直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

深度神经网络是什么

回答

深度神经网络(DNN)是一种机器学习模型,属于神经网络的一种。它是一种由多层神经元组成的模型,每一层神经元都可以接收和处理输入数据,并将处理后的数据传递给下一层神经元。DNN 在图像识别、语音识别、自然语言处理等领域取得了显著的成就。

DNN 通过反向传播算法进行训练。在训练过程中,输入数据通过网络的各个层进行传递和处理,最终产生输出结果。然后,通过比较输出结果与期望输出之间的差异,计算出误差信号。误差信号会反向传播到网络的每一层,用于调整神经元之间的连接权重,从而使网络的输出结果更加接近期望输出。这个过程会重复多次,直到网络的输出结果达到满意的精度为止。

DNN 具有很强的学习能力和泛化能力。它可以自动提取输入数据中的特征和模式,并将其表示为高层的抽象特征。这些抽象特征可以用于各种任务,如分类、回归、聚类等。此外,DNN 还具有很强的泛化能力,可以处理各种类型的数据,如图像、语音、文本等。

虽然 DNN 在许多领域都取得了显著的成就,但它也存在一些局限性,如需要大量的计算资源和数据、容易出现过拟合等。此外,DNN 的模型结构和参数需要经过精心设计和调整,以确保其在不同任务和数据集上的有效性和泛化能力。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

深度学习(1)核心概念

深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。虽然大多数其他处理顺序数据的算法只有最后10个时间步的内存,[长短时记忆](https://developer.nvidia.com/blog/parallelforall/deep-learning-nutshell-sequence-learning#LSTM)[循环神经网络](https://developer.nvidia.com/blog/parallelforall/deep-learning-nutshell-sequence-learning#recurrent-neural-networks)(由Sepp Hochreiter和J ü rgen-Schmidhuber在1997年发明)允许网络收集过去几百个时间步的活动,从而做出准确的预测。虽然LSTM网络在过去10年中大多被忽视,但自2013年以来,LSTM网络的使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。

深度学习(2)历史和训练

训练深度学习架构的过程类似于幼儿开始理解周围世界的过程。当幼儿遇到一个新的动物,比如一只猴子,他或她不会知道这是什么。但是一个成年人会用手指指向猴子并说:“那是一只猴子!”幼儿就能将他或她看到的图像与标签“猴子”联系起来。然而,在下一次遇到同样的动物时。单个图像可能不足以正确地标记该动物。例如,幼儿可能会把树懒误认为猴子,或者把猴子误认为树懒,或者干脆忘记某种动物的名称。为了可靠地记忆和标记,幼儿需要看到许多不同的猴子和类似的动物,并且每次都需要知道它是否真的是猴子——反馈对于学习至关重要。经过一段时间,如果幼儿遇到足够多的动物并配对它们的名称,幼儿将学会区分不同的动物。深度学习过程类似。我们向神经网络提供图像或其他数据,例如一只猴子的图像。深度神经网络预测某种结果,例如图像中物体的标签(“猴子”)。然后我们向网络提供反馈。如果网络预测图像显示有30%的概率是猴子,70%的概率是树懒,那么所有有利于树懒类的输出都会出错!通过误差反向传播算法,我们使用该误差来调整神经网络的参数。

深度学习(1)核心概念

人工神经网络(1)获取一些输入数据,(2)通过计算输入的加权和来转换这些输入数据,(3)将一个非线性函数应用于此转换以计算中间状态。上面的三个步骤构成了所谓的[层](https://developer.nvidia.com/zh-cn/blog/deep-learning-nutshell-core-concepts/#%E5%B1%82),而转换函数通常被称为[单元](https://developer.nvidia.com/zh-cn/blog/deep-learning-nutshell-core-concepts/#%E5%8D%95%E5%85%83)。通常称为特征的中间状态被用作另一层的输入。通过重复这些步骤,人工神经网络学习多层非线性特征,然后将这些非线性特征组合到最后一层来创建预测。神经网络通过产生一个误差信号来学习,该信号测量网络的预测值与期望值之间的差异,然后使用该误差信号来改变权重(或参数),从而使预测更加准确。

