Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek与大健康如何落地

Answer

DeepSeek 与大健康的落地可以从以下几个方面考虑:

  1. 提示词应用:
    • 可以通过搜索 www.deepseek.com 并点击“开始对话”来使用 DeepSeek。
    • 将装有提示词的代码发给 DeepSeek,认真阅读开场白后正式开始对话。
    • 提示词的设计思路包括将 Agent 封装成 Prompt 并存储在文件中,以实现同时使用联网和深度思考功能,优化输出质量等。
  2. 联网版实现:
    • 通过工作流 + DeepSeek R1 大模型,实现联网版的 R1 大模型。
    • 拥有扣子专业版账号,开通 DeepSeek R1 大模型,包括访问特定地址、在火山方舟中进行开通管理等操作,添加在线推理模型。
    • 创建智能体,点击创建完成智能体的创建。
  3. 开源策略:
    • DeepSeek 选择走全球开源社区路线,分享模型、研究方法和成果,吸引反馈并迭代优化。开源包括模型权重、数据集、预训练方法和高质量论文等。

需要注意的是,目前提供的内容中未直接提及 DeepSeek 与大健康落地的具体关联,您可以根据以上 DeepSeek 的相关特点和技术,结合大健康领域的需求和场景,进一步探索落地的可能性。

Content generated by AI large model, please carefully verify (powered by aily)

References

一个提示词,让 DeepSeek 的能力更上一层楼?——HiDeepSeek

用Coze做了个小测试,大家可以对比看看[e8c1a8c3012fedad10dc0dfcc8b1e263_raw.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/Jz9cbKxDbocGtIxXFFEcdiHjnRc?allow_redirect=1)[heading1]如何使用?[content]Step1:搜索www.deepseek.com,点击“开始对话”Step2:将装有提示词的代码发给DeepseekStep3:认真阅读开场白之后,正式开始对话[heading1]设计思路[content]1.将Agent封装成Prompt,将Prompt储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担2.通过提示词文件,让DeepSeek实现:同时使用联网功能和深度思考功能3.在模型默认能力的基础上优化输出质量,并通过思考减轻AI味,增加可读性4.照猫画虎参考大模型的temperature设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改5.用XML来进行更为规范的设定,而不是用Lisp(对我来说有难度)和Markdown(运行下来似乎不是很稳定)[heading1]完整提示词[heading2]v 1.3[heading1]特别鸣谢[content]李继刚:【思考的七把武器】在前期为我提供了很多思考方向Thinking Claude:这个项目是我现在最喜欢使用的Claude提示词,也是我设计HiDeepSeek的灵感来源Claude 3.5 Sonnet:最得力的助手

韦恩: 被困在离线孤岛?DeepSeek 联网版 我已经用扣子实现了!! 不卡顿!!

甚至是一夜之间,DeepSeek R1大模型成了国民刚需,官网卡顿,不能使用联网搜索等等困扰了很多人,也有很多平台都上线了DeepSeek R1的各种版本,但是很少有满血版本,再就是很多是不能联网,这很痛苦。本地部署的版本前两天也带学员和粉丝们部署和体验了,总的来说能作为替补,很难作为长期使用的版本,为此苦苦寻觅。今天终于找到了更好,更舒服的打开方式。[heading1]核心路径[content]通过工作流+DeepSeek R1大模型,实现联网版的R1大模型。下面就带大家一步步来实现。[heading1]拥有扣子专业版账号[content]如果你还是普通账号,请自行升级或注册专业号后使用开通成功的是这样:[heading1]开通DeepSeek R1大模型[content]访问地址:https://console.volcengine.com/coze-pro/overview?scenario=coze打开火山方舟,找到开通管理,找到DeepSeek R1模型,点击开通服务添加在线推理模型,添加后在扣子开发平台才能使用添加过程:添加模型:完成接入:[heading1]创建智能体[content]点击创建,先完成一个智能体的创建

