Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前模型之间是如何分类的

Answer

目前模型的分类方式多种多样,以下为您介绍几种常见的分类角度:

  1. 从来源角度:根据模型的出处,可分为来自行业(如 Google、Meta、OpenAI 等公司)、学术界(如清华大学、麻省理工学院、牛津大学等)、政府(如英国的艾伦·图灵研究所、阿布扎比的技术创新研究所等)以及研究团体(如艾伦研究所、弗劳恩霍夫研究所等非营利性 AI 研究组织)。在 2014 年之前,学术界在发布机器学习模型方面领先,此后行业占据主导。
  2. 从整体架构角度:
    • 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。
    • 数据层:包括企业根据自身特性维护的静态知识库和动态的三方数据集,而非用于基层模型训练的数据基集。
    • 模型层:分为 LLm(如 GPT 等大语言模型,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型,训练数据为图文或声音等多模态数据集)。
    • 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用之间的组成部分。
    • 表现层:即应用层,是用户实际看到的部分。

此外,像 OpenAI o3-mini 模型,在 OpenAI 的准备框架中被分类为中等风险,并采取了相应的保障和安全缓解措施。

Content generated by AI large model, please carefully verify (powered by aily)

References

o3-mini-system-card.pdf

OpenAI o3-mini performs chain-of-thought reasoning in context,which leads to strong performance across both capabilities and safety benchmarks.These increased capabilities come with significantly improved performance on safety benchmarks,but also increase certain types of risk.We have identified our models as medium risk in Persuasion,CBRN,and Model Autonomy within the OpenAI Preparedness Framework.Overall,o3-mini,like OpenAI o1,has been classified as medium risk in the Preparedness Framework,and we have incorporated commensurate safeguards and safety mitigations to prepare for this new model family.Our deployment of these models reflects our belief that iterative realworld deployment is the most effective way to bring everyone who is affected by this technology into the AI safety conversation.32Authorship,credit attribution,and acknowledgmentsPlease cite this work as“OpenAI(2025)”.ResearchTrainingBrian Zhang,Eric Mitchell,Hongyu Ren,Kevin Lu,Max Schwarzer,Michelle Pokrass,Shengjia Zhao,Ted SandersEvalAdam Kalai,Alex Tachard Passos,Ben Sokolowsky,Elaine Ya Le,Erik Ritter,Hao Sheng,Hanson Wang,Ilya Kostrikov,James Lee,Johannes Ferstad,Michael Lampe,Prashanth Radhakrishnan,Sean Fitzgerald,Sebastien Bubeck,Yann Dubois,Yu BaiFrontier Evals and PreparednessAndy Applebaum,Elizabeth Proehl,Evan Mays,Joel Parish,Kevin Liu,Leon Maksin,Leyton Ho,Miles Wang,Michele Wang,Olivia Watkins,Patrick Chao,Sandhini Agarwal,Samuel Miserendino,Tejal PatwardhanProduct

2025 年 AI 指数报告,斯坦福.pdf

Figure 1.3.4 illustrates the sectoral origin ofnotableAI releases by the year the models were released.Epoch categorizes models based on their source:Industry includes companies such as Google,Meta,and OpenAI;academia covers universities like Tsinghua,MIT,and Oxford;government refers to state-affiliated research institutes like the UK’s Alan Turing Institute for AI and Abu Dhabi’s Technology Innovation Institute;and research collectives encompass nonprofit AI research organizations such as the Allen Institute for AI and the Fraunhofer Institute.Artificial IntelligenceIndex Report 2025the AI model ecosystem.If readers believe that models from specific countries are missing,they are encouraged to contact the AI Index team,which will work to address the issue.Until 2014,academia led in terms of releasing machine learning models.Since then,industry has taken the lead.According to EpochAI,in 2024,industry produced 55 notable AI models.That same year,Epoch AI identified no notable AI models originating from academia(Figure 1.3.5).18 Over time,industry-academia collaborations have contributed to a growing number of models.The proportion of notable AI models originating from industry has steadily increased over the past decade,growing to 90.2% in 2024.18 This figure should be interpreted with caution.A count of zero academic models does not mean that no notable models were produced by academic institutions in 2023,but rather that Epoch AI has not identified any as notable.Additionally,academic publications often take longer to gain recognition,as highly cited papers introducing significant architectures may take years to achieve prominence.Table of ContentsChapter 1 Preview471.3 Notable AI Models Chapter 1:Research and DevelopmentNumber of notable AI models by sector,2003–24Source:Epoch AI,2025|Chart:2025 AI Index report6050403020100

