Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AIGC市场规模

Answer

AIGC 市场规模正在迅速增长,预计未来几年将保持高速发展。根据 IDC 数据,2022 年中国智能决策市场规模达到 10.55 亿美元,比上一年增长了 20.5%。随着企业智能决策的接受程度逐渐提升,预计未来 5 年中国智能决策解决方案市场复合增长率将达到 50%以上。到 2028 年,由于效率提升,中国的开发人员投入到创新工作的时间将大幅提升,由原来仅占开发时间的 20%提高到 50%。

根据灼识咨询的报告,2022 年,全球 AI 市场的规模达 1997 亿美元,复合年增长率为 29.4%,预计 2027 年将达到 5624 亿美元,2022 年至 2027 年的复合年增长率为 23.0%。尽管生成式 AI 技术栈的兴起伴随着极高的市场欢迎度以及真实的市场收益,但市场中的价值将在哪里积累尚未明确。基础设施提供商可能是迄今为止市场上的最大赢家,他们赚取了流经技术栈的大部分资金;应用类公司的营收增长得非常快,但在留存率、产品差异化和毛利率上却容易遇到瓶颈;模型提供商虽然对这个市场而言不可或缺,但绝大多数都还没有实现大规模的商业化。

Content generated by AI large model, please carefully verify (powered by aily)

References

2024钉钉AI助理白皮书-人人都是创造者-钉钉&财商学院-38页.pdf

AI应用逐步分散且深入地融合,体现在企业运营与业务流程的各个方面。在AIGC最擅长的内容生成、数据处理、实时分析、客户服务等领域,支持客户快速完成重复性和时间密集型的任务。IDC数据显示:2022年中国智能决策市场的规模达到10.55亿美元,比上一年增长了20.5%;随着企业智能决策的接受程度逐渐提升,预计未来5年中国智能决策解决方案市场复合增长率将达到50%以上。AIGC通过自动化、数据驱动的决策支持、创新加速等方式,可实现对业务流程的持续提质增效;同时能够发现改进空间,优化工作流程,减少人工错误,使多年不变的传统业务流程“一日三新”。此外,其将使工作人员投入更高价值的创新活动,从而释放出更强大的核心生产力。IDC预测,到2028年,由于效率提升,中国的开发人员投入到创新工作的时间将大幅提升,由原来仅占开发时间的20%提高到50%。5/业务流程迈向“无感智能”2022年中国智能决策市场规模达到10.55亿美元

七大行业的商业化应用

有行业人士向钛媒体App直言,目前GPT已经实现了真正的智能化,下一步的成功点就是在大模型的产品化、商业化、工程化和应用场景化当中。根据灼识咨询的报告,2022年,全球AI市场的规模达1997亿美元,复合年增长率为29.4%,预计2027年将达到5624亿美元,2022年至2027年的复合年增长率为23.0%。“今天AI技术能力和5个月之前有天翻地覆的差别。我们把一个能力更强的产品放在系统平台上,至于销售和服务,从商业角度来说,今天才刚刚开始,从接触新技术到最终(采购)是需要时间的。”云知声创始人、CEO黄伟对钛媒体App坦言,大模型才刚刚发布,尚未有规模化商业案例。商业案例极少谈及,是这轮国内大模型热潮至今的一个重要特点。即便是AI行业巨头商汤,最近仅最新披露10+大模型客户这一数字,钛媒体App了解到其中大部分并非是垂直头部企业。5月30日,生成式AI(AIGC)公司出门问问向港交所提交招股书。

生成式AI平台,谁主沉浮?

我们已开始见证生成式AI(AIGC)技术栈的兴起。数以百计的初创公司正在涌入市场,开发基础模型,构建人工智能原生的应用程序,并建立基础设施和开发工具。不像许多热门的技术趋势在市场跟上其步伐前就被过度炒作了,生成式AI的热潮却伴随着极高的市场欢迎度以及真实的市场收益。如Stable Diffusion和ChatGPT的模型们正在创造用户增长的历史记录,一些应用在发布不到一年的时间里就实现了1亿美元的年营收。对照表明,AI模型在某些任务上的表现优于人类好几个数量级。已有足够的早期数据表明范式转移正在发生。而我们尚未明确的关键问题是:这个市场中的价值将在哪里积累?过去一年里,我们会见了几十位生成式AI的从业者,他们有些是初创公司的创始人,有些在大公司中负责与生成式AI相关的工作。据我们观察:基础设施提供商可能是迄今为止市场上的最大赢家,他们赚取了流经技术栈的大部分资金;应用类公司的营收增长得非常快,但在留存率、产品差异化和毛利率上却容易遇到瓶颈;模型提供商虽然对这个市场而言不可或缺,但绝大多数都还没有实现大规模的商业化。