DeepSeek 的秘方是硅谷味儿的

2023年初,科技媒体The Information进行过一轮中国可能出现哪些人工智能明星创业公司的盘点。已经做出了一些成绩的智谱和Minimax在列,刚刚创建的百川智能、零一万物和光年之外也被提及,该文章还特别提及了当时正准备再度创业尚名不见经传的杨植麟。这里面没有Deepseek。至少一年半之前,没人真的把DeepSeek当成AI的圈内人。尽管当时业界开始流传DeepSeek的母公司——从事私募量化技术的幻方握有数量丰沛的英伟达高性能显卡,仍没太多人相信它自己下场做大模型会有水花。现在,人人都在谈论DeepSeek,而且走的又是“墙外开花墙内香”的老路。可以认为,从第一天开始,DeepSeek与国内的诸多大模型新秀,选择的就不是同一个战场。它不拿融资(至少一开始不用拿),不用争抢大模型四小龙六小虎的座次,不比国内的舆论声势(唯一接受暗涌的采访,目的大概是招聘那些最热血的聪明的科学家),不搞产品投放投流。它选择的是与研究机构的本质最匹配的路径——走全球开源社区,分享最直接的模型、研究方法和成果,吸引反馈,再迭代优化,自我进益。开源社区迄今仍是AI学术研究、分享和讨论最热烈、充分、自由和无国界的地方,也是AI领域最不“内卷”的地方。DeepSeek从第一天就开源,应该是深思熟虑的。开源就要真开源,开得彻底,从模型权重、到数据集,再到预训练方法,悉数公开,而高质量的论文也是开源的一部分。年轻聪明的研究人员在开源社区的亮相、分享和活跃具有高能见度。看见他们的人,并不乏一些全球AI领域最重要的推动者。

