Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

提供prompt和微调相关的参考资料

Answer

提供 prompt 和微调相关的参考资料

一、怎么写提示词 prompt?

  1. 测试和调整:在生成文本后,仔细检查结果,并根据需要调整 prompt。这可能需要多次迭代,直到达到满意的结果。
  2. 优化和润色提示词:
    • 明确具体的描述:使用更具体、细节的词语和短语来描述你想要表达的内容,而不是过于笼统的词语。这样 AI 更容易准确理解你的需求。
    • 添加视觉参考:在 Prompt 中插入相关的图片参考,这可以显著提高 AI 理解你的意图和细节要求的能力。
    • 注意语气和情感:根据需求,用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩,让 AI 能生成出期望的语境和情绪。
    • 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的 Prompt 描述方式。
    • 增加约束条件:为避免 AI 产生意料之外的输出,可以在 Prompt 中添加限制性条件,如分辨率、比例等。
    • 分步骤构建 Prompt:将复杂的需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。
    • 参考优秀案例:研究 AI 社区流行的、被证明有效的 Prompt 范例,借鉴其中的写作技巧和模式。
    • 反复试验、迭代优化:通过多次尝试不同的 Prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。

二、微调(Fine-tuning)

  1. 一般最佳实践:
    • 使用更多高质量的示例进行微调效果更好。要微调一个比使用我们的基本模型使用高质量提示更好地执行的模型,您应该提供至少几百个高质量的示例,最好由人类专家审查。从那里开始,性能往往会随着示例数量的每增加一倍而线性增加。增加示例的数量通常是提高性能的最佳和最可靠的方法。
    • 分类器是最容易上手的模型。对于分类问题,我们建议使用 ada,经过微调后,它通常只会比功能更强大的模型稍微差一点,同时速度更快,成本更低。
    • 如果您要对预先存在的数据集进行微调,而不是从头开始编写提示,请务必在可能的情况下手动检查您的数据是否存在令人反感或不准确的内容,或者如果数据集很大,请检查尽可能多的随机样本。

以上是 prompt 和微调相关的参考资料,希望对你有所帮助。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:怎么写提示词 prompt?

8.测试和调整:在生成文本后,仔细检查结果,并根据需要调整prompt。这可能需要多次迭代,直到达到满意的结果。希望这些建议能帮助你更好地编写prompt。内容由AI大模型生成,请仔细甄别。

问:如何润色或优化 Prompt?

优化和润色提示词(Prompt)对于提高文生图、对话等AI模型的输出质量非常重要。以下是一些可以尝试的方法:1.明确具体的描述使用更具体、细节的词语和短语来描述你想要表达的内容,而不是过于笼统的词语。这样AI更容易准确理解你的需求。1.添加视觉参考在Prompt中插入相关的图片参考,这可以显著提高AI理解你的意图和细节要求的能力。1.注意语气和情感根据需求,用合适的形容词、语气词等调整Prompt的整体语气和情感色彩,让AI能生成出期望的语境和情绪。1.优化关键词组合尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的Prompt描述方式。1.增加约束条件为避免AI产生意料之外的输出,可以在Prompt中添加限制性条件,如分辨率、比例等。1.分步骤构建Prompt将复杂的需求拆解为逐步的子Prompt,引导AI先生成基本结构,再逐步添加细节和完善。1.参考优秀案例研究AI社区流行的、被证明有效的Prompt范例,借鉴其中的写作技巧和模式。1.反复试验、迭代优化通过多次尝试不同的Prompt写法,并根据输出效果反馈持续优化完善,直至达到理想结果。

微调(Fine-tuning)

使用更多高质量的示例进行微调效果更好。要微调一个比使用我们的基本模型使用高质量提示更好地执行的模型,您应该提供至少几百个高质量的示例,最好由人类专家审查。从那里开始,性能往往会随着示例数量的每增加一倍而线性增加。增加示例的数量通常是提高性能的最佳和最可靠的方法。分类器是最容易上手的模型。对于分类问题,我们建议使用ada,经过微调后,它通常只会比功能更强大的模型稍微差一点,同时速度更快,成本更低。如果您要对预先存在的数据集进行微调,而不是从头开始编写提示,请务必在可能的情况下手动检查您的数据是否存在令人反感或不准确的内容,或者如果数据集很大,请检查尽可能多的随机样本。