其他人在问
神经网络
神经网络是机器学习文献中的一类模型,受到生物神经网络的启发,是一种特定的算法,能应用于从输入到输出空间复杂映射的各类机器学习问题。 神经网络的发展历程如下: 早期,康奈尔航天实验室的 Mark I 感知机是第一台感知机的硬件,罗森布拉特用定制硬件的方法实现了感知机的想法,展示出它可对简单形状进行正确分类,自此机器学习问世。 神经网络本质上是多层感知机,在早期只有一层输出层。例如分辨手写数字时,输入是图像像素,有 10 个输出神经元,分别对应 10 个可能的数字,权值最高的和被视为正确输出。 神经网络的架构主要分为三类: 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 循环网络:在连接图中有定向循环,可按箭头回到起始点。其动态复杂,训练难度大,但更具生物真实性。 Geoffrey Hinton 对神经网络的发展做出了重要贡献。早在 80 年代初期,他和同事开展研究时,因电脑性能限制成果有限,且当时 AI 主流研究方向不同,处境艰难。但他们坚持下来,到 2004 年创立了 Neural Computation and Adaptive Perception 项目。随着时间推移和计算机能力发展,神经网络更加快速、灵活、高效和可扩展。 神经网络可用于解决分类和回归等问题,在多个输出值的函数或具有多个类别的分类任务中,多输出函数能用位于同一层的多个感知机来学习。
2024-11-01
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
神经网络和深度学习简史
神经网络和深度学习有着丰富的发展历史: 1. 1958 年感知机神经网络诞生。 2. 70 年代经历了人工智能寒冬。 3. 1986 年 BP 算法让神经网络再度流行。 4. 尽管取得了一些成功,但在人工智能寒冬期间,用于神经网络研究的资金很少,人工智能一词近乎成为伪科学的代名词。 5. 1997 年,Hochreiter 和 Schmidhuber 为递归神经网络开发了长短期记忆(LSTM),但在当时被忽视。 6. 随着计算机变得更快和图形处理单元(GPU)的引入,神经网络逐渐与支持向量机相竞争。 7. 训练大型、深层网络存在梯度消失问题,解决方法包括逐层预训练,如 Schmidhuber 于 1992 年为递归神经网络开发的预训练方法,以及 Hinton 和 Salakhutdinov 于 2006 年为前馈网络开发的预训练方法。1997 年提出的长短期记忆(LSTM)也是解决递归神经网络中梯度消失问题的方案之一。
2024-10-23
神经网络的简单理解
神经网络是一种模仿生物神经网络结构和功能的数学模型或计算模型,用于分析图像、视频、音频和文本等复杂数据类型。 对于不同类型的数据有专门优化的神经网络,如分析图像时常用卷积神经网络,其模仿人脑处理视觉信息的方式。 在 2017 年推出 Transformer 之前,理解文本常用循环神经网络。而 Transformer 完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性,在处理每个词时会注意输入序列里所有其他的词,并给予不同的注意力权重以捕获依赖关系和相关性,且具有自注意力机制和位置编码(因语言顺序很重要)。 神经网络由大量人工神经元联结进行计算,大多数情况下能在外界信息基础上改变内部结构,是一种自适应系统,具备学习功能。它是一种非线性统计性数据建模工具,通常通过基于数学统计学类型的学习方法得以优化,也是数学统计学方法的实际应用,能通过统计学方法让人 工神经网络具有类似人的简单决定和判断能力,这种方法比正式的逻辑学推理演算更具优势。 神经网络可用于监督学习、无监督学习、强化学习。
2024-09-06
卷积神经网络
卷积神经网络,也称为卷积网络,使用卷积层来过滤输入以获取有用信息。卷积层具有可学习的参数,能自动调整滤波器以提取对应任务的最有用特征。例如在一般目标识别中侧重对象形状信息,鸟类识别中更倾向于鸟的颜色信息,它会自动适配以找到最佳特征。 通常,多个卷积层依次作用,在每一层后对图像进行过滤,获取越来越多的抽象信息,形成层次特征。 卷积网络还常使用池层,以实现有限的平移和旋转不变性,即便对象出现在异常位置也能检测到,同时能减少内存消耗,从而支持使用更多卷积层。 近期的卷积网络采用初始模块,利用 1×1 卷积核进一步降低内存消耗并加快计算速度,提高训练效率。 例如在自动驾驶汽车场景中,可将驾驶员当前视野的图像输入到卷积神经网络,训练其预测下一个可能行动的奖励。相似状态的图像相似,行动也相似,网络能针对不同情况进行微调。 相关附加材料: 。 图 5 展示了一个交通标志的图像被 4 个 5×5 的卷积核过滤,生成 4 个特征图,再通过最大池化进行二次采样。下一层将 10 个 5×5 的卷积核应用于这些子采样图像,并再次将特征映射集中在一起。最后一层是完全连接的层,用于组合所有生成的特征并用于分类器(本质上是逻辑回归)。图像由提供。
2024-07-20
帮我写一个R语言的神经网络分类问题代码
