Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

算力租赁

Answer

算力租赁是一种将计算机硬件资源出租给他人使用的服务。在算力租赁中,出租方提供计算设备,如服务器、GPU 等,而承租方则可以在一定时间内使用这些设备进行计算任务。这种服务通常用于需要大量计算资源的场景,如科学计算、机器学习、深度学习等。

算力的字面意思就是计算能力,它是随着区块链、AI 等概念被反复提及的。在计算机中,GPU 是一种专门用于图像和图形相关运算的微处理器,而显存则是用来存储显卡芯片处理过或者即将提取的渲染数据的部件。此外,CPU 作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。

总的来说,算力租赁是一种方便、高效的计算资源共享方式,可以帮助承租方节省成本,提高计算效率。

Content generated by AI large model, please carefully verify (powered by aily)

References

你看我这算力如何?(硬件篇)

算力的字面意思就是计算能力(Computing Power),是随着区块链,AI等概念被反复提及,其实没什么特别的,可以直接转化成GPU就是算力,电脑里的显卡就是GPU,那么算力=显卡可以这样粗暴的理解。哪怕你购买云服务,也是服务商买显卡“租”给你用的意思。而一张显卡除了GPU外,还有一个很重要的参数是显存。GPU:图形处理器(Graphics Processing Unit)又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。CPU:中央处理器(Central Processing Unit)作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。显存:也被叫做帧缓存,它的作用是用来存储显卡芯片处理过或者即将提取的渲染数据。如同计算机的内存一样,显存是用来存储要处理的图形信息的部件。

走进算力

本栏目是由鲜枣课堂整理编写,致力于有关算力的体系化知识分享。可以左侧目录展开,也可以直接跳转查看[走进算力-首页](https://linjootech.feishu.cn/wiki/VkOowC53diRmvbkZx5gc55Ednib)