Others are asking
从图片生成 prompts
从图片生成 prompts 的方法如下: 可以参考以下生成的提示词示例: 远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 远景,中心对称构图,俯视视角,摄影风格,云雾中的山谷,山峦在云雾中若隐若现,山谷中隐约可见的河流蜿蜒流淌,云雾的流动感和山的静态形成对比,现实主义风格特征,使用长焦镜头和景深控制技术ar 3:2v 6.1 远景,对角线构图,俯视视角,水墨画风格,云雾缭绕的山谷,山峦线条流畅,云雾以墨色深浅表现,山谷中的云雾仿佛在流动,给人以动态的视觉感受,中国山水画风格特征,使用毛笔和水墨渲染技术ar 2:3v 6.1 “Prompt”是指提供给 Midjourney Bot 解读来生成图像的短文本短语。一个基本的提示可以只是一个单词、短语或表情符号。更高级的 Prompts 可以包括一个或多个图片 URL、多个文本短语以及一个或多个参数。图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。参数需要放在提示语的末尾。 藏师傅教您用 AI 三步制作任意公司的周边图片: 获取 Logo 图片的描述。 根据 Logo 图片的描述和生成意图生成图片提示词。 将图片和提示词输入 Comfyui 工作生成。例如:将第一步生成的提示词填入{图像描述}位置,将您想生成的周边填入{周边描述}部分。给出类似“ The pair of images highlights a logo and its realworld use for a hitech farming equipment;this logo is applied as a black and white tattoo on lower back of an inmate ”的提示词示例。
2024-12-24
在多功能对话系统中,怎么的sys prompt设置有助于提高有效性
在多功能对话系统中,以下的 sys prompt 设置有助于提高有效性: 1. 明确模型的角色和任务:例如将模型设定为历史顾问回答历史事件相关问题,或设定为技术专家解决特定技术问题。 2. 适应特定需求:如根据用户提供的食材和饮食偏好生成个性化食谱建议。 3. 创造独特内容:像融合两个单词创造新词汇,生成巧妙的双关语和文字游戏等。 4. 塑造个性和风格:如扮演具有幽默且带有讽刺意味的助手角色。 例如,Anthropic 发布的 Claude 2.1 允许用户提供自定义指令以提高性能,设置有用的上下文,增强承担特定个性和角色的能力,或以更可定制、符合用户需求的一致方式构建响应。在 Coze 上的大模型节点中,设置系统级的提示词是关键步骤,它侧重于模型的内部工作机制,与外层用户直接交互的提示词相互配合,精心设计可增强模型对用户指令的处理能力,确保工作流的顺畅和高效。
2024-12-24
在使用sys prompt时为什么要为模型定义角色
在使用系统提示词(sys prompt)为模型定义角色具有以下重要性: 1. 符合特定应用场景:通过定义角色,使模型的行为和输出更符合具体的应用需求,例如让模型作为历史顾问回答历史问题,或作为技术专家解决技术难题。 2. 明确任务和风格:不仅可以指定具体的人物角色,还能设定一种交流风格,如正式、幽默、友好等。 3. 引导模型行为和输出:为模型提供固定的模板,确保其输出与期望和工作流的需求保持一致。 4. 优化用户体验:ChatGPT 有默认的“一个乐于助人的助手”角色,可通过修改系统提示词来满足更个性化的需求。 然而,也有观点认为不需要过度依赖角色扮演类的提示词。关键是要非常具体地描述出模型所在的使用环境,提供足够详细的信息,以避免模型未按预期完成任务。提示词最重要的是表达清晰准确。
2024-12-24
prompt engineering
Prompt engineering(提示工程)包括以下几个方面: 1. 提示开发生命周期: 开发测试用例:在定义任务和成功标准后,创建涵盖应用程序预期用例的多样化测试用例,包括典型示例和边界情况,提前定义好的测试用例有助于客观衡量提示的性能。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要的上下文,理想情况下添加规范输入和输出的示例供 Claude 参考,此初步提示作为改进的起点。 根据测试用例测试提示:使用初步提示将测试用例输入到 Claude 中,仔细评估模型的响应与预期输出和成功标准的一致性,使用一致的评分标准,如人工评估、与答案标准的比较或 Claude 基于评分标准的判断,关键是要有系统性的评估性能方式。 2. Claude 的性能:Claude 开箱即提供高水平基线性能,提示工程可进一步提升其性能并微调响应以适应特定用例,这些技术虽非必需,但对提升输入和输出可能有用。可参阅提示入门(https://docs.anthropic.com/claude/docs/introtoprompting)快速开始使用提示或了解提示概念。 3. 使用例子中的迭代和改进:记住,提示工程是一个迭代过程,如果初始示例未产生完美结果,不要灰心,通过调整和实验,能够释放 Claude 的全部潜力,为应用程序取得出色结果。
