风险的记录。 2. 处理和纳入仅受适当数据治理措施约束的数据集用于基础模型,特别是检查数据源的适用性和可能的偏差以及适当的缓解措施。 3. 设计和开发基础模型,以在其整个生命周期内通过适当的方法(如让独立专家参与模型评估、记录分析和广泛测试)实现适当水平的性能、可预测性、可解释性、可纠正性、安全性和网络安全性。 4. 设计和开发基础模型时,利用适用的标准来减少能源使用、资源使用和浪费,并提高能源效率和系统的整体效率,但不损害相关的现有联盟和国家法律。在第 40 条所述的标准公布之前,此义务不适用。基础模型应具备能够测量和记录能源和资源消耗以及在技术可行的情况下系统部署和使用在整个生命周期内可能产生的其他环境影响的能力。 5. 制定广泛的技术文档和易懂的使用说明,以使下游供应商能够遵守第 16 条和第 28(1)条规定的义务。 6. 建立质量管理体系,以确保并记录对本条的遵守情况,并有可能在满足这一要求方面进行试验。
2025-02-27
人工智能与机器学习具体是什么
人工智能是一种目标,旨在让机器展现智慧,简称 AI。它包括多种实现方法,如自上而下的方法,即对推理过程进行建模,将其形式化为计算机程序,依赖于知识表示和推理;自下而上的方法,模拟大脑中的神经元,构建人工神经网络,通过举例让其学习解决问题。 机器学习是人工智能的一个子领域,是一种让机器自动从资料中找到公式的手段。机器学习模型分为监督和无监督两种,监督模型使用标记的数据学习并预测未来值,无监督模型则专注于发现原始数据中的模式。深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容,如自然语言、图像或音频等,其输出不是数字或类别。生成式人工智能模型使用统计模型预测预期响应,并根据训练数据生成新内容,但可能产生幻觉,即无意义或语法错误的单词或短语。 大语言模型是具有大量参数的“深度学习”模型。ChatGPT 是基于大型语言模型的对话机器人,是 AIGC 技术在文本生成领域的一个应用实例。AIGC 是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。
2025-02-25
给我30份中央人民政府网站和工业和信息部网站2020~2023年期间发布的重要的国家层面与人工智能相关政策文件,列个清单
以下是中央人民政府网站和工业和信息部网站 2020 2023 年期间发布的部分重要的国家层面与人工智能相关政策文件清单: 1. 互联网信息服务算法推荐管理规定(算法推荐规定),于 2023 年 3 月 1 日生效。 2. 互联网信息服务深度合成管理规定(深度合成规定),于 2023 年 1 月 10 日生效。 3. 生成式人工智能服务管理暂行办法(生成式 AI 办法),于 2023 年 7 月 13 日公布并于 2023 年 8 月 15 日生效。 4. 生成式人工智能服务安全基本要求(征求意见稿),于 2023 年 10 月 11 日公开征求意见,意见反馈截止日期为 2023 年 10 月 25 日。 5. 科技伦理审查办法(试行)(征求意见稿)(伦理审查办法(草案)),于 2023 年 4 月 14 日公开征求意见,意见反馈截止时间为 2023 年 5 月 3 日。 6. 国家人工智能产业综合标准化体系建设指南(征求意见稿),于 2024 年 1 月 17 日公开征集意见,意见反馈截止时间为 2024 年 1 月 31 日。 由于未能获取到 30 份相关政策文件,建议您通过中央人民政府网站和工业和信息部网站的搜索功能,以获取更全面和准确的信息。
2025-02-25