Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI如何赋能体育健康?

Answer

AI技术可以在体育健康领域发挥重要作用,为运动员、教练、医疗专业人员和普通健身爱好者提供支持。以下是一些AI赋能体育健康的途径:

  1. 运动表现分析:AI可以分析运动员的动作和表现,提供技术改进的建议,帮助提高运动技能。

  2. 训练计划优化:基于运动员的体能数据、历史表现和目标,AI可以设计个性化的训练计划。

  3. 伤病预防和管理:通过分析运动员的运动模式和生理数据,AI有助于预测和预防潜在的伤病。

  4. 营养建议:AI可以根据运动员的身体状况、训练强度和营养需求,提供定制化的饮食建议。

  5. 康复辅助:AI技术可以辅助运动员的康复过程,通过监测康复训练的效果并提供调整建议。

  6. 心理健康支持:AI聊天机器人或应用程序可以提供心理支持,帮助运动员管理压力和焦虑。

  7. 比赛策略制定:AI可以分析比赛数据,帮助教练制定比赛策略和战术。

  8. 健康监测和预警:可穿戴设备结合AI技术,能够实时监测用户的生理指标,如心率、血压等,并在异常时发出预警。

  9. 虚拟健身教练:AI驱动的虚拟健身教练可以提供个性化的健身指导和激励,帮助用户保持锻炼习惯。

  10. 智能场馆管理:AI技术可以优化体育设施的管理,如智能照明、能源管理、人流监控等。

  11. 观众体验提升:AI可以增强体育赛事的观众体验,例如通过虚拟现实(VR)、增强现实(AR)技术提供沉浸式观赛体验。

  12. 运动科学研究:AI可以加速运动科学研究,通过分析大量数据来发现新的训练方法或健康趋势。

  13. 药物检测和反兴奋剂:AI有助于提高药物检测的准确性,支持反兴奋剂工作。

  14. 社交互动和社区建设:AI可以帮助建立运动社区,促进运动员和爱好者之间的交流和互动。

  15. 辅助残奥运动员:AI技术可以为残奥运动员提供辅助工具和训练支持,帮助他们更好地参与体育活动。

通过这些方式,AI不仅能够提升运动员的表现和训练效果,还能够促进普通人群的体育参与度和健康水平,同时为体育赛事和活动的组织提供支持。

Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

具有讽刺意味的是,创建专门从事诸如医疗保健这样的特定领域的AI可能比创建更接近HAL 9000的东西——具有跨领域的典型人类水平知识——更容易。实际上,我们更需要特定领域的专家AI,而不是一个能做任何普通人能做的事情的全能AI。我预计不仅会创造一个专家AI,而且会创造许多专家AI,它们在编码、数据和测试方面采用多样化的方法,以便在需要时这些模型可以提供第二个(或第三个、第四个)意见。同时,我们必须将AI从其在线基础上摘下,并将其投入到原子的世界中。我们应该让我们最熟练的人类专家配备可穿戴设备,以收集微妙的、现实世界的互动,供AI学习,就像我们即将崭露头角的学术和行业明星一样。解决健康和医学领域最复杂和不确定的问题在位元的世界中根本不存在。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

必须让这些专家AI接触到顶级从业人员的多样化视角,以避免复制危险的偏见。但AI的黑盒性远不如大众想象中的那么强;我们今天依赖的人类决策,正如我以前[指出的](https://www.nytimes.com/2018/01/25/opinion/artificial-intelligence-black-box.html),可以说更加不透明。我们不能因为对传播人类偏见的恐惧而限制我们探索AI如何帮助我们民主化我们的人类专家知识的意愿,而这些专家是不幸地无法扩展的。鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

生成式 AI:下一个消费者平台

除了医疗保健领域,我们已经开始看到其他专门为协助特定任务而设计的AI驱动工具和教练的出现。例如,[InterAlia](https://interalia.vcflab.org/)可以帮助你搭配一套服装,[Prodigy AI](https://ai.prodi.gg/)可以为你提供职业建议,而[Poised](https://www.poised.com/)可以提升你的沟通能力。相信有一天,我们每个人都会拥有一个理解我们生活独特背景的个性化聊天机器人,并不是一件离奇的事情。当面临生活变化——比如离婚、上大学或生孩子——我们将能够以最有共鸣的方式得到建议。我们还可以寻求支持或指导,以实现我们试图达到的目标,无论是更多地锻炼还是改善我们的财务状况。