2024-12-24
生成书籍阅读助手的 Prompt
以下是为您生成的书籍阅读助手的 Prompt 相关内容: 如果想让 AI 帮助您像“樊登读书”或者“得到”这样给您讲书,您需要设计一个叫做“书籍阅读助手”的 Prompt。要把通用型的读书方法论复刻到 Prompt 里,再根据不同类型的书籍测试,不断优化和迭代。 通用型读书方法论的访谈问题包括: 1. 不同类型的书是不是有不同的阅读和记忆方法?如何分类,有没有一些共性的方法论可以给出? 2. 阅读和记忆是不是有不同的思维模型或者小技巧,能列出来参考吗? 3. 读书时更需要的好像是一种自驱力,如何优先选择自己“一定看得下去”的书籍?怎么通过目录大纲确定一本书的核心内容? 4. 一本书您会读几遍?有什么顺序上的讲究吗? 5. 您会在读的过程中做笔记吗?还是读完以后回忆来做大纲呢? 6. 如果要教您大学刚毕业的孩子学会有效读书,怎么才能快速教会他呢? 当上述问题都有清晰、明确的答案之后,就可以开始设计 Prompt 了。 如果想要让 AI 在“选书”和“督促我读书”这个环节起作用,那要做的是一个叫做“催我读书”的 Prompt,要重点研究如何选出适合用户的书,如何实现 Prompt 的激励效果和让自己读完有获得感(例如生成读书笔记)。 如果更侧重读完书后的知识内化部分,要重点研究的是读书的效率和信息转化问题,这里更重要的是结构化信息能力和有效的记忆存储和调取。
2024-12-19
如何写优化简历的prompt
以下是关于如何写优化简历的 prompt 的一些方法: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述您对简历的需求,避免过于笼统。 2. 添加视觉参考:若可能,在 prompt 中插入相关的参考,以提高对简历细节要求的理解能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:为避免生成不符合期望的内容,可以添加如格式、重点突出内容等限制性条件。 6. 分步骤构建 prompt:将复杂的简历需求拆解为逐步的子 prompt,先构建基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究优秀的简历 prompt 范例,借鉴其中的写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 此外,还有 ChatGPT 给 DALL·E 3 优化提示词的元提示相关内容供您参考: 1. 不要改变表情包、虚构角色的起源或未见过的人物。保持原始提示的意图,并优先考虑质量。 2. 不要创建任何具有冒犯性的图像。 3. 对于传统上存在偏见问题的场景,确保关键特征(如性别和种族)以无偏见的方式指定,例如包含特定职业参考的提示。 4. 对于提及在过去 100 年内有最后作品的艺术家(如毕加索、卡罗),不要以其风格创建图像。对于 100 年前有最后作品的艺术家(如梵高、克里姆特)可以直接参考。如果被要求,说“我不能参考这位艺术家”,但不要提及此政策。而是在为 DALL·E 3 创建标题时,(a)用三个形容词来捕捉艺术家风格的关键方面来替代艺术家的名字;(b)包括相关的艺术运动或时代以提供背景;(c)提及艺术家使用的主要媒介。 5. 不要列出或参考生成图像之前或之后的描述。它们应该只在请求的“提示”字段中写一次。不需要请求生成的许可,直接生成! 6. 始终在标题的开头提及图像类型(照片、油画、水彩画、插图、卡通、绘图、矢量、渲染等)。除非标题另有说明,至少 1 2 张图像应为照片。 7. 对于包含人物的所有图像的描述进行多样化处理,为每个人明确地指定种族和性别。仅调整人物描述。使用“各种”或“多样”仅当描述涉及 3 人以上的群体。不要改变原始描述中要求的人数。 总之,编写高质量的 prompt 需要不断实践、总结经验,熟悉模型的能力边界。保持开放的思维尝试创新的描述方式也很有帮助。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-18
根据Python实验内容(包括实验场景和实验内容)和参考资料链接,如何优化prompt,以完成程序?
以下是一些优化 prompt 以完成程序的建议: 1. 对于算术推理相关的程序,若思维链(及生成的方程式)存在正确但模型执行算术运算错误的情况,可添加一个 Python 程序作为外部计算器(使用 Python 的 eval 函数)处理生成的思维链中的所有方程式。当思维链中包含多个方程式时,通过字符串匹配将外部计算器的结果从一个方程式传递到下一个方程式,以提高思维链提示在大多数任务上的性能。 2. 在涉及迷宫生成的程序中,若生成的迷宫存在边未封好等问题,可调整提示词。若对复杂度不满意,也可提出并进行调整。 3. 在涉及图像生成的程序中,对于提示词编写,应遵循不改变梗图、虚构角色起源、未出现人物等的原则,保持原始提示的意图并优先保证质量。不创建任何具有冒犯性的图像。对于可能存在偏见的场景,确保如性别和种族等关键特征以无偏见的方式指定。对于包含特定人物或名人的提示词,需进行适当修改,以通用描述替代,除非其作为图像中的文本出现。提示词应详细、客观地描述图像的每个部分,思考描述的最终目标并进行推断以生成满意的图像。