Others are asking
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
什么是aigc
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说,AIGC 包括以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 作为一种强大的技术,能赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
AGI和AIGC是啥关系,分别是什么的缩写
AGI 指通用人工智能,是一种能够像人类一样执行各种智能任务的人工智能。 AIGC 是人工智能生成内容的缩写,在公众传播层面,最初指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,包括文字生成(如使用 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)都是内容生成的不同方式。UGC 由用户通过社交媒体等平台发布自己的内容,内容丰富多样,反映用户真实想法和创意,适用于互动性强的平台。PGC 由专业团队或机构根据特定标准和流程创作高质量内容,适用于需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。
2025-02-13
想在手机上通过宠物照片给宠物建模,是宠物可以有一些动态性,需要怎么做?利用 AIGC 能快速的实现吗?
在手机上通过宠物照片给宠物建模并实现一定的动态性,可以考虑以下几种方式: 1. 利用 3D 引擎:目前有一些公司提供通过手机摄像头快速创建虚拟人身体的服务,例如 NextHuman。不过,3D 引擎在拟真程度高的同时,定制化成本也较高。 2. 借助 AIGC:虽然 AIGC 省去了建模流程,能直接生成数字人的展示图片,但可能存在数字人难以保持 ID 一致性、帧与帧连贯性不佳等问题。典型的相关项目有 wav2lip等。但需要注意的是,如果对模型真实度要求较高,AIGC 方式可能不太理想,因为算法发展很快,未来可能会有更好的连贯度生成方式。 目前利用 AIGC 来快速实现可能存在一些挑战,但随着技术的发展,未来有可能更便捷高效地达成您的需求。
2025-02-13
AIGC工程师
以下是为您整理的 AIGC 相关招聘信息: 猿印教育 AIGC 图像生成算法工程师/专家(北京五道口附近) 简历请发送至:stephen.wang@yyinedu.com 岗位职责: 面向 AIGC 领域,结合应用场景,开发针对性图像生成解决方案。 负责模型的部署和推理性能优化,确保模型在实际应用中的高效性和稳定性。 持续关注最新的技术发展和业界趋势,积极推动团队技术水平的提升,并将新技术应用到实际项目中。 任职要求: 计算机相关专业本科及以上学历,具备扎实的计算机基础知识。 熟练掌握 Python 语言,熟悉至少一种主流深度学习框架(TensorFlow/Pytorch 等)。 对深度学习和计算机视觉领域的基础理论和方法有深入理解,熟悉 DDPM,DDIM,Stable Diffusion 原理,了解 Dreambooth,ControlNet 等可控生成技术。 具有强烈的技术兴趣和钻研精神,具备良好的学习能力、沟通能力和团队合作精神。 数字银行 AIGC 产品经理(深圳) 请直接飞书联系@Eason 任职要求: 相信 AIGC:有过第一次用 chatgpt 时的兴奋,记得去年那个 AI 疯狂的 3 月份,熬夜看过 gpt4、copilot 的发布会,想过各种办法搞定 plus 账号,现在在翘首以盼 gpt5。 喜欢用:用过各种 AIGC 应用,如 GPT4,newbing,Kimi,Perplexity,Suno 等等。看到新的爆款产品,就会第一时间玩一玩。 能上手:可以简单的上手,不限于调用 api 做个小 demo,会写复杂的提示词,做一个简单的 RAG 应用,文生图、视频,微调模型等。 岗位职责: 构建赋能海量用户的大模型工程化产品,帮助某数字银行塑造技术领先性。 探索和设计工程化产品,来支持更快的 AI 原生应用构建(类似 Langchain,Llamaindex 等等,或者由您亲自来颠覆它们,做一个 Langxx,Llamaxx)。 在重点业务场景中深入探索大模型的应用落地,用最新的理念,做出真正能在海量金融业务场景中跑起来的应用(把类似 MetaGPT,AutoGen,Advanced RAG 真正落地,或者创造自己的 multi agent 应用)。 此外,3 月 2 日接龙中涉及 AIGC 相关人员的工作内容包括: 雯琋(Vinci)AIGC 不会编程但会鼓励编程。 AI 译文打杂文案。 AI 译然,AI 视频相关的都会一点,就是完全不会做网站。 Stanico,产品、运营、prompt。
