直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

数学建模的学习路线

回答

数学建模是一种将实际问题转化为数学问题,并通过数学方法解决问题的过程。以下是一个数学建模的学习路线:

  1. 学习数学基础知识:数学建模需要一定的数学基础,因此需要先学习高等数学、线性代数、概率论等基础知识。
  2. 学习数学建模方法:数学建模有多种方法,如微分方程建模、统计建模、优化建模等。需要学习这些方法的基本原理和应用场景。
  3. 学习数学软件:数学建模需要使用数学软件进行计算和模拟,如 MATLAB、Python 等。需要学习这些软件的基本操作和编程技巧。
  4. 参加数学建模竞赛:参加数学建模竞赛可以锻炼数学建模能力和团队合作能力,同时也可以了解数学建模的应用场景和最新进展。
  5. 阅读数学建模论文:阅读数学建模论文可以了解数学建模的应用场景和最新进展,同时也可以学习数学建模的方法和技巧。

总之,数学建模需要不断学习和实践,需要具备一定的数学基础和编程能力,同时也需要具备团队合作和创新精神。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:如何用 AI 进行英语学习和数学学习

1.自适应学习系统:使用自适应学习系统(如Khan Academy)结合AI技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。1.智能题库和作业辅助:利用智能题库和作业辅助工具(如Photomath)通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。1.虚拟教学助手:使用虚拟教学助手(如Socratic)利用AI技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。1.交互式学习平台:参与交互式学习平台(如Wolfram Alpha)的数学学习课程和实践项目,利用AI技术进行数学建模和问题求解。通过结合AI技术和传统学习方法,您可以更高效、更个性化地进行英语学习和数学学习,并取得更好的学习效果。内容由AI大模型生成,请仔细甄别。

通往 AGI 之路

记忆:先从[AI的历史](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tbl1tOC3ZKbrcHVn&view=vewTtypUZc)、[基本术语](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tbltvr7KExCt7Jpw&view=vewjxk9tDu)、[重要人物](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tblLtN12KuvP5reO&view=vewuvGBXhd)、[方法和原理](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tblolGx2mprs1EQz&view=vewx5ROYtl)等开始了解,看看[入门课程](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)

其他人在问
ai建模
以下是关于 AI 建模的相关信息: OpenAI API 由多种具有不同功能和价位的模型提供支持,还可通过微调对原始基本模型进行有限定制。其模型包括: GPT4 Beta:一组改进 GPT3.5 的模型,能理解和生成自然语言或代码。 GPT3.5:一组改进 GPT3 的模型,能理解并生成自然语言或代码。 DALL·E Beta:能在给定自然语言提示的情况下生成和编辑图像的模型。 Whisper Beta:能将音频转换为文本的模型。 Embeddings:一组能将文本转换为数字形式的模型。 Codex Limited Beta:一组能理解和生成代码的模型,包括将自然语言转换为代码。 Moderation:能检测文本是否敏感或不安全的微调模型。 GPT3:一组能理解和生成自然语言的模型。 作者 GongWang 分享的潦草建模,使用 Midjourney V6 生成工具,放大工具包括 Comfy Ui、Magnific Ai、Upscayl,深度图使用 Leia Pix,法线图使用 Shadermap。 在独立游戏开发中,为丰富训练集,先进行较短时间训练并用得到的模型生成类似目标画风的建筑、风景图像放回训练集。还做了正则化,复杂的图先去掉微调模型用底模生图,然后用 ControlNet 加上微调模型出新图。
2024-11-02
建筑物及城市场景三维建模 国内免费
以下为您介绍国内免费的建筑物及城市场景三维建模工具: 1. Polycam: 简介:发布了免费的 3D 建模工具,为元宇宙数字空间的物体孪生采集生成提供了新可能。 应用场景:适用于 3D 场景。 特点:只需上传至少 20 张图片或至少 20 秒的视频,Polycam 自动处理并构建 3D 模型。生成后可编辑模型,支持 12 种以上格式导出到流行的 3D 软件,如 Blender、SketchUp、Unreal、Unity 等。100 张图像的云处理建模时间约 1 2 分钟。还可以将无人机拍摄的图像转换为广阔的 3D 模型,与所有流行的无人机兼容。 官方网站: 2. Tripo AI: 注册/登录:点击下方网址可免费体验(国内可访问)。官网首页有一只炫酷的机械手,移动鼠标有小彩蛋。点击“Start for Free”开启旅程。登录/注册界面简洁,输入邮箱地址,获取验证码完成注册并自动登录,也可使用谷歌账户直接登录。登录后可看到用户名及拥有的点数,每月有 600 点数,用完可换账户。 界面介绍:界面简洁,上方是工具导航栏,中间是公共作品展示区,底部是生成模型的工作区域,包括输入框和创建按钮。有“Create”“My Models”“Favorite”等页面,“Create”是创作主战场,“My Models”是个人作品库,“Favorite”是私人收藏列表。 官方网站:未提及
2024-10-08
哪个AI网站或工具可以允许我上传数据,然后进行机器学习建模?