非技术背景,一文读懂大模型(长文)

首先为方便大家对大模型有一个整体的认知,我们先从大模型的整体架构着手,来看看大模型的组成是怎么样的。下面是我大致分的个层。从整体分层的角度来看,目前大模型整体架构可以分为以下几层:[heading3]1.基础层:为大模型提供硬件支撑,数据支持等[content]例如A100、数据服务器等等。[heading3]2.数据层[content]这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集[heading3]3.模型层:LLm或多模态模型[content]LLm这个大家应该都知道,large-language-model,也就是大语言模型,例如GPT,一般使用transformer算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与llm不同,用的是图文或声音等多模态的数据集[heading3]4.平台层:模型与应用间的平台部分[content]比如大模型的评测体系,或者langchain平台等,提供模型与应用间的组成部分[heading3]5.表现层:也就是应用层,用户实际看到的地方[content]这个就很好理解了,就不用我多作解释了吧

Others are asking
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
基于技术类别的不同,将现在的AI产品进行分类
目前,AI 产品基于技术类别可以进行如下分类: 1. 从生成方式分类: 文生视频、图生视频:如 Runway、Pika labs、SD+Deforum、SD+Infinite zoom、SD+AnimateDiff、Warpfusion、Stability Animation 等。 视频生视频: 逐帧生成:如 SD+Mov2Mov。 关键帧+补帧:如 SD+Ebsynth、Rerender A Video。 动态捕捉:如 Deep motion、Move AI、Wonder Dynamics。 视频修复:如 Topaz Video AI。 AI Avatar+语音生成:如 Synthesia、HeyGen AI、DID。 长视频生短视频:如 Opus Clip。 脚本生成+视频匹配:如 Invideo AI。 剧情生成:如 Showrunner AI。 2. 从产品阶段和可用维度分类: 以 AI 为底层设计逻辑的 AI 原生类产品。 在原有互联网产品上深度嵌入 AI 功能的 AI+X 产品,目前整体数据表现显著优于 AI 原生类产品,在办公软件和内容平台重点布局。办公软件方面,如百度文库和 WPS AI 等在续写、改写、命题写作等不同程度的 AI 写作功能,以及针对论文、小说等不同题材的 AI 总结功能上表现突出。内容平台方面,AIGC 大多从基于平台内容的 AI 搜索、用于带动 UGC 的 AI 生成功能及模板、降低门槛的内容创作工具三个方向发力。 基于外接 API 微创新的套壳类产品。 将多个产品/模型 API 集中拼凑的集合站类产品。 此外,从 AI 产品经理的角度,个人划分仅供娱乐和参考: 1. 入门级:能通过 WaytoAGI 等开源网站或一些课程了解 AI 概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级:有技术研究和商业化研究两个路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用级:有成功落地应用的案例,产生商业化价值。对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。
2025-04-01
请基于应用场景,对AI模型进行分类
以下是对 AI 模型基于应用场景的分类: 1. 文本生成和内容创作:包括撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:如代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如根据文本描述生成相应的图像,甚至未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议。 此外,在开源模型方面,如 Civitai、海艺 AI、liblib 等为主流创作社区,提供了让用户利用 AI 技术进行图像创作和分享的平台。AI 视频方面,其应用场景广泛,涵盖内容创建、社交媒体营销、讲故事与动画制作、个性化内容、视频摘要、电子学习和培训、新闻媒体、电子游戏开发、虚拟助理和聊天机器人、归档与文档保存以及提高内容的可访问性等多个领域。从使用场景来看,分为改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 五个方向;从产品形态上来看,分为插件、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区四种。目前产品大多分布在 PC 端。