Others are asking
ai提示词反推工具
以下是关于 AI 提示词反推工具的相关信息: 在图生图功能中,除了文本提词框外还有图片输入口,可通过图片给 AI 创作灵感。有两种反推提示词的按钮,CLIP 能通过图片反推出完整含义的句子,DeepBooru 可反推出关键词组。但生成的提示词可能存在瑕疵,需要手动补充信息。调整好提示词后,还需注意宽度、高度以及提示词相关性和重绘幅度等参数。 另外,LayerStyle 副本中的 PromptTagger 可根据图片反推提示词并设置替换词,使用 Google Gemini API 作为后端服务,需申请 API key 并正确填写配置文件。PromptEmbellish 输入简单提示词能输出润色后的提示词,也支持输入图片作为参考,同样依赖 Google Gemini API 服务。 同时,为您提供以下提示词相关的资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-03-05
我想学习一些AI创作小说的技巧,能给我推荐一些学习材料吗
以下是为您推荐的一些学习 AI 创作小说的资料: 此外,陈财猫还为您提供了一些创作技巧: 1. 显式归纳与列出您想要的文本特征。例如,明确描述写小说的刚需,如优秀的文风、细腻的文笔,具体到“几句话一换行”“以短句和对话为主,结构紧凑”“用词直白犀利”等,在调试过程中逐步调整描述,直到达到理想效果。 2. 通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本。比如,明确指出想要的小说类型,如“充满张力的女性复仇文,可能会出现在晋江文学城或者起点中文网的古代言情分类中”。对于短剧剧本创作这类较新且有特殊要求的任务,更要准确描述其特点和出现的场景。
2025-03-05
ai提示词反推
在 AI 中,关于提示词反推,以下是一些相关信息: 在图生图功能中,除了文本提词框,还有图片框输入口。通过图片可给与 AI 创作灵感,文本输入框旁有两个反推提示词的按钮,CLIP 能通过图片反推出完整含义的句子,DeepBooru 能反推出关键词组。但两种方式生成的提示词可能存在瑕疵,需要手动补充信息。调整宽度和高度,使红框匹配图片。此外,提示词相关性和重绘幅度这两个参数很重要。 样例驱动的渐进式引导法能充分发挥 AI 自身的逻辑分析和抽象总结能力,从用户提供的样例中总结方法论,用户判断方法论正确与否并提出意见,为提示词爱好者提供低门槛生成途径。但 LLM 有上下文长度限制,在长对话中可能导致 AI 遗忘早期内容,影响输出质量,所以需要引入“提示词递归”的概念与方法,具体步骤包括初始提示、定期总结、重新引入、细化和拓展、验证和优化。
2025-03-05
目前最好用的 Ai 生成 PPT 是哪一个?
目前被认为较好用的 AI 生成 PPT 的工具包括 gamma 。体验下来,gamma 虽然还未达到特别自动化的程度,但从审美角度来看,只要提供内容框架,其生成的 PPT 或网页的审美水平较高。 此外,还有一些其他的 AI 生成 PPT 工具,如 MindShow、爱设计、闪击、Process ON、WPS AI 等,每款工具都有独特的优势。 市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲。 2. 手动优化大纲。 3. 导入工具生成 PPT。 4. 优化整体结构。 您可以根据自己的需求和喜好选择合适的工具。
2025-03-05
如何用 ai 写论文
利用 AI 写论文可以按照以下步骤进行: 1. 确定论文主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:利用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:使用 AI 工具辅助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,参考 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,运用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查论文的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保论文的原创性,并进行最后的格式调整。 