以下是一些可以允许您上传数据然后进行机器学习建模的 AI 网站或工具: 1. Teachable Machine:这是由 Google 开发的机器学习工具,可应用于商品说明书、自动驾驶、教学互动等多个场景。使用步骤简单,您可以收集数据(如上传图片、录制声音或动作视频)来训练模型,然后测试并导出模型。它提供多种创建机器学习模型的方式,非常灵活和用户友好。例如,可以使用文件或实时捕捉示例,也可以在本地完成训练,保护隐私。生成的模型是真实的 TensorFlow.js 模型,可在任何运行 JavaScript 的地方工作,还能导出到不同格式以便在其他地方使用。其官方网站是:https://teachablemachine.withgoogle.com
2024-09-29
电商产品建模AI
电商产品建模 AI 相关内容如下: 案例方面: 品牌提升品牌价值:对应的关键词库包括品牌洋葱图思维模型、产品信息、人群等 19 个。 品牌分析品牌舆论传播:对应的关键词库包括舆论传播、数据分析、主题等 25 个。 生成式 AI 在电商中的应用: 工具如 Flair、Booth 和 Bloom 可帮助品牌创建引人注目的产品照片,未来用途有望极度个性化。 品牌可通过 AdCreative、Pencil 制作营销材料,通过 Frase 或 Writesonic 编写 SEO 优化的产品描述,未来用户有望仅通过描述期望的审美并点击按钮创建完整电商商店及营销材料。 用 AI 完成阿里巴巴营销技巧和产品页面优化的步骤: 进行市场分析,利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况。 优化关键词,让 AI 分析和推荐高流量、高转化的关键词。 借助 AI 设计工具优化产品页面设计。 使用 AI 文案工具生成有说服力的内容。 利用 AI 图像识别和优化技术选择或生成高质量图片。 依靠 AI 制定价格策略。 通过 AI 分析客户反馈。 利用 AI 实现个性化推荐。
2024-09-24
首饰3D建模有推荐的AI工具吗
以下是一些可用于首饰 3D 建模的 AI 工具推荐: 1. CADtools 12:这是一个 Adobe Illustrator(AI)插件,为 AI 添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能帮助创建复杂的几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 此外,以下是一些通用的图片生成 3D 建模工具,也可能适用于首饰 3D 建模: 1. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。 2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,其 Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象,再转换为 3D 模型。 4. Sudo AI:支持通过文本和图像生成 3D 模型,适用于游戏领域的模型生成。 5. VoxCraft:免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供多种功能。 请注意,这些工具通常需要一定的 3D 建模知识和技能才能有效使用。对于初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些工具来提高设计效率。
2024-09-24
