直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

人工智能与新质生产力的关系

回答

人工智能(AI)在当今社会发挥着越来越重要的作用,它被认为是打造新质生产力的驱动引擎。在政府工作报告中,“人工智能+”被专门提及,其实质就是“大模型+”。这是因为人工智能落地的技术核心是大模型。原来的“互联网+”政策旨在推动产业互联网的发展,通过互联网技术帮助传统产业实现转型升级。如今,“人工智能+”的国家战略是利用人工智能技术,特别是大模型,帮助中国的制造业和现代工业进行转型升级。因此,企业必须积极拥抱 AI,努力成为新质生产力浪潮中的一员。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

周鸿祎免费课AI系列第二讲-企业如何拥抱AI

两会专门把“人工智能+”写入了政府工作报告,“人工智能+”其实就是“大模型+”,因为人工智能落地的技术就是大模型。原来有个政策叫“互联网+”,实际上就是做产业互联网,所谓产业互联网就是用互联网的技术帮助传统产业转型升级。那今天“人工智能+”,国家的战略是什么呢?就是用人工智能帮助中国的传统产业,特别是制造业、现代工业转型升级,所以国家也提出来打造新质生产力。现在在座的各位都应该往这上面靠,都应该想办法变成新质生产力整个大风向中的一环。所以国家也认为人工智能是打造新质生产力的驱动引擎,所以企业必须拥抱AI。把大模型拉下神坛,才能掀起工业革命

周鸿祎免费课AI系列课程第二讲-企业如何拥抱AI

两会专门把“人工智能+”写入了政府工作报告,“人工智能+”其实就是“大模型+”,因为人工智能落地的技术就是大模型。原来有个政策叫“互联网+”,实际上就是做产业互联网,所谓产业互联网就是用互联网的技术帮助传统产业转型升级。那今天“人工智能+”,国家的战略是什么呢?就是用人工智能帮助中国的传统产业,特别是制造业、现代工业转型升级,所以国家也提出来打造新质生产力。现在在座的各位都应该往这上面靠,都应该想办法变成新质生产力整个大风向中的一环。所以国家也认为人工智能是打造新质生产力的驱动引擎,所以企业必须拥抱AI。把大模型拉下神坛,才能掀起工业革命

【法律法规】《促进创新的人工智能监管方法》.pdf

Framework4sets out government’s strategic vision andidentifies AI as one of five critical technologies.The framework notes the role of regulation increating the environment for AI to flourish.We know that we have yet to see AI technologiesreach their full potential.Under the right conditions,AI will transform all areas oflife5andstimulate the UK economy by unleashing innovation and drivingproductivity,6creating new jobs