2025-02-10
2024 年中国人工智能+产业规模
目前关于 2024 年中国人工智能+产业规模的相关信息如下: 国家统计局数据显示,2022 年全国研究与试验发展(R&D)经费投入总量首次超过 3 万亿元,达到 30782.9 亿元,比上年增加 2826.6 亿元,增长 10.1%,表明国家对科技创新和算力设施的重视和持续投入。我国算力设施产业链规模巨大,已达到万亿元级别。2022 年我国算力核心产业规模达到 1.8 万亿元,预计到 2023 年,中国算力产业规模将超过 3 万亿元。 在企业数量方面,截至 2024 年 3 月,全国算力存量企业共有 75,343 家。其中,广东省、北京市和江苏省的企业数量位居前三,分别有 10,315 家、7,167 家和 6,728 家。此外,人工智能企业数量也超过 4400 家。 德勤的报告指出,中国 AI 产业快速发展,得益于政策支持、经济增长和技术创新。成长型 AI 企业作为产业创新的重要力量,数量占比高达九成,活跃于各行业领域。预计到 2025 年,中国人工智能核心产业规模将突破 5000 亿元。 在影视行业,若假设 2027 年 AI 影视市场可以获得国内总市场份额的 10%,则国内 AI 影视总市场规模预计将达约 380 亿元以上;若假设 2030 年可以获得 25%以上市场份额,则国内 AI 影视总市场规模将达千亿级别。 营销行业或成生成式 AI 最早实现商业化落地的行业之一,未来,AI 技术还将持续推动营销行业的深刻变革。
2025-02-20
市面上已有很多免费的AI工具,为什么企业还要花钱大规模落地部署?
企业花钱大规模落地部署 AI 而非仅使用免费的 AI 工具,主要有以下原因: 1. 资源分配和人才需求:预算呈现急剧增长,实施和扩展生成式人工智能需要高度专业化的技术人才,目前许多企业内部缺乏此类人才。2023 年实施费用占据了 AI 支出的较大部分,开发成本也占据大部分预算。 2. 服务与定制:为帮助企业启动和运行模型,基础模型提供商提供专业服务,这也是企业选择特定模型提供商的关键原因之一。 3. 应用场景:企业重点放在自主构建应用程序上,目前市场上缺乏经过严格测试、能在特定领域取得决定性成功的企业级人工智能应用程序。基础模型的出现使企业更易通过 API 构建自己的 AI 应用程序,企业正在构建如客户支持和内部聊天机器人等常见应用,还在尝试更新颖的应用。虽然目前不清楚更多面向企业的 AI 应用上市时情况是否会变化,但 GenAI 已成为一种“战略工具”,允许企业将某些功能内部化。那些能在“LLM+UI”公式之外创新,并重新思考企业基本工作流程或帮助企业利用专有数据的应用,将在市场上表现出色。
2024-12-25
请问AI网站设计的市场规模有多大
以下是关于 AI 网站设计相关的市场规模信息: 近一年赛道单月访问量增加了 448 万,年增长率为 19%。 123RF 的访问量减少了 196 万,而 Microsoft Designer for Web 的访问量增长了 519 万,占整个赛道变化的 116%。 Logo 生成方面,天花板潜力为小众市场,数亿美金;总体趋势下降,月平均增速为10 万 PV/月;对标公司为 Adobe。 在竞争方面,Top1 占比 51%,Top3 占比 85%,马太效应为中,网络效应为弱,大厂入局情况为否,大厂占比低,技术门槛低。 此外,如果您不确定如何为 AI 网站设计 logo,可以使用在线的 AI logo 生成器,如 Logomaster.ai、Free Logo Design、Logo AI、Looka logo maker(原名 Logojoy)、Brandmark、DesignEvo、Tailor Brands、Designhill 等。
2024-11-07
如何设计市场洞察、战略研究、战略规划的提示词
