Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

深度神经网络是什么

Answer

深度神经网络(DNN)是一种机器学习模型,属于神经网络的一种。它是一种由多层神经元组成的模型,每一层神经元都可以接收和处理输入数据,并将处理后的数据传递给下一层神经元。DNN 在图像识别、语音识别、自然语言处理等领域取得了显著的成就。

DNN 通过反向传播算法进行训练。在训练过程中,输入数据通过网络的各个层进行传递和处理,最终产生输出结果。然后,通过比较输出结果与期望输出之间的差异,计算出误差信号。误差信号会反向传播到网络的每一层,用于调整神经元之间的连接权重,从而使网络的输出结果更加接近期望输出。这个过程会重复多次,直到网络的输出结果达到满意的精度为止。

DNN 具有很强的学习能力和泛化能力。它可以自动提取输入数据中的特征和模式,并将其表示为高层的抽象特征。这些抽象特征可以用于各种任务,如分类、回归、聚类等。此外,DNN 还具有很强的泛化能力,可以处理各种类型的数据,如图像、语音、文本等。

虽然 DNN 在许多领域都取得了显著的成就,但它也存在一些局限性,如需要大量的计算资源和数据、容易出现过拟合等。此外,DNN 的模型结构和参数需要经过精心设计和调整,以确保其在不同任务和数据集上的有效性和泛化能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

深度学习(1)核心概念

深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。虽然大多数其他处理顺序数据的算法只有最后10个时间步的内存,[长短时记忆](https://developer.nvidia.com/blog/parallelforall/deep-learning-nutshell-sequence-learning#LSTM)[循环神经网络](https://developer.nvidia.com/blog/parallelforall/deep-learning-nutshell-sequence-learning#recurrent-neural-networks)(由Sepp Hochreiter和J ü rgen-Schmidhuber在1997年发明)允许网络收集过去几百个时间步的活动,从而做出准确的预测。虽然LSTM网络在过去10年中大多被忽视,但自2013年以来,LSTM网络的使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。

深度学习(2)历史和训练

训练深度学习架构的过程类似于幼儿开始理解周围世界的过程。当幼儿遇到一个新的动物,比如一只猴子,他或她不会知道这是什么。但是一个成年人会用手指指向猴子并说:“那是一只猴子!”幼儿就能将他或她看到的图像与标签“猴子”联系起来。然而,在下一次遇到同样的动物时。单个图像可能不足以正确地标记该动物。例如,幼儿可能会把树懒误认为猴子,或者把猴子误认为树懒,或者干脆忘记某种动物的名称。为了可靠地记忆和标记,幼儿需要看到许多不同的猴子和类似的动物,并且每次都需要知道它是否真的是猴子——反馈对于学习至关重要。经过一段时间,如果幼儿遇到足够多的动物并配对它们的名称,幼儿将学会区分不同的动物。深度学习过程类似。我们向神经网络提供图像或其他数据,例如一只猴子的图像。深度神经网络预测某种结果,例如图像中物体的标签(“猴子”)。然后我们向网络提供反馈。如果网络预测图像显示有30%的概率是猴子,70%的概率是树懒,那么所有有利于树懒类的输出都会出错!通过误差反向传播算法,我们使用该误差来调整神经网络的参数。

深度学习(1)核心概念

人工神经网络(1)获取一些输入数据,(2)通过计算输入的加权和来转换这些输入数据,(3)将一个非线性函数应用于此转换以计算中间状态。上面的三个步骤构成了所谓的[层](https://developer.nvidia.com/zh-cn/blog/deep-learning-nutshell-core-concepts/#%E5%B1%82),而转换函数通常被称为[单元](https://developer.nvidia.com/zh-cn/blog/deep-learning-nutshell-core-concepts/#%E5%8D%95%E5%85%83)。通常称为特征的中间状态被用作另一层的输入。通过重复这些步骤,人工神经网络学习多层非线性特征,然后将这些非线性特征组合到最后一层来创建预测。神经网络通过产生一个误差信号来学习,该信号测量网络的预测值与期望值之间的差异,然后使用该误差信号来改变权重(或参数),从而使预测更加准确。