在论文写作领域,有以下常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用 AI 写论文时,还需注意以下几点: 1. AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。 2. 提高提示质量,避免基本提示导致无聊的写作,通过与系统互动提升写作效果。 3. 让 AI 帮助完成没时间做的任务,如写邮件、创建销售模板等。 4. 利用 AI 激发自己做得更好,从困难挑战中解脱出来保持动力。 总之,在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信,结合自身写作风格和需求选择合适的辅助工具。
2025-03-05
AIGC大模型是什么?
AIGC 大模型是一个较为复杂的概念,下面为您详细解释: 首先,生成式 AI 生成的内容称为 AIGC。 相关技术名词包括: 1. AI 即人工智能。 2. 机器学习是指电脑通过找规律进行学习,包括监督学习、无监督学习和强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似的组。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习和强化学习。 4. 生成式 AI 能够生成文本、图片、音频、视频等内容形式。 5. LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑方面,2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-05
ai怎么赋能咨询顾问做数转政策洞察
AI 能够为咨询顾问在数转政策洞察方面提供多方面的赋能: 1. 决策辅助:AGI 时代,政治决策过程可借助 AI 的分析和建议。例如,领导人能咨询几乎无所不知的 AI 顾问,获取全面且即时的政策选项评估,提升决策质量和效率,使政策更具科学性和数据驱动性。 2. 外部专业知识整合:政府在履行监管核心职能和监督框架时,可从外部专家那里收集行业、学术界和公民社会的见解和建议。 3. 紧跟研究前沿:政府需要与 AI 研究社区密切合作,利用其研究成果和见解来完善监管框架。例如,了解开发者在基础模型中探索嵌入对齐理论的方式。 4. 能力建设:英国致力于构建在基础模型方面的能力,通过相关任务组支持政府提升能力,确保充分利用新兴技术带来的益处。 然而,在运用 AI 时也需注意: 1. 领导者应具备新素质,包括理解 AI 基本原理、识别算法偏见和局限的能力、跨学科知识以及对人类价值的坚守。 2. 领导者要善用 AI 但不盲从,将其视为辅佐决策的工具而非替代决策者本身。 3. 政治领导者需在大众面前解释 AI 决策,为 AI 的参与背书,确保民主过程的透明度和问责。
2025-03-05
ai怎么赋能咨询顾问做行业洞察
AI 可以通过以下方式赋能咨询顾问进行行业洞察: 1. 学习优秀行业调研报告:让 AI 阅读并总结其中的方法论,输出研究方法和操作框架。 2. 数据收集咨询:询问 AI 文章在收集行业数据时使用的一手和二手数据,并获取靠谱的行业资料收集网站。 3. 报告框架与资源推荐:要求 AI 作为专家,推荐 10 个相关行业信息网站和 5 个研究微信公众号,并输出行业调研报告框架。 4. 丰富章节内容:请 AI 针对框架丰富每一章节内容,每章字数大于 200 字。之后可根据需求进一步完善内容,并结合自身经验和知识进行润色调整。 要使行业洞察有深度,可以通过以下两个路径: 1. 自身对行业有深入了解,整理深度洞察和见解。 2. 逐步深度咨询 AI,借助其海量知识,边学习、边研究、边洞察总结,从而加速学习和研究能力。 操作示例可获取“kimi 对话原文”链接: 欢迎与 JessieZTalk 交流,在 AIGC 的路上共同进步!
2025-03-05
夙愿:AI 工作流,赋能我的十倍增长》中的“三、怎么搭建 AI 工作流 3.1 搭建 AI 工作流的三种能力 3.1.3 搭建 AI 智能体