以下是关于设计市场洞察、战略研究、战略规划提示词的相关内容: 在人工智能迅速发展的当下,提示词工程成为企业领导者需掌握的关键技能。提示词工程是设计和优化输入到 AI 系统指令的艺术与科学。但简单提示词存在局限性,无法满足复杂商业需求,因此出现了如思维链、思维树、思维图等高级技巧,能引导 AI 进行更深入分析、探索多种可能性及处理复杂推理任务。 在设计与市场洞察、战略研究、战略规划相关的提示词时,需考虑以下关键要素和框架: 对于市场洞察: 1. 目标市场:定义产品的目标用户群体和市场定位。 2. 用户需求:列出用户的核心需求和痛点。 3. 竞争分析:分析竞争对手的优势和劣势,确定差异化策略。 对于战略研究: 1. 产品定位:明确产品在市场中的独特卖点。 2. 功能性需求:描述产品必须实现的具体功能。 3. 非功能性需求:包括性能、安全性、可用性等要求。 对于战略规划: 1. 市场趋势:考虑当前市场趋势和未来发展。 2. 商业目标:与业务目标和战略保持一致。 3. 资源分配:规划实现产品所需的资源。 4. 风险评估:识别可能的风险和应对策略。 此外,以 Claude 的 5 层 Prompt 体系为例,可将任务细分,为每个子任务设计专门的 Prompt 并整合结果。同时,Prompt 工程是快速发展的领域,需不断学习和实验,包括关注行业动态、参与社区讨论、建立个人实验日志、跨领域学习以及建立评估体系,如定义成功标准、实施 A/B 测试、收集反馈等,以不断优化 Prompt 设计技巧。
2025-02-14
AI如何重塑考研机构市场部的工作模式?
AI 可以通过多种方式重塑考研机构市场部的工作模式: 1. 人机协同模式: 生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)三种产品设计模式。在这些模式下,人与 AI 的协作流程有所差异。例如,Embedding 模式中人类完成大多数工作,Copilot 模式中人类和 AI 协同工作,Agent 模式中 AI 完成大多数工作。 可以使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。 2. 工作流重塑: 从原子能力层重新思考,抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,围绕“输入”“处理”“输出”“反馈”构建最底层的信息处理逻辑。 重塑获取信息的方式,搜索引擎和基于大模型的聊天机器人在解决问题方面目标一致,但要注意平衡使用。 3. 创新与效率平衡: AI 能帮助提升工作效率,如自动化处理日常任务、生成报告或做出预测,但过度依赖可能导致员工失去主动创新空间。 市场部可能会越来越依赖 AI 生成广告创意,而忽视团队讨论和头脑风暴。企业需要确保员工有足够的空间和时间培养和发挥创造力,例如设计更多跨部门合作项目。 从企业 AI 内训经验来看,使用 AI 前最好有自己的想法和方向,早期将其作为顾问和头脑风暴的助手,后期进行复盘。 4. 案例启示: 例如在一家科技公司中,AI 系统接管许多日常决策工作,起初减轻了工作负担,但员工逐渐依赖 AI 生成的“最佳方案”,导致自主创新能力削弱,失去探索新市场和开发创新产品的动力。这揭示了过度依赖 AI 的潜在风险,AI 缺乏情境理解与直觉性创造,长期依赖可能阻碍企业创新发展。
2025-02-10
你是一个专业的AI工具测评师,用过市场上的所有AI工具,请制作一个PPT,介绍一个如何使用AI进行办公提效,并根据你的经验,对使用过的AI工具进行分类对比和测评,对比结果以表格形式呈现,需要包括是否收费,国内是否可用,主要面向对象,优点和缺点,突出功能等
以下是为您制作的关于如何使用 AI 进行办公提效以及 AI 工具分类对比和测评的 PPT 内容: 幻灯片 1:封面 标题:AI 助力办公提效及工具测评 幻灯片 2:目录 AI 在办公中的应用场景 常用 AI 办公工具分类对比 各工具的详细测评 幻灯片 3:AI 在办公中的应用场景 辅助文档处理 自动生成会议记录 办公文件分类管理 语言学习纠错 幻灯片 4:常用 AI 办公工具分类对比(表格形式) |工具名称|是否收费|国内是否可用|主要面向对象|优点|缺点|突出功能| |||||||| |平安好医生 APP|部分功能收费|是|医疗工作者和患者|辅助医生诊断,提高准确性|可能存在误判|辅助疾病诊断| |腾讯会议|部分高级功能收费|是|企业和个人|自动生成会议记录,方便回顾|语音识别准确性有待提高|会议记录生成| |字体管家 APP|部分字体收费|是|设计和文字工作者|生成多种书法字体|字体版权问题|书法字体生成| |醒图 