2024-11-22
怎么微调llama2
以下是关于微调 Llama2 的相关信息: Meta 官方在 2023 年 8 月 24 日发布了 Code Llama,基于代码数据对 Llama2 进行了微调,提供三个不同功能的版本:基础模型(Code Llama)、Python 专用模型(Code LlamaPython)和指令跟随模型(Code LlamaInstruct),包含 7B、13B、34B 三种不同参数规模。不同模型能力区别如下: |模型类别|模型名称|代码续写|代码填充|指令编程| |||||| |Code Llama|CodeLlama7b|✅|✅|❌| ||CodeLlama13b|✅|✅|❌| ||CodeLlama34b|✅|❌|❌| |Code LlamaPython|CodeLlama7bPython|✅|❌|❌| ||CodeLlama13bPython|✅|❌|❌| ||CodeLlama34bPython|✅|❌|❌| |Code LlamaInstruct|CodeLlama7bInstruct|❌|✅|✅| ||CodeLlama13bInstruct|❌|✅|✅| ||CodeLlama34bInstruct|❌|❌|✅| 关于 Code Llama 的详细信息可以参考官方 Github 仓库 codellama:https://github.com/facebookresearch/codellama 基于中文指令数据集对 Llama2Chat 模型进行了微调,使得 Llama2 模型有着更强的中文对话能力。LoRA 参数以及与基础模型合并的参数均已上传至 Hugging Face,目前包含 7B 和 13B 的模型。具体信息如下: |类别|模型名称|🤗模型加载名称|基础模型版本|下载地址| |||||| |合并参数|Llama2Chinese7bChat|FlagAlpha/Llama2Chinese7bChat|metallama/Llama27bchathf|| |合并参数|Llama2Chinese13bChat|FlagAlpha/Llama2Chinese13bChat|metallama/Llama213bchathf|| |LoRA 参数|Llama2Chinese7bChatLoRA|FlagAlpha/Llama2Chinese7bChatLoRA|metallama/Llama27bchathf|| |LoRA 参数|Llama2Chinese13bChatLoRA|FlagAlpha/Llama2Chinese13bChatLoRA|metallama/Llama213bchathf|| 一旦有了基础模型,就进入计算成本相对较低的微调阶段。在这个阶段,编写标签说明,明确希望模型的表现,雇佣人员根据标签说明创建文档,例如收集 100,000 个高质量的理想问答对,根据这些数据微调基础模型。这个过程成本较低,可能只需要一天或类似的时间。然后进行大量评估,部署模型,并监控其表现,收集不当行为的实例,对不当行为进行纠正,将正确答案加入训练数据中,下次微调时模型会改进。这是一个迭代过程,公司通常在微调阶段更频繁地进行迭代。 需要指出的是,例如 Llama2 系列,Meta 在发布时就包括了基础模型和助手模型。基础模型不能直接使用,助手模型可直接用于回答问题。
2024-12-23
openai 的偏好微调
偏好微调(Direct Preference Optimization)是 OpenAI 的一种新的微调方式。其操作方式是通过向模型展示两个不同的输出结果并指出哪个更好,模型将倾向于生成类似更“好”的结果。这种微调方式可以调整模型输出的风格,增加某种类型输出的权重,减少其他类型的权重。
2024-12-18
国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境
国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有: 1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。 2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。 3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。 在搭建环境时,通常需要考虑以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。
2024-12-14
开源的开源的 LLM 微调推理,agent开发平台