搭建 AI 工作流包括以下三种能力: 1. 熟悉各种 AI 工具:这是入门 AI 工作流的第一步。不同环节可能需要不同工具,例如写标题可用 ChatGPT,写文章可用 Claude,检查文本中的错别字和病句可用秘塔写作猫的 AI 纠错功能。需要了解多个不同 AI 工具的特点和用途,根据具体细分任务选择合适的工具。 2. 编写提示词:这决定能否用好工具。提示词是搭建人和 AI 之间的“沟通桥梁”,要用 AI 能听懂的语言清晰说明需求、任务内容和步骤,让 AI 明白要做什么以及怎么做。 3. 搭建 AI 智能体:AI 智能体如同员工,能根据设定的工作流自动调用不同 AI 工具完成全流程任务,无需人类时刻干预。例如写一篇文章,可设计“写作助手”的 AI 智能体,输入文章主题、风格和要求,它会自动写大纲、用 Claude 模型写初稿、修改润色并排版,从而提高效率。 您可以对照这三个层级,评估自己的 AI 工作流能力,找出差距和不足,多学习、多实践、多交流。
2025-03-04
将传统公司的HR部门进行AI赋能,有哪些机会点和可执行步骤
目前将传统公司的 HR 部门进行 AI 赋能存在一定的挑战。大多数“AI 应用/AI 转型”仍在走“数字化转型”的老路,把 AI 套在现有流程上,强调“固化流程”“节约成本”,但在技术加速迭代的当下,这种做法可能导致成果过时,使企业业务模式凝固在当前,削弱其主动进化的能力。 然而,我们不能仅止于对 AI 的焦虑。AI 的力量不应只用于优化现有业务流程,而应着重于对未来业务的重新定义。对于 HR 部门的 AI 赋能,应从“AI 能创造和满足 HR 工作的哪些新需求”出发。例如,利用 AI 进行更精准的人才匹配和招聘预测,通过智能分析员工数据来优化培训和绩效管理等。 可执行的步骤可能包括: 1. 深入了解 HR 部门的业务流程和需求,明确哪些环节可以通过 AI 进行优化和创新。 2. 评估现有技术和资源,选择适合的 AI 工具和技术。 3. 进行小规模的试点项目,验证 AI 应用的效果和可行性。 4. 根据试点结果进行调整和优化,逐步推广应用。 5. 持续培训 HR 人员,使其能够熟练运用 AI 工具,并适应新的工作模式。
2025-03-03
AI企业赋能
以下是关于 AI 企业赋能的相关内容: 去年,生成式 AI 从不引人注意走向 AI 50 强榜单前列。今年,企业用户和消费者的 AI 生产力大幅提高,应用公司在 AI 50 强榜单中占主导。许多公司正将 AI 融入工作流程以快速达成 KPI,如 ServiceNow 通过 AI 驱动的 Now Assist 实现近 20%的事件避免率,Palo Alto Networks 利用 AI 降低处理费用成本,Hubspot 利用 AI 扩大用户规模,瑞典金融科技公司 Klarna 通过将 AI 融入用户支持节省 4000 多万美元。成千上万的公司在将 AI 整合到工作流程中以扩张规模和降低成本,AI 50 强企业在快速进化。不远的将来,有望看到 UX 和 UI 围绕 AI 功能重新设计。 在法律法规方面,《促进创新的人工智能监管方法》提到: 要清晰,帮助跨部门企业应对监管环境。 值得信赖,提高消费者和企业对框架及其要求的认识。 协作,通过教育和提高意识,使企业和消费者能够参与框架的持续评估和迭代。 支持创新,增强信任以提高 AI 采用率。 同时,当前 AI 通过现有法律框架如金融服务监管等进行监管,但存在一些风险在现有监管范围之间或空白处。行业反映监管不一致会给企业带来不必要负担,可能导致小企业离开市场。监管协调有助于企业投资 AI 创新并建立公众信任,一些监管机构已通过正式网络合作确保监管一致性,但其他监管机构在 AI 专业知识方面能力和获取有限,存在执法不一致和部分监管机构过度解读权限范围的风险。
2025-02-25
制药行业AI赋能企业经营的工具有哪些
很抱歉,您提供的内容中并未直接提及制药行业 AI 赋能企业经营的具体工具。但一般来说,在其他行业中,AI 赋能企业经营可能会用到以下类型的工具: 1. 数据分析和预测工具:帮助企业处理和分析大量数据,以预测市场需求、药物研发趋势等。 2. 自动化流程工具:例如自动化生产流程控制、质量检测等环节。 3. 智能客服工具:为客户提供快速准确的服务和解答。 4. 药物研发辅助工具:利用 AI 算法加速药物研发过程,如虚拟筛选药物靶点等。 由于您提供的资料有限,以上只是一些常见的可能性,具体到制药行业还需要进一步的针对性研究和了解。
2025-02-25
请基于WHO提出的“健康老龄化”这个概念,论述AI和养老产业以及健康老龄化的关系,并举出在WHO、英国以及美国的实例