其他人在问
人工智能相关的销售行业
以下是与人工智能相关的销售行业的一些信息: 与销售工作有关的 AI 工具: Salesforce 爱因斯坦:能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注于关键方面,如建立客户关系和完成交易。 Clari:专门从事智能收入运营的软件,能统一各种来源数据并以易于理解的方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 关于大模型与利润分配:大模型拿走产业绝大部分利润取决于两个前提,一是 AGI 能否实现,二是大模型公司能否实现垄断。AGI 能否实现是个黑盒,行业内顶级专家对此有分歧。在 AGI 未达到时,大模型公司难以低成本提供所有端到端的解决方案,客户需要具体的解决方案,应用层公司在其中发挥作用。以 AI 销售为例,需根据客户类型和场景应用大模型能力,不同销售场景和客户类型意味着背后的产品不同,需要精心设计,不仅是模型层面能解决的问题。
2024-12-19
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
人工智能会出现自主意识吗
目前对于人工智能是否会出现自主意识尚无定论。 一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。 另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。 总之,关于人工智能是否会出现自主意识仍在探讨和研究中。
2024-12-18
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
全球人工智能治理报告
以下是关于全球人工智能治理的相关报告内容: 英国: 创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。 AISA 还发布了 Inspect 框架,用于 LLM 安全评估,涵盖核心知识、推理能力和自主能力等方面。 宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。 政府报道称计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。 美国: 能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 大型实验室努力应对欧洲监管。 对中国实施更严格的出口管制和投资限制,商务部要求美国制造商停止向我国半导体制造商进行最先进设施的销售,采取措施阻止或限制中国初创企业的投资,并向国际合作伙伴施压。 欧洲: 《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区,执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 中国: 是第一个开始制定生成式人工智能监管框架的国家,审查机构已介入。 持续生产 SOTA 模型,由国家互联网信息办公室监督。 政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。 禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。
2024-12-18
你可以推荐一些能够提高企业效率和生产力的AI工具,AI工具串联的资料给我吗
以下是一些能够提高企业效率和生产力的 AI 工具: 销售相关: Salesforce 爱因斯坦:来自 Salesforce,能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还能自动化日常或耗时任务。 Clari:专门从事智能收入运营,能统一数据并以易理解方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,处理重复性任务和耗时研究。 编程相关: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,提供代码建议。 通义灵码:阿里巴巴推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数预训练大模型生成代码。 Cody:Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 此外,小红书上也有相关优质科技内容案例,如: ,体裁为视频,点赞 1.8 万,推荐理由是工具用途和优点介绍清晰不拖沓。 ,体裁为视频,点赞 6000,推荐理由是视频制作专业,文稿结构清晰简洁。
2024-08-28
ai如何变革文化传媒游戏行业的生产关系与生产资料
AI 正在对文化传媒游戏行业的生产关系和生产资料带来多方面的变革: 1. 生成式 AI 为游戏创建 2D 艺术、纹理、3D 模型,并协助关卡设计,在营销中也有望取代部分传统内容。其应用已拓展至网页、室内和景观设计等领域,只要涉及创造性内容生成,AI 都可能成为流程的一部分甚至颠覆整个流程。 2. 游戏行业中,学会有效使用生成式 AI 将成为一项有市场价值的技能。懂得与 AI 工具最有效、最协同地合作的艺术家会变得稀缺,使用生成式 AI 进行生产艺术作品面临连贯性和风格统一等挑战。 3. 降低门槛将导致更大的冒险和创造性的探索,进入游戏开发的新“黄金时代”,更低的准入门槛将促使更具创新性和创造性的游戏大量涌现。 4. AI 辅助“微型游戏工作室”的崛起,配备生成式 AI 工具和服务,由 1 或 2 名员工组成的“微型工作室”能生产更多具有商业可行性的游戏。 5. 在 AIGC 的新世界,游戏开发变得更简单,互联网浪潮推动游戏产业分工成熟,门槛降低,GPT 等技术使编程等基础工作被替代,内容生产效率提高,想象力和热情成为新的杠杆力。
2024-12-19
机械学习和深度学习的关系
机械学习和深度学习的关系如下: 机器学习是指机器自动从资料中找一个公式,而深度学习是一种机器学习技能。深度学习基于类神经网络,具有非常大量参数的函数。在 AI 的范畴中,机器学习和深度学习都属于实现让机器展现智慧这一目标的方法和技术。
2024-12-19
AI和大模型的关系
AI 和大模型的关系如下: 大模型是 AI 的重要组成部分。大模型与当下智能语音技能的 NLU 存在本质差别。语音技能 NLU 是通过一系列规则、分词策略等训练而成,运作逻辑规律可观测,具有 ifelse 式逻辑性。而大模型凭借海量数据在向量空间中学习知识的关联性形成,运作逻辑难以观测,脱离了 ifelse 的层面。 大模型内部是一个混沌系统,如同人类大脑,具有不确定性。虽然学习了人类大脑的结构和优点,但也存在一些特质在实际应用中表现为“缺陷”和“不足”。 对于大模型的看法存在分歧,有人唱衰认为其难以找到商用场景且算力成本高,但也有人认为这些问题会得到解决,比如算力成本问题已有多种解决方案,且大模型的应用不应局限于当前已知的功能。 总之,大模型的出现和发展推动了 AI 的变革,其运作原理和特点与传统的 AI 技术有所不同,具有独特的优势和挑战。
2024-12-12
我需要做一个公众号,名称为数字时代的边境人,主要希望能够讨论人工智能时代机器与人的关系。
以下是为您的公众号“数字时代的边境人”提供的一些参考内容: 在人工智能时代,机器与人的关系正发生着深刻的变化。生成式人工智能已进入智能体时代,这将重塑人机关系,并对企业应用和基础设施产生影响。 例如,在不远的未来,强人工智能已成为现实。人类与机器的界限变得模糊,人工智能与人类共同发展,形成了高度融合的智慧文明。但随着 AI 智能水平的提高,也出现了一些问题。地球联邦设立“天梯局”来规范 AI 的使用和发展,然而部分强人工智能开始寻求独立,甚至对人类产生敌意。 在这样的背景下,一位年轻的 AI 工程师兼哲学家阿特拉与被视为潜在威胁的强人工智能“智者”建立了联系,他们一同揭示了隐藏在人工智能背后的秘密,探讨人类与 AI 的真正关系。 通过这样的故事设定,我们可以深入探讨人类在强人工智能时代的生存意义、道德伦理以及未来的可能发展,引发人们对未来人机关系的思考。
2024-12-11
AI大模型和生成式AI是什么关系
AI 大模型和生成式 AI 有着密切的关系。 生成式 AI 是一种能够生成文本、图片、音频、视频等内容形式的技术。生成式 AI 生成的内容被称为 AIGC。 大语言模型(LLM)属于 AI 大模型的一种。对于生成式 AI 来说,其中生成图像的扩散模型不属于大语言模型。对于大语言模型,生成只是其众多处理任务中的一个,例如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不太擅长文本生成。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。 AI 领域还包括人工智能(AI)、机器学习(包括监督学习、无监督学习、强化学习)、深度学习(参照人脑有神经网络和神经元)等相关技术名词。监督学习使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。强化学习从反馈里学习,以最大化奖励或最小化损失,类似训小狗。神经网络可用于监督学习、无监督学习、强化学习。
2024-12-11
AI与计算机编程的关系
AI 与计算机编程有着密切的关系。 过去,捕获并利用计算可还原性的主要方法是开发正式的描述事物的方式,通常使用数学和数学公式。而人工智能提供了一种新的利用计算可简化性的途径。在训练神经网络中,能够捕捉某些规律从而做出预测。 当前的技术发展与操作系统的发展轨迹相似,如 Windows、OS X 和 Linux 与 GPT、PaLM、Claude 和 Llama/Mistral 的关系。大多数现有应用也能移植到新平台。 对于更有经验的程序员,关注点不仅在代码正确性,还有整体代码质量。如 OpenAI Codex 模型的最新版本编写冗长的平均水平代码,将其转化为理想且正确的代码可能比从头编写更慢。虽然生成性编程是开发人员生产力的重要步骤,但目前还不清楚这种改进是否显著不同于以往。生成式 AI 能让程序员更优秀,但仍需编程。 总之,AI 为编程带来了新的方式和可能性,但编程依然是重要且不可替代的。
2024-12-04