Others are asking
ai的研究是否可以分为神经网络与知识图谱两个大的分类?
AI 的研究可以分为多个不同的分类,并非仅仅局限于神经网络与知识图谱这两个大的分类。 在常见的分类中: 非监督学习:最著名的是聚类,只需提供大量数据,让 AI 自行找出有趣信息。 迁移学习:在任务 A 中学习的内容可用于帮助完成任务 B,在计算机视觉领域有较多应用。 强化学习:根据输出好坏给予奖励或惩罚,利用“奖励信号”让 AI 自动学习最大化奖励,但需要大量数据。 生成对抗网络:由生成器和判别器构成,两者不断训练和竞争,提高生成真实数据的能力,广泛应用于多种领域。 此外,从技术和应用的角度来看: 知识图谱:在搜索等场景中展示关键信息,如人物相关信息、酒店信息等。 在企业中建构人工智能方面,NLG 可作为全新场景讨论,生成内容分为根据任务要求生成标准结果和根据信息进行内容创作两类,分别偏向 B 端和 C 端。NLP 能做的事情较标准化,LLM 的出现对其有提升和冲击。知识图谱领域本身有多种技术路径,与 LLM 可能是互补关系。 对于希望精进的学习者,还需要了解 AI 的背景知识,包括基础理论、历史发展、数学基础(统计学、线性代数、概率论),掌握算法和模型(监督学习、无监督学习、强化学习),学会评估和调优(性能评估、模型调优),以及神经网络基础(网络结构、激活函数)等。
2025-02-12
什么是深度神经网络
深度神经网络是机器学习文献中的一类模型,受到生物神经网络的启发。一般来说,深度神经网络可分为以下几类: 1. 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 2. 循环网络:在其连接图中有定向循环,可能具有复杂动态,训练较难,但更具生物真实性。 深度神经网络具有以下特点和应用: 1. 可以计算一系列改变样本相似性的变换,几乎能应用于任何从输入到输出空间复杂映射的机器学习问题。 2. 能够用于模拟大脑工作方式、了解并行计算风格以及解决实际问题。 在其发展过程中,如感知机的出现推动了机器学习的问世,展示了其对简单形状分类的学习能力。神经网络本质上是多层感知机,早期只有输出层,而典型应用如分辨手写数字。 同时,在深度神经网络的研究中,还涉及到如深度玻尔兹曼机、受限玻尔兹曼机、深度信念网络等相关内容。但使用反向传播等方法存在需要有标签的训练数据、学习时间不理想、可能陷入局部最小等问题。
2025-02-03
如何学习对抗神经网络
以下是关于学习对抗神经网络的相关内容: 图像生成方面:Google 有一个 AI 入门课程,介绍扩散模型,课程地址为 https://www.cloudskillsboost.google/course_templates/541,相关视频学习可参考 https://youtu.be/J0AuVBxzui0 。扩散模型是 Google Cloud 上许多先进图像生成模型和工具的基础,课程会介绍其背后理论及在 Vertex AI 上的训练和部署。图像生成领域有多种方法,如变分自动编码器将图像编码为压缩形式再解码回原始大小;生成对抗模型(GAN)让两个神经网络相互对抗,一个生成图像,一个鉴别真伪;自回归模型将图像视为一系列像素来生成。 主要人工智能技术概览:生成对抗网络是一种深度学习模型,由生成器和判别器构成。生成器生成虚拟数据,判别器判断数据真假,二者不断训练竞争以提高生成器生成真实数据的能力,广泛应用于图像、声音、文本等领域。 进化史:生成对抗网络(GAN)是深度学习领域的重要里程碑,诞生于 2014 年,可帮助神经网络用更少数据学习,生成更多合成图像,用于识别和创建更好的神经网络。GAN 由两个神经网络玩猫捉老鼠的游戏,一个创造假图像,一个判断真假。它有助于创建图像和现实世界的软件模拟。
2025-01-26
神经网络相关书籍推荐
以下是为您推荐的神经网络相关书籍: 1. 《这就是 ChatGPT》:作者被称为“在世的最聪明的人”,研究神经网络几十年,创作了 Mathematica、Wolfram 等备受推崇的软件。该书的导读序是美团技术学院院长刘江老师回顾了整个 AI 技术发展的历史,对于了解 AI、大语言模型计算路线的发展,起到提纲挈领的作用。 2. 关于神经网络信念网络方面的研究文献: Gail A.Carpenter and Stephen Grossberg.1988.The ART of Adaptive Pattern Recognition by a SelfOrganizing Neural Network.Computer 21,3,7788. H.Bourlard and Y.Kamp.1988.Autoassociation by multilayer perceptrons and singular value decomposition.Biol.Cybern.59,45,291294. P.Baldi and K.Hornik.1989.Neural networks and principal component analysis:learning from examples without local minima.Neural Netw.2,1,5358. Hinton,G.E.