目前知识库中没有关于“基于 WHO 提出的‘健康老龄化’概念论述 AI 和养老产业以及健康老龄化关系,并列举 WHO、英国以及美国实例”的相关内容。但据现有知识,AI 在养老产业和健康老龄化方面具有重要作用。AI 可以通过智能监测设备实时收集老年人的健康数据,提前预警疾病风险;还能借助智能陪伴机器人为老年人提供心理支持和社交互动。 在 WHO 方面,可能尚未有明确的具体实例,但在理念倡导上可能会强调利用创新技术促进健康老龄化。 英国可能在一些养老机构中应用了 AI 技术来优化服务流程和提高护理质量。 美国或许在医疗保健领域利用 AI 辅助诊断和治疗,以更好地满足老年人的健康需求。但具体的实例还需要进一步查阅权威资料和最新研究。
2025-02-24
养老场景实时健康监测与风险预警在技术上怎么实现,用AI大模型实现,请给出一个可行的方案
以下是一个利用 AI 大模型实现养老场景实时健康监测与风险预警的可行方案: 首先,需要明确相关的概念和技术名词。AI 即人工智能,机器学习是电脑找规律学习,包括监督学习、无监督学习和强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在无标签数据中自主发现规律,例如聚类。强化学习是从反馈中学习以最大化奖励或最小化损失,类似训小狗。深度学习参照人脑,具有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。生成式 AI 能生成文本、图片、音频、视频等内容形式,LLM 是大语言模型,生成图像的扩散模型不属于大语言模型,像谷歌的 BERT 模型可用于语义理解,如上下文理解、情感分析、文本分类。 在技术里程碑方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 对于养老场景的实时健康监测与风险预警,可利用传感器收集老人的生理数据,如心率、血压、血糖等。这些数据通过物联网传输到服务器,利用深度学习算法对数据进行分析和处理。例如,使用基于 Transformer 模型的大模型,对历史健康数据和当前实时数据进行学习和分析,建立老人的健康模型。通过与正常健康指标的对比,及时发现异常情况,并结合无监督学习中的聚类算法,对不同健康状况的老人进行分类,以便提供个性化的预警和建议。同时,利用强化学习不断优化模型的预警准确性和及时性。 总之,通过整合传感器数据采集、物联网传输、深度学习算法分析和模型优化等环节,借助 AI 大模型实现养老场景的实时健康监测与风险预警。
2025-02-20
AI和大健康结合
以下是关于 AI 和大健康结合的一些内容: 在宠物方面: 1. AI 宠物助手:基于自然语言处理和计算机视觉,能帮助主人照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况。 2. AI 宠物互动玩具:利用 AI 技术开发的智能玩具,增强宠物娱乐体验,例如会自主移动并引起宠物注意、会发声和互动。 3. AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像,帮助主人定制个性化形象。 4. AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 5. AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式,帮助主人了解宠物需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 在医疗保健方面: 鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并带着人类一同进步。AI 的性质让我们可以将其一部分一部分地拆解,并研究每一个小部分。通过构建系统深入探索专家 AI 的内部工作机制,将创造一个学习的飞轮。最终,专家 AI 可能超越领域专家的角色,成为下一代专家(无论是人类还是 AI)的教师。 相关案例: 1. 医学:DoctorGPT:不仅是一个 AI 模型,集成了医学专家的知识,能准确回答各种医学问题。 2. 医学:中医应用:将人工智能与中医结合,通过观察口腔、舌苔和抓脉,生成选择题让患者作答,最后 AI 生成药方,目前用于辅助看诊,提高诊疗效率,愿景是未来实现 24 小时独立问诊开药。
2025-02-10
ai和大健康怎么结合