Others are asking
deepseek论文指令
以下是关于 DeepSeek 提示词的详细内容: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 2. 系统响应机制 采用意图识别+内容生成双通道。 自动检测 prompt 中的任务类型/输出格式/知识范围。 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感。 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求。 占位符标记:用{{}}标注需填充内容。 优先级符号:>表示关键要求,!表示禁止项。 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估。 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差。 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌。 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 3. 多模态输出 四、高级调试策略 1. 模糊指令优化 问题类型:宽泛需求、主观表述。 修正方案:添加维度约束、量化标准。 示例对比:原句“写小说”→修正“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;原句“写得专业些”→修正“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 2. 迭代优化法 首轮生成:获取基础内容。 特征强化:请加强第三段的技术细节描述。 风格调整:改用学术会议报告语气,添加结论部分。 最终校验:检查时间逻辑一致性,列出可能的事实性错误。 五、行业应用案例 1. 技术开发场景 2. 商业分析场景 六、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 七、效能监测指标 1. 首次响应准确率:目标>75%。 2. 多轮对话效率:问题解决平均轮次<3。 3. 复杂任务分解:支持 5 级子任务嵌套。 八、高阶能力调用 1. 文风转换矩阵 指令结构:作家风格移植、文体杂交、学术口语化。 效果示例。 2. 领域穿透技术 行业黑话破解:“解释 Web3 领域的'胖协议瘦应用'理论”。 商业决策支持。 九、场景化实战策略 1. 创意内容生成 2. 技术方案论证 十、效能增强技巧 1. 对话记忆管理 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010”。 信息回溯:“请复述之前确认的三个设计原则”。 焦点重置:“回到最初讨论的供应链问题”。 2. 输出质量控制 问题类型:过度抽象、信息过载、风格偏移。 修正指令。 十一、特殊场景解决方案 1. 长文本创作 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 2. 敏感内容处理 概念脱敏法:“用经济学原理类比说明网络审查机制”。 场景移植法:“假设在火星殖民地讨论该议题”。
2025-03-09
deepseek清华大学公开课
以下是关于清华大学与 DeepSeek 相关的公开课信息: 2 月 7 日,清华大学新闻与传播学院新媒体研究中心出品了《》,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 2 月 18 日,清华大学沈少阳发布了《》
2025-03-09
deepseek公开课
以下是关于 deepseek 的相关信息: DeepSeek 开源了,在 LMSYS Chatbot Arena 排行榜上总排名 11 超过了所有开源模型。 阿里云 DeepSeek 智能体课程分两天,今天讲阿里云百炼,明天讲派平台,重点是智能体搭建、快速使用 DeepSeek 等,明天还会讲本地化部署中的蒸馏数据等线下未讲的内容。今天课程对电脑配置要求低,适合硬件资源投入少的人,且是手把手教程,难度不大。 社区是全国最大的开源 AI 知识库社区,用户量达 138 万多,首页访问次数超 200 万,强调共同学习、共创的价值观。 DeepSeek 模型功能包括自然语言处理、翻译与转换、文本生成与创作、知识和推理等,可用于多种场景,如文本摘要、格式转换等。其爆火原因包括能力强,在竞赛题等方面表现出色;国内能用,效果惊艳;开源免费,成本低;突破算力封锁,能在国内短缺 GPU 情况下训练出超一流模型。 2 月 23 日有 AI 切磋大会第十期 2 月 23 日 deepseek 专场,线下 16 个城市活动开始报名,活动报名链接为 https://waytoagi.feishu.cn/share/base/form/shrcnWlc12pvQQmx21mTZNEJ83d 。 2 月 22 日,英伟达 CEO 黄仁勋在 Beyond 大会上首次就近期引发全球 AI 圈热议的中国企业 DeepSeek 发表了看法。 欢迎向社区投稿关于 AI 技术探讨与分析、实践经验与案例分享、行业动态与趋势观察、开发心得与技术教程等内容,要求原创、严谨、有深度,配图说明更佳,观点明确,结构清晰,建议字数 1500 5000 字,提交后 2 3 工作日反馈,必要时沟通修改建议,优质内容将收录知识库。更多内容请前往 。
2025-03-09
deepseek学习资料