请分点介绍数据驱动建模的特点。有图片就更好了
很抱歉,目前没有关于数据驱动建模特点的图片及相关详细内容。但一般来说,数据驱动建模具有以下几个特点: 1. 基于大量数据:依赖丰富的数据来构建模型,数据量越大,模型可能越准确。 2. 自动发现模式:能够自动从数据中挖掘和发现潜在的模式和规律。 3. 适应性强:可以根据新的数据进行调整和优化,以适应不断变化的情况。 4. 客观性:结果主要由数据决定,减少了主观因素的影响。 5. 预测能力:能够对未知的数据进行预测和推断。
2024-09-10
学习AGI最好的路线是啥?我想有规划的来进行学习
以下是为您规划的学习 AGI 的一些建议: 首先,对 AI 有一个初步的认识,了解其基本概念和常见工具,例如通过注册尝试各种 AI 工具,但要注意可能会走弯路。 可以参考目录索引推荐,找到适合自己的学习主线和支线,就像游戏通关一样逐步深入。 明确自己的兴趣点,因为兴趣是最好的老师,能让您更有动力坚持学习。 掌握一些方法,如万能公式法,问 AI 【一个(xxx 职业)需要具备哪些知识?】,获取知识框架并深入探究每个小点。 寻找优质的信息源,像即刻 App 的“”等免费圈子,以及 Twitter 和相关官网。 在学习过程中,要注意做减法,例如只掌握最好的产品,解决具体问题,关注核心能力,理清需求和逻辑,先提升认知和洞察。 学以致用,通过学习、分享和实践不断填补知识的缝隙,成长进步。 需要注意的是,每个人的学习情况不同,找到适合自己的学习路径最为重要。
2024-10-15
我是一个程序员,我想快速且有一点深度的重头梳理AGI的原理与自定义AGI应用的开发流程与方法, 请帮我梳理一下AGI学习的路线
以下是为您梳理的 AGI 学习路线: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 学习路径方面: 关键词:少就是多、先有个初识、目录索引推荐、兴趣最重要、先动手。 学习路径如同主线+支线的游戏通关。 学以致用,通过学习分享不断填补知识的缝隙来成长。 4. 分类学习方面: 对 AI 学习路径进行了重构,分为了初学者、面向开发应用者、面向使用模型者三个部分。 将课程目录从文章中单独独立出来,并按照初学者、进阶者进行分类。 同时,还可以参考以下个人心得: YoYo 作为文科生,在学习前不理解 AI 和提示词工程,通过不断尝试各种 AI 工具,走了不少弯路。学习后能够搓多 Agent 的智能体,进行营销文案 demo、SQL 代码进阶学习应用,创建多个智能体,并在公司中实践智能客服从创建到应用的过程。 希望以上内容对您有所帮助。
2024-10-08
AIGC开发学习路线
以下为为您整理的 AIGC 开发学习路线相关内容: YoYo 的学习心得: 学习前状态:不理解 AI 和提示词工程,文科生,不懂代码且英语差,注册尝试各种 AI 工具走了弯路,对 ChatGPT 认识限于日常问答和 SQL 学习交互以支持工作数据提取。 学习后现状:能搓多 Agent 智能体但需进修 Python 搓更多,有营销文案 demo 和 SQL 代码进阶学习应用,创建了 3 个图像流智能体和 2 个 Agent 智能体玩具,在公司实践智能客服从创建到应用,实现企业微信机器人问答基本功能,进行了 Dr.kown 和图像流的尝试以及企业智能体实践。 学习路径:关键词为“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”,学习路径如同游戏通关,主线加支线,个人感受学不完,找到适合自己的就好,学以致用,通过学习分享填补知识缝隙成长。 另外,有人分享了最近对 AIGC 的感悟: 参加了 3 场 AI 线下活动,在 AI 社群中活跃,感觉像回到 2014 年移动互联网时代。 感悟包括 AI 领域新名词等众多,AI 知识付费领域鱼龙混杂,AI 发展迅速导致学习 AI 知识很重要。 总结了“AIGC 学习三步法”,但文中未具体提及三步法的内容。