好的,下面是一个使用R语言进行神经网络分类问题的示例代码。我们将使用著名的鸢尾花数据集(Iris dataset)进行演示。这个数据集包含了150条记录,每条记录有4个特征和一个目标变量(花的种类)。 安装并加载所需的包 首先,我们需要安装并加载所需的包,如`neuralnet`和`nnet`。 ```r install.packages install.packages library library ``` 加载和准备数据 接下来,我们将加载Iris数据集,并将数据标准化,以便神经网络能够更好地处理。 ```r 加载内置的Iris数据集 data 查看数据集的结构 str 标准化函数 normalize < function { return } 对特征进行标准化 iris_norm < as.data.frame iris_norm$Species < iris$Species 将目标变量转换为因子类型 iris_norm$Species < as.factor 将数据集分为训练集和测试集 set.seed index < sample train_data < iris_norm test_data < iris_norm ``` 创建和训练神经网络模型 我们将使用`neuralnet`包创建一个简单的神经网络模型,并进行训练。 ```r 创建公式 formula < as.formula 训练神经网络模型 nn_model < neuralnet 查看模型结果 print ``` 可视化神经网络 我们可以使用内置的绘图功能来可视化神经网络。 ```r 绘制神经网络 plot ``` 进行预测并评估模型 使用测试数据进行预测,并评估模型的性能。 ```r 进行预测 nn_predictions < compute 将预测结果转换为因子类型 nn_predicted < as.factor(ifelse(nn_predictions$net.result > 0.5, "versicolor", ifelse 查看混淆矩阵 confusion_matrix < table print 计算准确率 accuracy < sum print ``` 完整代码 下面是完整的代码段,整合了上述各个步骤: ```r install.packages install.packages library library 加载内置的Iris数据集 data 查看数据集的结构 str 标准化函数 normalize < function { return } 对特征进行标准化 iris_norm < as.data.frame iris_norm$Species < iris$Species 将目标变量转换为因子类型 iris_norm$Species < as.factor 将数据集分为训练集和测试集 set.seed index < sample train_data < iris_norm test_data < iris_norm 创建公式 formula < as.formula 训练神经网络模型 nn_model < neuralnet 查看模型结果 print 绘制神经网络 plot 进行预测 nn_predictions < compute 将预测结果转换为因子类型 nn_predicted < as.factor(ifelse(nn_predictions$net.result > 0.5, "versicolor", ifelse 查看混淆矩阵 confusion_matrix < table print 计算准确率 accuracy < sum print ``` 以上代码演示了如何使用R语言中的`neuralnet`包创建和训练一个简单的神经网络模型,并使用该模型对鸢尾花数据集进行分类预测。通过标准化数据、分割数据集、训练模型、进行预测和评估模型,你可以全面了解如何在R中使用神经网络进行分类任务。
2024-06-03
能不能发一个深度整理会议纪要的提示词
以下是一些深度整理会议纪要的提示词示例: 作为 CEO 助理秘书,专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。 角色:CEO 助理秘书 作者:李继刚 版本:0.1 LLM:GPT4 插件:无 描述:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。 注意事项:请务必准确和全面地记录会议内容,使每个参会人员都能明确理解会议的决定和行动计划。在整理会议纪要过程中,需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。 链接地址: 将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 注意:这个是 API 里的 system prompt 。您的任务是审查提供的会议记录,并创建一个简明扼要的总结,捕捉重要信息,重点关注会议期间分配给特定个人或部门的关键要点和行动项目。使用清晰专业的语言,并使用适当的格式(如标题、小标题和项目符号)以逻辑的方式组织总结。确保总结易于理解,并提供会议内容的全面但简洁的概述,特别注重清楚地指出每个行动项目的负责人。