以下是 AI 与大健康结合的一些方式: 1. 医疗保健中的专家 AI :鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习比预期更快地获得知识,并成为下一代专家的教师。AI 的性质允许将其一部分一部分地拆解研究,构建系统深入探索其内部工作机制,创造学习的飞轮。 2. AI 宠物助手 :基于自然语言处理和计算机视觉的 AI 宠物助手,可帮助主人更好地照顾宠物,如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。 3. AI 宠物互动玩具 :利用 AI 技术开发的智能互动玩具,能增强宠物的娱乐体验,例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。 4. AI 宠物图像生成 :使用生成式 AI 模型,可根据文字描述生成各种宠物形象的图像,帮助宠物主人定制个性化的宠物形象。 5. AI 宠物医疗诊断 :利用计算机视觉和机器学习技术,开发 AI 辅助的宠物医疗诊断系统,通过分析宠物的症状图像和病历数据,提供初步诊断建议。 6. AI 宠物行为分析 :基于传感器数据和计算机视觉,利用 AI 技术分析宠物的行为模式,帮助主人更好地了解宠物的需求和习性。 7. 医疗保健领域 :人工智能正处于生命科学和医疗保健转变的时期,两个行业都受工程技术推动。在生命科学领域,基因编辑、细胞生物学等方面的进展使科学家能以前所未有的方式操纵生物学,且存在实验与人工智能的强大反馈循环。医疗保健正在利用技术复兴,巨大的成本压力促使创新者寻求改善结果并降低成本的技术,价值导向的付费模式转变为人工智能创造了深层次效用。 总的来说,AI 与大健康的结合充满想象空间,结合 AI 技术和大健康领域需求,可以开发出各种有趣有用的应用。
2025-02-06
deepseek与大健康如何落地
DeepSeek 与大健康的落地可以从以下几个方面考虑: 1. 提示词应用: 可以通过搜索 www.deepseek.com 并点击“开始对话”来使用 DeepSeek。 将装有提示词的代码发给 DeepSeek,认真阅读开场白后正式开始对话。 提示词的设计思路包括将 Agent 封装成 Prompt 并存储在文件中,以实现同时使用联网和深度思考功能,优化输出质量等。 2. 联网版实现: 通过工作流 + DeepSeek R1 大模型,实现联网版的 R1 大模型。 拥有扣子专业版账号,开通 DeepSeek R1 大模型,包括访问特定地址、在火山方舟中进行开通管理等操作,添加在线推理模型。 创建智能体,点击创建完成智能体的创建。 3. 开源策略: DeepSeek 选择走全球开源社区路线,分享模型、研究方法和成果,吸引反馈并迭代优化。开源包括模型权重、数据集、预训练方法和高质量论文等。 需要注意的是,目前提供的内容中未直接提及 DeepSeek 与大健康落地的具体关联,您可以根据以上 DeepSeek 的相关特点和技术,结合大健康领域的需求和场景,进一步探索落地的可能性。
2025-02-06
从事20年的健康管理教练如何从0到1学习AI
以下是为从事 20 年健康管理教练的您提供的从 0 到 1 学习 AI 的建议: 1. 像优秀的医生和药物开发者那样学习:成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,面对面地向最出色的实践者学习。 2. 构建模型生态系统:通过使用彼此堆叠的模型来训练 AI,而不是仅依赖大量数据和生成模型解决所有问题。例如,先训练生物学模型,再训练化学模型,然后添加特定于医疗保健或药物设计的数据点。 3. 参考他人的学习经验: 可以参考《雪梅 May 的 AI 学习日记》,其学习模式是输入→模仿→自发创造。您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 二师兄的经历也有一定参考价值,比如从获取安装包和教学视频迈出第一步,参与社群学习等。 4. 注重基础:预医学生从化学和生物学基础课程开始,设计新疗法的科学家也需经历多年相关学习。对于学习 AI 同样,要打好基础。 5. 保持良好的学习状态:有意愿和动力,能清醒地学进去东西。不必给自己太大压力,能学多少算多少。 6. 利用免费开源资源:很多学习资源是免费开源的,充分利用这些资源进行学习。
2025-01-30