2024-10-04
零基础学习人工智能路线
以下是为零基础学习人工智能提供的路线: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。 了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 入门工具推荐:Kimi 智能助手 ChatGPT 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。 不用梯子、不用付费、支持实时联网。 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 AI 产品。 能一次搜索几十个数据来源,无广告,能定向指定搜索源。 点我去下载
2024-09-02
我给你设计一个有机化学结构式,你能找出合成路线吗
目前的技术可以帮助您找出化学结构式的合成路线。例如,像“Coscientist”这样的人工智能系统,当被问及能否合成某个分子时,它会首先在互联网上搜索相关的合成路线,然后根据搜索结果制定实验协议,接着将实验协议写成代码以指导自动化实验设备,最后由机器人执行实验任务。这个过程是可迭代的,能够根据实验结果调整协议以改进实验并实现预期目标。 另外,在一些研究中也提到,解决诸如寻找化学合成途径等问题遵循一定的模式,虽然在实际情况中相关的可能性图可能非常庞大,但可以通过一些常见的方法来应对挑战,比如为不同的可能状态或结果分配分数,只追求得分较高的路径;在自动定理证明中,也有从初始命题向下和从最终定理向上工作,试图找到中间的交汇路径等方法。同时,如果已经确定了从 X 到 Y 存在路径的“引理”,可以将 X → Y 作为新规则添加到规则集合中。
2024-08-30
我给你分子结构,能设计合成路线吗
目前利用大型语言模型,如“Coscientist”人工智能系统,可以为给定的分子结构设计合成路线。其工作流程大致为:当被问及能否合成某个分子时,首先会在互联网上搜索相关合成路线,接着根据搜索结果制定实验协议,然后将实验协议写成代码以指导自动化实验设备,最后由机器人执行实验任务。这个过程是可迭代的,能根据实验结果调整协议以改进实验并实现预期目标。 在生物学领域,AI 也能在创造新的蛋白质方面发挥作用。例如,华盛顿大学的研究员克里斯·诺恩先生最近使用 AI 创造了一种类似萤火虫的发光蛋白质,其他研究人员也已在寻找治疟疾疫苗和帕金森病研究中使用了 AI。过去创造新蛋白质需要确定氨基酸序列如何折叠成最终分子结构以确定其实际功能,过程艰难,而现在 AI 极大地提高了效率。
2024-08-30
如果我想要让AI回答高等数学相关的问题,请帮我推荐一下现在国内的哪个大模型更擅长?
在国内的大模型中,对于回答高等数学相关问题,以下几个大模型具有一定的优势: 通义千问(阿里):在翻译、电商、法律、推理、数学等方面表现较好。 讯飞星火(科大讯飞):在中小学教育学习、翻译等方面有一定能力。 需要注意的是,不同大模型的表现可能会因具体问题和使用场景而有所差异。您还可以参考第三方基准评测报告: 。但报告内容由 AI 大模型生成,请仔细甄别。
2024-11-09
如果我想要让AI回答高等数学相关的问题,适合用哪个大模型?