以下是关于 DeepSeek 的学习资料: 在 2025 年 2 月 6 日的“聊聊你怎么使用 DeepSeek”活动中,有以下智能纪要: DP 模型的功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 此外,1 月 27 日的宝玉日报中也有关于 DeepSeek 的内容: 拾象:DeepSeek r1 闭门学习讨论|Best Ideas Vol 3,讨论了 DeepSeek 在全球 AI 社区的意义,包括技术突破与资源分配策略。突出了 DeepSeek 长上下文能力、量化商业模式、以及其对 AI 生态系统的深远影响。重点分析了 DeepSeek 的创新路径及中国在 AI 追赶中的潜力与挑战。 转:关于 DeepSeek 的研究和思考
2025-03-09
进行DeepSeek本地化部署有哪些方法?
进行 DeepSeek 本地化部署的方法如下: 如果拥有云服务器,可以进行本地部署,了解满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。
2025-03-08
DEEPSEEK 相关资料
以下是关于 DeepSeek 的相关资料: 集合·DeepSeek 提示词方法论:https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf?from=from_copylink DeepSeek 从入门到精通.pdf:https://waytoagi.feishu.cn/wiki/EfWpw8arIiEoOKkjSalcMVZZnme?from=from_copylink DeepSeek 13 大官方提示词通俗解读,让新手也能用出高手的效果:https://waytoagi.feishu.cn/wiki/YIGKwXlgUi8RKlkkklxclpDYnbg?from=from_copylink 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日:https://waytoagi.feishu.cn/wiki/MKfgwiN2FigRp1knbxJcdj4lnAf?from=from_copylink Deepseek"4+1"黄金提问法——情境化:https://waytoagi.feishu.cn/wiki/JZu4wrdsSi9gNSktaPCcgDNNnvf?from=from_copylink Deepseek"4+1"黄金提问法——迭代优化:https://waytoagi.feishu.cn/wiki/R56OwQb4KiP9klk5CPbcR49yn9f?from=from_copylink 如果您的 DeepSeek 一直显示服务器繁忙,可尝试以下替代网站: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日的智能纪要: DP 模型的使用分享: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学和与大模型互动的分享: 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 Deepseek 的介绍与活动预告: Deepseek 文档分享:在 3 群和 4 群分享了 Deepseek 的相关文档,也可在 v to a gi 的飞书知识库中搜索获取。 Deepseek 使用介绍:介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。 未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 Deepseek。
2025-03-08
AI 项目企业落地方向和案例。
以下是关于 AI 项目企业落地方向和案例的相关内容: AI 企业落地应用方面,有文章能带你快速搞懂本轮 AI 大模型革命的核心知识信息,从历史到今天,从原理到应用,从产业到趋势,以通俗易懂但不失专业严谨的方式带你走入 AI 的世界。 Anthropic 在 AI Engineer Summit 2025 上分享了企业应用 AI 的最佳实践,并总结了常见错误。核心挑战包括如何入手、如何评估效果、技术选择困惑(如是否需要微调)。关键经验是评估先行,明确“智能度、成本、延迟”之间的平衡,避免过早微调,先进行基础优化。案例方面,Intercom 通过评估优化 AI Agent Fin,使其处理 86%的客服请求,其中 51%无需人工介入。相关链接: 此外,还有用飞书+DeepSeek R1 搭建自动化 AI 工作流的相关内容。流程包括 URL 内容抓取➝DeepSeek R1 翻译➝自动改写➝生成文章。飞书提供快速启动模板,支持翻译、OCR 等任务。工作流链接: 。 宝玉 Q&A 中提到处理大规模代码,可使用 XML 包裹,超大代码可上传 GitHub 供 AI 分析,AI 还可生成代码并搜索相关库。查看内容: 。ChatGPT 免费用户可使用 GPT4o mini 语音版,免费用户可体验自然对话节奏,Plus/Pro 用户享特权。
2025-02-27
我想时刻关注Deepseek目前在电商行业应用落地的场景的信息及对应的应用APP、小程序等,可以通过什么渠道第一时间获取
目前关于 Deepseek 在电商行业应用落地的场景信息以及对应的应用 APP、小程序等,您可以通过以下渠道第一时间获取: 1. 关注 Deepseek 官方网站的动态发布和通知。 2. 订阅 Deepseek 官方的社交媒体账号,如微信公众号、微博等,获取最新消息。 3. 加入相关的电商行业论坛或社区,与其他从业者交流,获取相关信息。 4. 关注电商行业的权威媒体和资讯平台,可能会有相关报道。
2025-02-26
Deepseek目前已在电商行业应用落地的场景有哪些?
DeepSeek 在电商行业已应用落地的场景包括: 电商商品策划:如“电商商品策划 DeepSeek 大师版|一键领取同款多维表格模板”。 商品链接分析:如“商品链接分析工具”。 电商产品上架规划:如“电商产品上架规划”。 您可以通过以下链接获取更详细的信息:
2025-02-26
Deepseek目前已在电商行业应用落地的场景有哪些?