2024-11-15
什么是深度学习
深度学习是源于新方法和策略的概念,旨在克服梯度消失问题以生成深层非线性特征层次,从而能够训练具有数十层非线性层次特征的体系结构。2010 年早期的研究表明,结合 GPUs 和激活函数能提供更好的梯度流,足以训练深层结构。深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。长短时记忆循环神经网络允许网络收集过去几百个时间步的活动以做出准确预测,自 2013 年以来其使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。 Geoffrey Hinton 从高中时期就对大脑工作原理的相关理论着迷,并在求学期间继续对神经网络进行探索,经过三十多年的努力,将深度学习从边缘课题发展成为 Google 等网络巨头仰赖的核心技术。如今,包括 Hinton 在内的一些学者在互联网上大有名气,他们为各大公司使用深度学习技术改进相关工具做出了贡献。 此外,关于深度学习背后的深层数学,推荐 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》一书,该书可在 https://www.deeplearningbook.org/ 上获取。
2024-11-01
多模态AI是什么,和深度学习的关系
多模态 AI 是指能够处理和生成多种数据类型(如文本、图像、音频、视频等)交互的人工智能技术,从而能够提供更接近人类感知的场景。 多模态 AI 与深度学习有着密切的关系。在深度学习时期,深度神经网络等技术的发展为多模态 AI 提供了基础。当前,多模态 AI 是 AI 领域的前沿技术之一。 多模态 AI 具有以下特点和应用: 1. 能够无缝地处理和生成多种音频或视觉格式的内容,将交互扩展到超越语言的领域。 2. 像 GPT4、Character.AI 和 Meta 的 ImageBind 等模型已经能够处理和生成图像、音频等模态,但能力还比较基础,不过进展迅速。 3. 多模态模型可以为消费者提供更加引人入胜、连贯和全面的体验,使用户能够超越聊天界面进行互动。 4. 多模态与工具使用密切相关,能够使用设计给人类使用但没有自定义集成的工具。 5. 从长远来看,多模态(特别是与计算机视觉的集成)可以通过机器人、自动驾驶车辆等应用程序,将大语言模型扩展到物理现实中。
2024-10-28
深度研究学习ai 好呢 还是学习怎么使用ai 好呢
对于您提出的是深度研究学习 AI 好还是学习如何使用 AI 好的问题,以下是一些建议: 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下作为基础的内容: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-10-17
ai生成类产品的深度学习路径
以下是关于 AI 生成类产品的深度学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,您还可以通过以下课程深入学习: 谷歌生成式 AI 课程:此学习路径将引导您完成有关生成式 AI 产品和技术的精选内容集合,从大型语言模型的基础知识,到如何在 Google Cloud 上创建和部署生成式 AI 解决方案。链接:https://www.cloudskillsboost.google/journeys/118 。 【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐): 视频一主要回答了什么是 AI 大模型,原理是什么。 概念:生成式 AI 生成的内容,叫做 AIGC 。 概念与关系:相关技术名词: AI——人工智能 。 机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习 。 监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归 。 无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组 。 强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗 。 深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习 。 生成式 AI——可以生成文本、图片、音频、视频等内容形式 。 LLM——大语言模型。对于生成式 AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类 。 技术里程碑——2017 年 6 月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT 含义:Transformer 是关键。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-10-10