不同的大模型在处理高等数学相关问题时的能力有所差异。如果您编写的 AI 项目在处理高等数学问题时结果不如意,反复调试提示词也无明显改善,可以尝试更换大模型。 大型语言模型在处理数学计算,尤其是复杂的数学问题时可能会遇到困难,以下是一些解决办法: 1. 引入编程插件:将数学问题转化为编程问题,并引入编程插件来处理,通过编写代码执行数学计算后将结果返回给语言模型。 2. 教会模型数学法则:像教导小学生学习加法法则一样,让语言模型学习数学计算的规则。 3. 标准化自然数加法计算 prompt 模板:创建标准的自然数加法计算 prompt 模板,让模型按预定义规则和步骤执行加法计算。 4. 结合图像模型:对于涉及空间概念的数学问题,结合图像模型辅助处理。 5. 提供充足的语料和样本:为语言模型提供充足的数学计算样本和语料,以提高其数学计算能力。 在选择大模型时,如果您是 AI 应用开发者且使用 api,考虑到成本问题,应在工作流设计中,根据不同任务节点选择不同的大模型。基础性工作节点可使用免费或便宜的大模型,如普通的内容总结类工作;高价值性的工作节点则以性能优先,优先选择对应性能最好的大模型。 此外,在与大模型交互时,方法论不是关键,不断尝试和交互便是最佳方法。您可以在提示词里设定规则,也可临时更改,甚至无需遵循规则,重点是是否达成目的。使用 Markdown 格式清晰表达问题,有助于模型更好地理解您的意图,因其具有结构清晰、格式化强调和适用性广等优点。
2024-11-09
学习数学的AI
以下是关于使用 AI 进行数学学习的一些方法和建议: 1. 自适应学习系统:例如使用 Khan Academy 这类结合了 AI 技术的平台,它能为您提供个性化的数学学习路径和练习题,并根据您的能力和需求进行精准推荐。 2. 智能题库和作业辅助:像 Photomath 这样的工具,通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 3. 虚拟教学助手:例如 Socratic ,利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 4. 交互式学习平台:参与如 Wolfram Alpha 这样的交互式学习平台的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行数学学习,并取得更好的学习效果。但需要注意的是,如果您想让学生使用 AI 辅助数学学习,应确保他们先掌握了基本的数学过程,而不是过度依赖 AI 而忽略了自身的思考和学习。
2024-11-05
国内有哪些可以解数学题的AI
国内可以解数学题的 AI 有以下几种: 1. 自适应学习系统:如 Khan Academy,结合 AI 技术为用户提供个性化的数学学习路径和练习题,根据能力和需求进行精准推荐。 2. 智能题库和作业辅助:如 Photomath,通过图像识别和数学推理技术为用户提供数学问题的解答和解题步骤。 3. 虚拟教学助手:如 Socratic,利用 AI 技术为用户解答数学问题、提供教学视频和答疑服务,帮助理解和掌握数学知识。 4. 交互式学习平台:如 Wolfram Alpha,利用 AI 技术进行数学建模和问题求解。 此外,还有 Mathly 等应用也能指导学生解决数学问题。
2024-11-01
哪个ai可以帮我识别数学公式并写成文档呢
像 FindFormula 这样的函数已经在使用机器学习启发的技术来获取数据并尝试为您生成“合理的公式”,它或许能够帮助您识别数学公式并写成文档。
2024-10-30
如何训练一个跨语文与数学学科的教师备课助手
目前知识库中暂时没有关于如何训练一个跨语文与数学学科的教师备课助手的相关内容。但一般来说,训练这样的助手可能需要以下步骤: 1. 明确需求和目标:确定助手需要具备的具体能力和能够解决的问题,例如能够生成语文和数学的详细教案、提供教学方法建议等。 2. 数据收集:收集大量的语文和数学教学资料,包括教材、教案、教学视频、练习题等,以丰富助手的知识储备。 3. 选择合适的技术和模型:根据需求和数据特点,选择适合的人工智能技术和模型,如自然语言处理模型、机器学习算法等。 4. 模型训练:使用收集到的数据对模型进行训练,不断调整参数以提高模型的性能。 5. 评估和优化:通过实际测试和用户反馈,评估助手的表现,发现问题并进行优化改进。 需要注意的是,这是一个较为复杂的任务,需要综合考虑多方面的因素,并不断进行试验和改进。
2024-10-16
如何学习AI
如何学习 AI 学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习 AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的 AI 知识体系。 1. 了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,你可以获得对 AI 在实际应用中表现的第一手体验,并激发你对 AI 潜力的认识。 6. 持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 总之,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。
2024-11-08
如何学习生成式人工智能?