&Zemel,R.S.,Autoencoders,Minimum Description Length and Helmholtz Free Energy.,in Jack D.Cowan;Gerald Tesauro&Joshua Alspector,ed.,‘NIPS’,Morgan Kaufmann,,pp.310. Ackley,D.H.,Hinton,G.E.,&Sejnowski,T.J.,147169. LeCun,Y.,Chopra,S.,Hadsell,R.,Ranzato,M.,&Huang,F..A tutorial on energybased learning.Predicting structured data,1,0. Neal,R.M.,71113. Hinton,G.E.,Dayan,P.,Frey,B.J.,&Neal,R.M.,11581161. 此外,您还可以参考“三本神经科学书籍”,原文地址:https://web.okjike.com/originalPost/64f2b8ff0c915376a20c5d61 作者:
2025-01-14
卷积神经网络模型原理
卷积神经网络(CNN)通常由卷积层、池化层和全连接层叠加构成。在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核尺寸一般小于图像,并以一定的步长在图像上移动得到特征图。步长设置越大,特征图尺寸越小,但过大步长会损失部分图像特征。此外,池化层作用于产生的特征图上,能保证 CNN 模型在不同形式的图像中识别出相同物体,同时减少模型对图像的内存需求,其最大特点是为 CNN 模型引入了空间不变性。
2024-12-19
神经网络
神经网络是机器学习文献中的一类模型,受到生物神经网络的启发,是一种特定的算法,能应用于从输入到输出空间复杂映射的各类机器学习问题。 神经网络的发展历程如下: 早期,康奈尔航天实验室的 Mark I 感知机是第一台感知机的硬件,罗森布拉特用定制硬件的方法实现了感知机的想法,展示出它可对简单形状进行正确分类,自此机器学习问世。 神经网络本质上是多层感知机,在早期只有一层输出层。例如分辨手写数字时,输入是图像像素,有 10 个输出神经元,分别对应 10 个可能的数字,权值最高的和被视为正确输出。 神经网络的架构主要分为三类: 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 循环网络:在连接图中有定向循环,可按箭头回到起始点。其动态复杂,训练难度大,但更具生物真实性。 Geoffrey Hinton 对神经网络的发展做出了重要贡献。早在 80 年代初期,他和同事开展研究时,因电脑性能限制成果有限,且当时 AI 主流研究方向不同,处境艰难。但他们坚持下来,到 2004 年创立了 Neural Computation and Adaptive Perception 项目。随着时间推移和计算机能力发展,神经网络更加快速、灵活、高效和可扩展。 神经网络可用于解决分类和回归等问题,在多个输出值的函数或具有多个类别的分类任务中,多输出函数能用位于同一层的多个感知机来学习。
2024-11-01
deepseek深度思考的机制和ChatGPT的深度思考有什么不一样
DeepSeek R1 与 ChatGPT 的深度思考机制存在以下不同: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理模型。而 ChatGPT4 采用预训练+监督微调(SFT)。 2. 思考方式:在回答用户问题前,DeepSeek R1 会先进行“自问自答”式的推理思考,从用户初始问题出发,唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。而 ChatGPT 在此方面的表现有所不同。 3. 应用场景:DeepSeek R1 适用于高难度数学和编程问题,但计算成本更高。日常查询中,ChatGPT 更快、更适合简单咨询。 4. 优势特点:DeepSeek R1 更加透明,研究细节可复现,权重可下载。
2025-02-17
deepseek深度思考的机制
DeepSeek 的深度思考机制包括以下方面: 在案例方面,如为李世民创作独白时,会综合考虑各种元素,包括正当化理由、文学修辞、时间设定、历史语境、人物性格和处境等,经过细腻、严谨、自洽、深刻的思考后输出结果。 性能监测体系方面,包括需求理解准确率(复杂需求首轮响应匹配度)、知识迁移能力(跨领域案例应用的合理性)、思维深度指数(解决方案的因果链条长度)。新一代交互范式建议采用“人机共谋”模式、启动“思维可视化”指令、实施“苏格拉底式对话”,通过将深度思考能力与场景化需求结合,可解锁“认知增强”模式,在商业决策、创新设计、技术攻坚等场景实现思维能效的指数级提升,建议通过 3 轮迭代测试建立个性化交互模式。 在使用技巧方面,先了解其优势和特点,如它是推理型大模型,不需要用户提供详细步骤指令,能理解“人话”表达的需求,进行深度思考,还能模仿不同作家的文风写作。更多提示词技巧可查看 查看。