APP|部分功能收费|是|摄影爱好者|提供构图建议,提升照片质量|对复杂场景的建议有限|摄影构图建议| |游戏内商城推荐功能|部分游戏收费|是|游戏玩家|根据需求推荐道具|推荐的精准度因人而异|游戏道具推荐| |彩云天气分时预报|部分功能收费|是|出行人群|提供精准分时天气预报|天气变化的不确定性|分时天气预报| |医渡云病历分析系统|收费|是|医疗机构|分析病历辅助诊断|数据安全性|病历分析| |讯飞听见会议总结功能|部分功能收费|是|企业和个人|自动总结会议发言内容|对复杂语言理解有限|会议发言总结| |书法临摹软件|部分功能收费|是|书法爱好者|提供临摹指导和评价|对不同书法风格的适应性|临摹辅助| |下厨房口味调整功能|部分功能收费|是|烹饪爱好者|根据反馈调整菜谱口味|口味调整的局限性|菜谱口味调整| |英语流利说纠错功能|部分课程收费|是|语言学习者|帮助纠正错误|对口语表达的纠错有限|语言学习纠错| |豆瓣电影剧情分析工具|免费|是|电影爱好者|提供剧情深度解读|分析的主观性|剧情分析| |腾讯文档分类功能|部分高级功能收费|是|企业和个人|自动分类办公文件|分类准确性依赖数据|文件分类| |美丽修行定制方案功能|部分功能收费|是|美容护肤人群|定制个性化护肤方案|方案的普适性|护肤方案定制| 幻灯片 5:总结 强调 AI 在办公领域的重要性和潜力 鼓励根据实际需求选择合适的 AI 工具提升办公效率 以上 PPT 内容仅供参考,您可以根据具体需求进行修改和完善。
2025-02-10
AI如何和市场营销商业推广相结合
AI 与市场营销商业推广的结合方式多种多样,主要体现在以下几个方面: 1. 电子商务领域:企业大多完全在线运营,容易将 AI 工具整合到工作流程中。例如,像 Flair、Booth 和 Bloom 等工具帮助品牌创建引人注目的产品照片,预期用途将极度个性化,如展示沙发在用户公寓中的照片。 2. 内容创作方面:品牌创作的许多内容类型可通过 AI 提升,如 AdCreative 和 Pencil 可制作用于电子邮件或社交媒体的营销材料,Frase 或 Writesonic 可以编写经过 SEO 优化的产品描述,未来用户有望仅通过描述期望的审美并点击按钮,创建完整的电商商店及市场营销材料。 3. 大淘宝设计部的实践: 品牌超级符号映射:根据品牌符号的模型训练和结构控制,用户输入丰富关键词可快速完成准确的超级符号主视觉。 品牌 IP 形象 AI 生成:训练特定的天猫/淘宝/营销 IP 公仔模型,根据不同需求稳定输出定制化 IP 形象,形成素材库。 传播与投放:如双 11 超级发布、媒介投放开屏海报等案例。 大促营销:通过 AI 生成图像或素材,结合平面合成及修正,确保符合品牌形象,精准表达营销活动主题,快速生成多个设计变体并迭代优化。 4. 汽车领域: AI 辅助“市场营销”和“新媒体运营”,包括汽车与热点营销结合、用户画像预测、营销内容创作、内容审核、用户评论回复,以及一键生图等。 AI 提升“销售体验”,引导“留资或下单”,如智能试驾、智能导购、互动游戏智能导购等。 AI 提升“销售能力”,基于汽车销售场景和环节自动出题,评估和给出建议,还可采用对话或情景模拟形式。
2025-02-10
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
本人一般用ai语言模型来搜索所需的市场资料,现在想自学更多ai工具以便之后用ai工具发展副业,可以从哪里开始学习与实践
以下是关于您自学更多 AI 工具以发展副业的学习与实践建议: 1. 基础理解:了解大型语言模型的工作原理和局限性,例如它们在数学计算方面主要基于语言理解和生成,而非专门的数学计算设计,可能会在处理简单数学问题时出错。 2. 学习路径: 规划:明确学习目标和步骤。 记忆:记住关键知识和操作方法。 3. 实践操作: 掌握 GPT 的使用:了解 GPT 如 GPT4 的功能和特点,包括其工具选择和行动(Action)机制。 尝试工具:如 Webpilot,它能让 GPT 支持更实时的联网功能,获取网络资源。具体操作是在新建的 GPT 里勾掉 Web Browsing,然后点击添加 Actions(Add actions),再点击 import from URL 并填入相关网址。 4. 就业与应用: 了解人工智能领域的高薪工作,如数据科学家、机器学习工程师等,学习相关技能以增加就业机会。 关注 AI 技术在金融、医疗、制造业等行业的应用,掌握相关技能以拓展副业发展的可能性。 但需要注意的是,学习 AI 有可能赚钱,但不保证每个人都能成功,是否能赚钱还取决于个人的学习能力、实际应用能力、对市场和商业的理解等因素,需要持续学习和实践。
2025-02-03