以下是学习生成式人工智能的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,台湾大学李宏毅教授的生成式 AI 课程也是很好的学习资源。该课程主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容,共分为 12 讲,每讲约 2 小时。通过学习本课程,您可以掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。课程的学习内容包括: 1. 什么是生成式 AI:生成式 AI 的定义和分类、生成式 AI 与判别式 AI 的区别、生成式 AI 的应用领域。 2. 生成式模型:生成式模型的基本结构和训练方法、生成式模型的评估指标、常见的生成式模型及其优缺点。 3. 生成式对话:生成式对话的基本概念和应用场景、生成式对话系统的架构和关键技术、基于生成式模型的对话生成方法。 4. 预训练语言模型:预训练语言模型的发展历程和关键技术、预训练语言模型的优缺点、预训练语言模型在生成式 AI 中的应用。 5. 生成式 AI 的挑战与展望:生成式 AI 面临的挑战和解决方法、生成式 AI 的未来发展趋势和研究方向。 学习资源包括: 1. 教材:《生成式 AI 导论 2024》,李宏毅。 2. 参考书籍:《深度学习》,伊恩·古德费洛等。 3. 在线课程:李宏毅的生成式 AI 课程。 4. 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法可以根据个人情况进行选择和调整。
2024-11-08
学习ai有哪些方向可以选择
学习 AI 有以下几个方向可供选择: 1. 编程语言基础:可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 工具和平台体验:尝试使用如 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。也可以探索面向特定群体的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养思考和判断能力。 6. 特定模块深入:根据自身兴趣选择特定模块,如图像、音乐、视频等进行深入学习,掌握提示词技巧。 7. 与 AI 产品互动:使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 8. 结合特定领域:如将 AI 与宠物行业结合,包括 AI 宠物助手(自动识别宠物情绪、提供饮食建议、监测健康状况等)、AI 宠物互动玩具、AI 宠物图像生成、AI 宠物医疗诊断、AI 宠物行为分析等,需要掌握基础的 AI 技术,了解宠物相关领域知识,关注应用案例并尝试开发原型。
2024-11-08
如何系统的学习ai相关知识,并达到完善输出的水准
以下是系统学习 AI 相关知识并达到完善输出水准的建议: 一、基础知识学习 1. 编程语言:从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 了解基本概念:熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。可以阅读相关的入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、学习资源与途径 1. 在线课程:在「」中,有一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity),按照自己的节奏学习,并争取获得证书。 2. 关注权威媒体和学者:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养对 AI 的思考和判断能力。 三、实践与应用 1. 参与实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 2. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。 3. 特定模块深入学习:根据自己的兴趣选择 AI 领域的特定模块(如图像、音乐、视频等)进行深入学习。 4. 掌握提示词技巧:提示词上手容易且很有用,要熟练掌握。 四、持续学习与分享 1. 持续学习:不断吸收新知识,更新自己的知识体系。 2. 分享交流:在知识库分享自己实践后的作品和经验,与他人交流学习。 总之,要全面系统地学习 AI 知识和技能,需要从多个方面入手,不断实践和探索。
2024-11-08
我要按怎样的步骤学习AI
以下是学习 AI 的步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己的实践成果。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等)。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 为了在医疗保健中让 AI 产生真正的改变,应投资创建一个模型生态系统,让“专家”AI 像优秀的医生和药物开发者那样学习。成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,从该领域出色的实践者那里学习,获得有助于在复杂情况下确定最佳答案的直觉。对于 AI,应通过使用彼此堆叠的模型来训练,而不是仅依靠大量数据和期望一个生成模型解决所有问题。例如,先训练生物学的模型,再是化学的模型,然后添加特定于医疗保健或药物设计的数据点。预医学生的课程从化学和生物学基础开始,设计新疗法的科学家也需要经历多年相关学习和研究,这种学习方式有助于培养处理涉及细微差别决策的直觉。
2024-11-08
学习ai
以下是为新手学习 AI 提供的全面指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自身兴趣选择特定模块深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库有很多实践后的作品和文章分享,欢迎您实践后分享。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI ,建议如下: 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打基础。 2. 尝试使用 AI 工具和平台 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-07