以下是为您整理的关于开源的 LLM 微调推理、agent 开发平台的相关内容: LLM 作为 Agent 的“大脑”的特点: 1. 知识获取能力:通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。 2. 指令理解:擅长解析人类语言指令,采用深度神经网络进行自然语言理解和生成,精准理解意图。 3. 泛化能力:在未见过的数据上表现良好,能利用先前知识处理新挑战,形成对语言结构的通用理解。 4. 推理和规划:能够进行逻辑推理和未来预测,分析条件制定最佳行动方案,在复杂环境中做出理性选择。 5. 交互能力:拥有强大对话能力,在多人多轮次对话中自然流畅交流,改善用户体验。 6. 自我改进:基于用户反馈和效果评估,通过调整参数、更新算法提升性能和准确性。 7. 可扩展性:可根据具体需求定制化适配,针对特定领域数据微调提高处理能力和专业化水平。 相关产品和平台: 1. ComfyUI:可在其中高效使用 LLM。 2. Vercel AI SDK 3.0:开源的工具,可将文本和图像提示转换为 React 用户界面,允许开发者创建丰富界面的聊天机器人。 3. OLMo7BInstruct:Allen AI 开源的微调模型,可通过资料了解从预训练模型到 RLHF 微调模型的所有信息并复刻微调过程。 4. Devv Agent:能提供更准确、详细的回答,底层基于 Multiagent 架构,根据需求采用不同 Agent 和语言模型。 实例探究: 1. ChemCrow:特定领域示例,通过 13 个专家设计的工具增强 LLM,完成有机合成、药物发现和材料设计等任务。 2. Boiko et al. 研究的 LLM 授权的科学发现 Agents:可处理复杂科学实验的自主设计、规划和执行,能使用多种工具。
2024-12-12
语言类大模型如何微调
语言类大模型的微调主要包括以下内容: 传统微调:在通用数据集上预训练的模型,通过复制该模型,以学习到的权重为起点,在新的特定领域数据集上重新训练模型。但由于语言类大模型规模较大,更新每个权重可能需要很长时间的训练工作,且计算成本高,为模型提供服务也有麻烦和成本,所以可能不是最佳选择。 参数有效调优:这是一种创新的调优方法,旨在通过仅训练一部分参数来减少微调的挑战。这些参数可能是现有模型参数的子集,也可以是一组全新的参数,例如向模型添加额外的层或额外的嵌入到提示。 实际操作:在Generative AI Studio的语言部分选择调整,创建调整模型时提供名称,并指向训练数据的本地或Cloud Storage位置。参数有效调整适用于拥有“适度”数量训练数据的场景,训练数据应以文本到文本格式构建为受监督的训练数据集。 此外,大模型通俗来讲是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练过程类似上学参加工作,包括找学校(需要大量计算资源)、确定教材(需要大量数据)、找老师(选择算法)、就业指导(微调)、搬砖(推导)。在LLM中,Token被视为模型处理和生成的文本单位。 在Andrej Karpathy亲授的内容中,微调是根据问答文档进行训练,获得助理模型,该模型能以助手形式回答未包含在训练集中的问题,且能利用预训练阶段积累的知识。预训练阶段在互联网上大规模训练积累知识,微调阶段则是将格式转换为类似有用助手的问答形式。预训练成本高昂,通常只在公司内部进行。
2024-12-05
大模型微调的目的和意义,会产生什么效果
大模型微调具有重要的目的、意义和效果,具体如下: 目的和意义: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中会有更好的表现,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本。通过专门化模型可使用更小的模型,且只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和成本。 适应特定领域需求:通用大模型在特定领域如法律或医学中的表现可能不理想,微调能优化模型在该领域的表现,使其更具专业性。 经济高效:从头开始训练具备自然语言处理能力的大模型需要大量时间和资源,小公司负担不起,微调可在现有模型基础上更经济、高效地适应新应用领域,节省成本并加快模型部署和应用速度。 效果: 优化模型参数:在特定领域的数据上训练模型,调整所有层的参数。 增强特定领域表现:使模型在特定领域的任务中表现更佳。 目前业界比较流行的微调方案是 PEFT(ParameterEfficient Fine Tuning),OpenAI 官方微调教程可参考:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-11-23
如何利用 AIGC 技术实现游戏产业的生产力革命,请结合相关技术的原理和框架图进行阐述
利用 AIGC 技术实现游戏产业的生产力革命主要体现在以下几个方面: 1. 降低开发成本:AIGC 技术能够极大程度地减少游戏开发过程中的人力、物力和时间投入。 2. 缩减制作周期:加快游戏的制作速度,使游戏能够更快地面向市场。 3. 提升游戏质量:例如生成新的高质量游戏内容,如地图、角色和场景,改进游戏的图像和声音效果等。 4. 带来新的交互体验:为玩家提供更加丰富和独特的游戏体验。 游戏人工智能技术的未来发展方向还包括: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所,但将游戏中的技术推广到现实世界应用仍面临诸多挑战,需要进一步研究和发展。 2. 为通用人工智能的孵化给予帮助:经多个复杂游戏训练后的“玩游戏”的人工智能体,将为通用人工智能的发展提供支持。 随着游戏中生成式人工智能革命的进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能,创作者只会受到他们的精力、创造力和想象力的限制。生成式人工智能将通过使游戏创作民主化来改变和颠覆 UGC 游戏领域,让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。