2025-02-17
我需要一款免费的AI软件 可以帮助我将网课视频内容进行深度总结,并形成听课笔记和思维导图
以下为您推荐两款可能满足您需求的免费 AI 软件: 1. 360AI 浏览器: 功能 1:看长视频,敲黑板划重点。可以帮您观看 B 站的字幕视频,短短几秒就能总结概要生成脑图,告诉您视频的重点和高潮剧情在哪。例如用 360AI 浏览器观看《2007 年 iPhone 发布会》,能生成内容摘要和思维导图,视频全程 20 个看点,点击其中任一看点,就能定位到进度条对应位置,直接观看感兴趣的重点内容。还可以对英文字幕进行翻译,帮助您理解内容。同时可通过 AI 助手对话,就视频内容进行追问和扩展提问。 功能 2:阅读国内外长论文和著作,自动翻译自动提炼,3 分钟 get 要点。目前支持 360k 长文本阅读。以《三体》为例,360AI 浏览器可以呈现《三体》两册完整的故事框架,还支持生成思维导图。 官网地址:ai.se.360.cn 2. Boardmix 博思 AI 白板:在 12 月数据国内总榜中,其属于思维导图分类。
2025-02-14
什么是深度学习
深度学习是源于新的方法和策略,旨在通过克服梯度消失问题来生成深层的非线性特征层次,以训练具有数十层非线性层次特征的体系结构。2010 年早期的研究表明,结合 GPUs 和激活函数能提供更好的梯度流,便于训练深层结构。深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。例如,长短时记忆循环神经网络允许网络收集过去几百个时间步的活动,从而做出准确的预测。自 2013 年以来,其使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。 深度学习是使用不同类型神经网络的表征学习,通过优化网络的超参数来获得对数据的更好表征。其突破性研究成果包括反向传播、更好的初始化网络参数等。 在相关技术名词中,深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。
2025-02-14
AI领域,传统机器学习,nlp,深度学习,大语言模型,rag,agent,请生成一张让普通人能看懂的AI领域概念图
以下是为您生成的 AI 领域概念图的相关解释: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失。 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因为有很多层所以叫深度),神经网络可用于多种学习方式。 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
DeepSeek深度推理+联网搜索 目前断档第一
DeepSeek 深度推理+联网搜索目前断档第一,具有以下特点和成就: 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。 统一 Transformer 架构,使用同一个模型就能完成图片理解和生成。 提供 1B 和 7B 两种规模,适配多元应用场景。 全面开源,支持商用,MIT 协议,部署使用便捷。 Benchmark 表现优异,能力更全面。 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 模型(1B):https://huggingface.co/deepseekai/JanusPro1B 官方解释:JanusPro 是一种新型的自回归框架,通过将视觉编码解耦为独立路径解决先前方法局限性,利用单一统一 Transformer 架构处理,缓解视觉编码器角色冲突,增强框架灵活性,超越之前统一模型,匹配或超过特定任务模型性能,成为下一代统一多模态模型有力候选者。 下载地址:https://github.com/deepseekai/Janus 官方频道: 微信公众号:DeepSeek 小红书:@DeepSeek(deepseek_ai) X DeepSeek R1 的成就: App Store 排名:冲到美国区 App Store 第一名,超越 OpenAI 的 ChatGPT。 口碑与技术实力:依靠技术实力和口碑赢得用户认可,没有市场部和市场投放。 技术特点: 性能与成本:效果比肩顶尖闭源模型 o1,价格仅为 o1 的 27 分之一。 开源与创新:开源让行业认知整体拉齐,得到全世界尊重和喜爱。 创新模型 R1 Zero:跳过监督微调训练,发现模型思考能力可自我涌现。 影响: 行业影响:引发美国科技界恐慌,Meta 内部对 DeepSeek V3 出色表现感到震惊。 市场影响:低成本和高性能使英伟达市场地位受挑战,股价短期内大跌超 3%,市值蒸发超 300 亿美元(27 日盘前又跌 14%)。 未来展望: 开源模型的进步将超越闭源模型,顶级模型推理价格急速下降,技术更加普惠平权。 AI 编程将随着模型能力提高显著提升效率并降低门槛,AI 创作能力不断提升,催生更多 AI 创作的可消费内容形式。
2025-02-08