DeepSeek 目前已在电商行业应用落地的场景包括: 电商商品策划:如 。 商品链接分析:如 。 电商产品上架规划:如 。
2025-02-26
金融行业落地大模型的路径
以下是金融行业落地大模型的相关路径: 1. 从整体行业情况来看: 2024 年被称为国内大模型落地元年,国内大模型项目增长迅速,中标项目数量和金额大幅增长。 大模型中标项目数前五的行业包括金融。 厂商方面,百度在金融行业的中标数量和金额排名领先。 2. 具体应用案例: 彭博发布了金融领域的大模型 BloombergGPT,并应用于其所在的垂直领域。 3. 行业人士观点: 通用模型适用不同产业,垂直模型类似于单领域专家,垂直大模型的发展有助于提升各领域模型性能。 商汤科技联合创始人杨帆认为,当模型足够大时,可能加速商业化落地,带来更好的技术能力,缩短产业应用周期。 360 公司创始人周鸿祎表示,大模型是工业革命级的生产力工具,能赋能百行千业。 4. 相关赛事推动: 举办「2024 金融行业·大模型挑战赛」,整合公开金融数据,打造多轮问答评测赛题,提供基础数据表,参赛选手可采用 GLM4 系列模型 API 并运用多种技术手段完成赛题,有多个单位提供支持。
2025-02-24
deepseek 落地案例
以下是关于 DeepSeek 的落地案例: 1. 华尔街分析师认为 DeepSeek 以小成本实现媲美领先 AI 产品的性能,并在全球主要市场 App Store 登顶。高盛认为其或改变科技格局,降低 AI 行业的进入门槛。详情:https://www.xiaohu.ai/c/xiaohuai/deepseek 2. DeepSeek 在中文场景表现优秀,日常写作和表达习惯贴近人类,但专业论文总结略弱。数学能力不错,编程能力逊于 GPT。采用 GRPO 算法替代传统 PPO,提升语言评价灵活性与训练速度。更多信息:https://x.com/imxiaohu/status/1883843200756170873 ,GRPO 详情:https://www.xiaohu.ai/c/ai/grpodeepseekr18c6cff0cdeb84937a4197066af987e43 3. 举办了全国 23 城近 4000 人玩转 DeepSeek 的活动,如郑州场展示搭建的无敌工作流,深圳场分享 DeepSeek+出海的落地方案,北京场玩起 AR+机械汪,广州场探讨如何使用 DeepSeek 辅助速通吃“霸王餐”,福州场有最年轻的分享者展示玩转 DS 的示例。同时,活动展示了飞书多维表格和 DeepSeek 的结合的强大之处,且 DeepSeek R1 大模型全面融入飞书多维表格、飞书智能伙伴创建平台等多款产品。详情:https://waytoagi.feishu.cn/wiki/KRtwwVqKKiB7PKkgzu3chsX6nzF 4. 在芯片行业,如存储芯片负责人考虑与 DeepSeek 谈 HBM4 定制合作,台积电研发中心因对方技术调整产能,ASML 总部针对对方算法调整策略,中芯国际因 DeepSeek 证明的技术提高产线利用率并获得追加投资。
2025-02-24
请基于WHO提出的“健康老龄化”这个概念,论述AI和养老产业以及健康老龄化的关系,并举出在WHO、英国以及美国的实例
目前知识库中没有关于“基于 WHO 提出的‘健康老龄化’概念论述 AI 和养老产业以及健康老龄化关系,并列举 WHO、英国以及美国实例”的相关内容。但据现有知识,AI 在养老产业和健康老龄化方面具有重要作用。AI 可以通过智能监测设备实时收集老年人的健康数据,提前预警疾病风险;还能借助智能陪伴机器人为老年人提供心理支持和社交互动。 在 WHO 方面,可能尚未有明确的具体实例,但在理念倡导上可能会强调利用创新技术促进健康老龄化。 英国可能在一些养老机构中应用了 AI 技术来优化服务流程和提高护理质量。 美国或许在医疗保健领域利用 AI 辅助诊断和治疗,以更好地满足老年人的健康需求。但具体的实例还需要进一步查阅权威资料和最新研究。
2025-02-24
养老场景实时健康监测与风险预警在技术上怎么实现,用AI大模型实现,请给出一个可行的方案
以下是一个利用 AI 大模型实现养老场景实时健康监测与风险预警的可行方案: 首先,需要明确相关的概念和技术名词。AI 即人工智能,机器学习是电脑找规律学习,包括监督学习、无监督学习和强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在无标签数据中自主发现规律,例如聚类。强化学习是从反馈中学习以最大化奖励或最小化损失,类似训小狗。深度学习参照人脑,具有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。生成式 AI 能生成文本、图片、音频、视频等内容形式,LLM 是大语言模型,生成图像的扩散模型不属于大语言模型,像谷歌的 BERT 模型可用于语义理解,如上下文理解、情感分析、文本分类。 在技术里程碑方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 对于养老场景的实时健康监测与风险预警,可利用传感器收集老人的生理数据,如心率、血压、血糖等。这些数据通过物联网传输到服务器,利用深度学习算法对数据进行分析和处理。例如,使用基于 Transformer 模型的大模型,对历史健康数据和当前实时数据进行学习和分析,建立老人的健康模型。通过与正常健康指标的对比,及时发现异常情况,并结合无监督学习中的聚类算法,对不同健康状况的老人进行分类,以便提供个性化的预警和建议。同时,利用强化学习不断优化模型的预警准确性和及时性。 总之,通过整合传感器数据采集、物联网传输、深度学习算法分析和模型优化等环节,借助 AI 大模型实现养老场景的实时健康监测与风险预警。
2025-02-20
AI和大健康结合