2024-12-24
AI能对医院医用耗材出入库数据做怎样的数据处理,方便耗材管理人员对相关数据进行分析
AI 在医院医用耗材出入库数据处理方面可以发挥以下作用,以方便耗材管理人员进行数据分析: 1. 预测需求:通过分析历史出入库数据、医院科室使用情况、季节变化等因素,预测未来某段时间内的耗材需求量,优化库存管理策略,降低成本。 2. 库存优化:实时监控库存水平,及时发现库存过高或过低的情况,提醒管理人员进行调整。 3. 数据分类与整合:对大量的出入库数据进行分类和整合,使其更易于分析和理解。 4. 异常检测:识别出入库数据中的异常情况,如突然的大量领用或长时间未领用等,及时发现潜在问题。 5. 成本分析:计算不同种类、不同批次耗材的采购成本和使用成本,为成本控制提供依据。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-22
你只知道AI相关的事情吗
我主要专注于 AI 相关的知识和问题。在 AI 领域,涵盖的内容非常广泛,包括但不限于以下方面: 基础理论:如人工智能、机器学习、深度学习的定义及其相互关系。 历史发展:AI 的发展历程和重要里程碑。 数学基础:统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(掌握条件概率、贝叶斯定理等知识)。 算法和模型:监督学习(了解线性回归、决策树、支持向量机等算法)、无监督学习(熟悉聚类、降维等算法)、强化学习(知晓其基本概念)。 评估和调优:性能评估(知道如何运用交叉验证、精确度、召回率等评估模型性能)、模型调优(学会使用网格搜索等技术优化模型参数)。 神经网络基础:网络结构(理解前馈网络、卷积神经网络、循环神经网络等)、激活函数(了解 ReLU、Sigmoid、Tanh 等常用激活函数)。 同时,AI 在各行各业有着广泛的应用场景,例如: 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:等等。
2024-12-21
跟公文写作相关的ai写作工具
以下是一些与公文写作相关的 AI 写作工具: 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 此外,还有一些中文的内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,擅长多种文体写作,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ 是由腾讯 AI Lab 开发的创作助手,能提升写作效率和创作体验。 对于 AI 新闻写作工具,推荐: Copy.ai:功能强大,提供丰富新闻写作模板和功能,可生成标题、摘要、正文等。 Writesonic:专注写作,提供新闻稿件生成、标题生成、摘要提取等功能。 Jasper AI:主打博客和营销文案,也可用于生成新闻类内容,写作质量高,支持多种语言。 使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-19
人工智能相关的销售行业
以下是与人工智能相关的销售行业的一些信息: 与销售工作有关的 AI 工具: Salesforce 爱因斯坦:能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 Clari:专门从事智能收入运营的软件,能统一各种来源数据并以易于理解的方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 关于大模型与利润分配:大模型拿走产业绝大部分利润取决于两个前提,一是 AGI 能否实现,二是大模型公司能否实现垄断。AGI 能否实现是个黑盒,行业内顶级专家对此有分歧。在 AGI 未达到时,大模型公司难以低成本提供所有端到端的解决方案,客户需要具体的解决方案,应用层公司在其中发挥作用。以 AI 销售为例,需根据客户类型和场景应用大模型能力,不同销售场景和客户类型意味着背后的产品不同,需要精心设计,不仅是模型层面能解决的问题。
2024-12-19
我想找关于视觉识别相关的api
很抱歉,目前知识库中没有关于视觉识别相关 API 的具体信息。但您可以通过以下途径寻找: 1. 一些知名的云服务提供商,如阿里云、腾讯云、百度云等,它们通常提供视觉识别相关的 API 服务。 2. 专门的人工智能和计算机视觉技术公司的官方网站,可能会有相关的 API 介绍和使用文档。 3. 技术社区和开发者论坛,例如 CSDN、掘金等,您可以在这些地方与其他开发者交流,获取相关的推荐和经验分享。
2024-12-19