Others are asking
微调所需要的算力计算公式
微调所需算力的计算较为复杂,会受到多种因素的影响。以下是一些相关的要点: 在一些教程中,如“大圣:全网最适合小白的 Llama3 部署和微调教程”,提到微调可能需要购买算力,预充值 50 元。 对于大型语言模型(LLM)的微调,由于模型规模大,更新每个权重可能需要很长时间的训练工作,还需考虑计算成本和服务麻烦。 调整用于微调的超参数通常可以产生产生更高质量输出的模型。例如,在某些情况中,可能需要配置以下内容: 模型:可选择“ada”、“babbage”、“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。 compute_classification_metrics:默认为假,若为 True,在分类任务微调时在每个 epoch 结束时在验证集上计算特定分类指标。配置这些超参数可通过 OpenAI CLI 上的命令行标志传递。
2025-01-06
微调所需要的算力计算公式
微调所需算力的计算较为复杂,会受到多种因素的影响。以下为您提供一些相关信息: 在“大圣:全网最适合小白的 Llama3 部署和微调教程”中提到,微调可能需要预充值 50 元购买算力。 “9.生成式 AI Studio 简介”课程中指出,微调大型语言模型(LLM)时,由于模型规模大,更新每个权重可能需要很长时间的训练工作以及巨大的计算成本。 “微调(Finetuning)”部分提到,调整用于微调的超参数通常可以产生产生更高质量输出的模型。需要配置的超参数包括: model:要微调的基本模型的名称,可选择“ada”、“babbage”、“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。 compute_classification_metrics:默认为假,若为 True,在分类任务微调时会在每个 epoch 结束时在验证集上计算特定指标。 需要注意的是,不同的模型和任务,其算力需求的计算方式可能会有所不同。
2025-01-06
微调所需要的算力计算公式
微调所需算力的计算涉及多个因素,目前没有一个固定的通用公式。但以下是一些相关的要点和参考: 在一些教程中,如“大圣:全网最适合小白的 Llama3 部署和微调教程”,提到微调可能需要预充值购买算力,费用约 50 元。 对于大型语言模型(LLM)的微调,由于模型规模大,更新每个权重可能需要很长时间的训练工作,计算成本较高。 在微调过程中,超参数的配置也会影响算力需求。例如,选择不同的基本模型(如“ada”、“babbage”、“curie”或“davinci”)、设置训练的时期数(n_epochs)、批量大小(batch_size)、学习率乘数(learning_rate_multiplier)等。批量大小通常为训练集中示例数量的 0.2%,上限为 256;学习率乘数默认为 0.05、0.1 或 0.2,具体取决于最终的批量大小。 需要注意的是,不同的模型和具体的微调任务,其算力需求会有所不同。
2025-01-06
现在智算非常火热,大家都在建立智算中心,提供大量的算力,请问一下,这些算力,都是哪些行业,哪些企业在消耗这些算力?
目前消耗大量算力的行业和企业主要包括以下方面: 1. 科技巨头:如 Google 拥有大量的 GPU 和 TPU 算力,用于复杂的推理任务和模型训练。 2. 云计算公司:例如 Amazon 和 Microsoft,其 AI 云计算收入主要来自模型托管。 3. 从事 AI 研发的公司:像 xAI 计划用十万块 H100 连成巨大集群,OpenAI 拉上微软打造算力中心 StarGate。 4. 特定领域的企业:如 Apple 利用自身优势发展边缘和远端混合的组合模型。 对于小公司而言,直接参与基础设施建设机会较小,但为当地企业提供 AI 训练的算力支持,并配备服务团队帮助整理知识、寻找业务场景、做垂直训练和微调等,可能存在一定机会。
2025-01-02
数据算法算力
以下是关于数据、算法、算力的相关知识: 数据:数据的质量对于生成理想的大模型至关重要,早期大模型存在使用不太合规数据等导致乱说的情况。 算法:算法有技术架构的迭代,如英伟达的显卡辅助模型训练。 算力:算力的字面意思是计算能力,可以直接转化成 GPU 就是算力,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,还有一个很重要的参数是显存。GPU 是一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器,其诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作。显存的作用是用来存储显卡芯片处理过或者即将提取的渲染数据。GPU 的生产商主要有 NVIDIA 和 ATI。
2024-12-27
国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境
国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有: 1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。 2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。 3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。 在搭建环境时,通常需要考虑以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。
2024-12-14
有没有推荐的算力租赁平台?
以下是为您推荐的一些算力租赁平台: 揽睿:https://lanruiai.com/register?invitation_code=0659 。WaytoAGI 邀请码 0659 可以得到 10 小时的免费时长。 厚德云:https://portal.houdeyun.cn/register?from=Waytoagi 。厚德云是专业的 AI 算力云平台,隶属于又拍云旗下,又拍云拥有 15 年云服务经验。注册后送 50 元代金券。ComfyUI 悟空换脸特效使用流程: 百度:https://aistudio.baidu.com/community/app/106043?source=appCenter 。新注册 2 个小时,登记一下,明天给大家发放 50 小时。 丹摩:https://damodel.com/register?source=46EF69A0 。20 元券,https://doc.damodel.com/profile/best_practice/SD3+ComfyUI.html 青椒云:https://account.qingjiaocloud.com/signin?inviteCode=3OF611IT 阿里云 PAI Artlab:直达地址:https://x.sm.cn/5hd9PfM 。登录后右上角领取免费试用,领取 500 元算力、OSS 20G 存储。AI 创作你的奥运专属海报,参与 PK 赢取台式升降桌、Lamy 钢笔套盒、双肩包等大奖!活动地址:https://mp.weixin.qq.com/s/y3Sk5PtVT5g8yFTMJASdFw 晨羽智云:直达地址:chenyu.cn 。体验券 9.9 元 10 小时 4090 24G。券码:GSUD7I 。硬件和网络都是顶配,能胜任各种出图模型和模型训练。针对 ComfyUI 和 SDWebUI,做了针对性的适配和镜像预下载处理,用户启动速度非常快,体验较好。协助教学团队/创作者安装镜像,和优化镜像,全程贴身服务。
2024-11-04
租赁gpu平台
以下是关于租赁 GPU 平台的相关信息: 部署流程: 1. 选择有空余的机器并购买。若账户没钱需充值,云平台有时会有免费活动,可碰运气薅羊毛。 2. 计费模式建议选择“按量计费”,地域尽量选择本地城市或较近城市,以减少网络远程连接的延时。 3. 配置方面,若使用时长不长或资金充裕,可选择顶配,越高配置训图炼丹越“爽”。同时需记住选择的 GPU 型号,后续安装驱动会用到。 4. 系统镜像选择 Windows 的,尽量选择 2016 版本以上,并记住镜像版本,后续安装驱动要用。 5. 系统盘容量建议大于 50GB,最好 100GB 左右,因算上操作系统、SD 包和几个大模型,50GB 可能会满。 6. 系统和镜像设置好后,其他选项按默认即可,点击进入“设置网络和主机”。 7. 带宽计费模式选择“按流量计费”更省钱,其他信息按默认配置即可。 算力相关知识: 算力的字面意思是计算能力,可直接转化为 GPU 理解,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,显存也是重要参数。GPU 是一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器。CPU 是计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。显存用于存储显卡芯片处理过或即将提取的渲染数据,如同计算机的内存,是存储要处理图形信息的部件。 购买服务器推荐: 因为个人机器可能带不动大模型,可选择 Autodl 这个算力服务商。访问地址:,自行注册或登陆。
2024-08-15