以下是关于 AI 和大健康结合的一些内容: 在宠物方面: 1. AI 宠物助手:基于自然语言处理和计算机视觉,能帮助主人照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况。 2. AI 宠物互动玩具:利用 AI 技术开发的智能玩具,增强宠物娱乐体验,例如会自主移动并引起宠物注意、会发声和互动。 3. AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像,帮助主人定制个性化形象。 4. AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 5. AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式,帮助主人了解宠物需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 在医疗保健方面: 鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并带着人类一同进步。AI 的性质让我们可以将其一部分一部分地拆解,并研究每一个小部分。通过构建系统深入探索专家 AI 的内部工作机制,将创造一个学习的飞轮。最终,专家 AI 可能超越领域专家的角色,成为下一代专家(无论是人类还是 AI)的教师。 相关案例: 1. 医学:DoctorGPT:不仅是一个 AI 模型,集成了医学专家的知识,能准确回答各种医学问题。 2. 医学:中医应用:将人工智能与中医结合,通过观察口腔、舌苔和抓脉,生成选择题让患者作答,最后 AI 生成药方,目前用于辅助看诊,提高诊疗效率,愿景是未来实现 24 小时独立问诊开药。
2025-02-10
ai和大健康怎么结合
以下是 AI 与大健康结合的一些方式: 1. 医疗保健中的专家 AI :鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习比预期更快地获得知识,并成为下一代专家的教师。AI 的性质允许将其一部分一部分地拆解研究,构建系统深入探索其内部工作机制,创造学习的飞轮。 2. AI 宠物助手 :基于自然语言处理和计算机视觉的 AI 宠物助手,可帮助主人更好地照顾宠物,如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。 3. AI 宠物互动玩具 :利用 AI 技术开发的智能互动玩具,能增强宠物的娱乐体验,例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。 4. AI 宠物图像生成 :使用生成式 AI 模型,可根据文字描述生成各种宠物形象的图像,帮助宠物主人定制个性化的宠物形象。 5. AI 宠物医疗诊断 :利用计算机视觉和机器学习技术,开发 AI 辅助的宠物医疗诊断系统,通过分析宠物的症状图像和病历数据,提供初步诊断建议。 6. AI 宠物行为分析 :基于传感器数据和计算机视觉,利用 AI 技术分析宠物的行为模式,帮助主人更好地了解宠物的需求和习性。 7. 医疗保健领域 :人工智能正处于生命科学和医疗保健转变的时期,两个行业都受工程技术推动。在生命科学领域,基因编辑、细胞生物学等方面的进展使科学家能以前所未有的方式操纵生物学,且存在实验与人工智能的强大反馈循环。医疗保健正在利用技术复兴,巨大的成本压力促使创新者寻求改善结果并降低成本的技术,价值导向的付费模式转变为人工智能创造了深层次效用。 总的来说,AI 与大健康的结合充满想象空间,结合 AI 技术和大健康领域需求,可以开发出各种有趣有用的应用。
2025-02-06
从事20年的健康管理教练如何从0到1学习AI
以下是为从事 20 年健康管理教练的您提供的从 0 到 1 学习 AI 的建议: 1. 像优秀的医生和药物开发者那样学习:成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,面对面地向最出色的实践者学习。 2. 构建模型生态系统:通过使用彼此堆叠的模型来训练 AI,而不是仅依赖大量数据和生成模型解决所有问题。例如,先训练生物学模型,再训练化学模型,然后添加特定于医疗保健或药物设计的数据点。 3. 参考他人的学习经验: 可以参考《雪梅 May 的 AI 学习日记》,其学习模式是输入→模仿→自发创造。您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 二师兄的经历也有一定参考价值,比如从获取安装包和教学视频迈出第一步,参与社群学习等。 4. 注重基础:预医学生从化学和生物学基础课程开始,设计新疗法的科学家也需经历多年相关学习。对于学习 AI 同样,要打好基础。 5. 保持良好的学习状态:有意愿和动力,能清醒地学进去东西。不必给自己太大压力,能学多少算多少。 6. 利用免费开源资源:很多学习资源是免费开源的,充分利用这些资源进行学习。
2025-01-30
老年人健康护理机器人
以下是为您提供的关于老年人健康护理机器人的相关信息: 在 AI 应用领域,除了医疗保健,还出现了许多协助特定任务的工具和教练。比如,InterAlia 能帮您搭配服装,Prodigy AI 能提供职业建议,Poised 能提升沟通能力。未来,每个人可能拥有理解自身生活背景的个性化聊天机器人,在生活变化时获得建议,如离婚、上大学或生孩子,还能在锻炼、财务等方面得到支持和指导。 在一些具体的项目中,也有相关的成果。例如: 1. AI 塔罗机器人:结合现代科技与古老智慧,提供精准个性化占卜体验,能深入解析牌的象征意义,结合具体问题提供即时反馈,具有陪伴功能,涵盖情感、事业等多方面定制化服务。 2. 奶奶去哪——赛博孙子,住进拐杖:这是一款专为老年人设计的智能语音拐杖,不只是辅助行走工具,还能模拟子孙声音进行问候、导航、聊天等交互,实现双模式切换,具有摔倒检测、步数统计等功能,全方位守护老年人安全与健康。
2024-11-28