2025-04-01
基于深度学习的商代食器分类研究 明确详细的研究意义
基于深度学习的商代食器分类研究具有多方面的重要意义。首先,它有助于深入了解商代的饮食文化和社会生活。通过对食器的准确分类,可以揭示当时人们的饮食习惯、烹饪方式以及社交礼仪等方面的信息。 其次,为考古学研究提供新的方法和视角。利用深度学习技术能够更高效、更准确地处理和分析大量的商代食器数据,突破传统研究方法的局限。 再者,有助于文物保护和管理。精确的分类有助于制定更有针对性的保护策略,确保这些珍贵的文化遗产得到妥善保存。 最后,促进跨学科研究的发展。将深度学习与考古学相结合,能够吸引更多不同领域的学者参与,推动相关研究的创新和进步。
2025-03-27
AI分类
AI 主要有以下分类: 1. 生成式 AI: 生产力方面:包括文档、PPT、会议、脑爆、数据处理、搜索、浏览、email、文件等。 社交方面:包括真实和虚拟社交。 教育方面:涵盖早教、语言学习、公司教育、父母教育、学生工具、学校工具等。 创意内容方面:包含视频、音乐、声音、个人图像、图像等。 2. 以生成方式划分: 音视频生成类: 视频生成:当前视频生成可分为文生视频、图生视频与视频生视频。主流生成模型为扩散模型,可用于娱乐、体育分析和自动驾驶等领域,经常与语音生成一起使用。 语音生成:用于文本到语音的转换、虚拟助手和语音克隆等,模型可由 Transformers 提供。 音频生成:用于生成音乐、语音或其他声音,常用技术包括循环神经网络、长短时记忆网络、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能生成长达一分钟的高保真视频,支持多种生成方式,在文本理解方面表现出色。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数。 WaveNet(DeepMind):一种生成模型,可以生成非常逼真的人类语音。 MuseNet(OpenAI):一种生成音乐的 AI 模型,可以在多种风格和乐器之间进行组合。 Multilingual v2(ElevenLabs):一种语音生成模型,支持 28 种语言的语音合成服务。 3. 在 AI 创客松中,参与同学的分类: 秦超:AI 2C 项目负责人,擅长产品落地服务,具有产品、技术架构和项目管理经验。 kaikai:技术实践者,擅长多 Agent 处理任务流,具备技术实践和团队合作能力。 Cici?:AI 算法开发,想法是宠物与 AI 结合,具有 AI 产品研发和创业经验。 BIN 陈裕彬:CTO,方向是 AI 绘画精灵、AI 推文小说视频生成器,是爆款 AI 小程序作者。 11 鸭鸭呀:产品经理,专注智能写作产品,擅长 Prompt 撰写和 AI 应用。 zz:AI 产品经理,方向是效率工具和游戏,具有大厂经验。 天天向上:AIGC 爱好者,方向是 AI 配音应用,是配音演员,有 AI 预告片制作经验。 烦烦烦??:产品经理,方向是企业服务 AI 应用,具备 PRD 输出和前端开发能力。 周文斌:产品业务负责人,方向是 AI 创业,具有产品规划和研发经验。 Wilson·W:咨询顾问/服务设计师,方向是 AI 组团协作场景,是 GPT4.0 用户,有咨询行业经验。 王蒙:程序员,从事 AI 相关开发,具有后端开发经验。 Nero:产品体验设计师,方向是 AI 绘画、AI 视频,研究 AIGC 方向。
2025-03-26
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
AI应用分类
AI 的应用场景非常广泛,主要包括以下几类: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输:(未给出具体应用场景) 此外,还有众多具体的 AI 应用产品,例如: 1. 辅助创作与学习:AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 具体如: AI 摄影参数调整助手:利用图像识别、数据分析技术,在一些摄影 APP 中根据场景自动调整摄影参数。 AI 音乐情感分析平台:通过机器学习、音频处理技术,有相关音乐情感分析软件可判断音乐的情感倾向。 AI 家居智能照明系统:结合物联网技术、机器学习,像小米智能照明系统可根据用户习惯和环境变化自动调整灯光。 AI 金融风险预警平台:运用数据分析、机器学习,金融风险预警软件能提前预警金融风险。 AI 旅游路线优化平台:借助数据分析、自然语言处理,马蜂窝可根据用户需求优化旅游路线。
2025-03-17
deepseek与chatgpt之间的差别
DeepSeek 与 ChatGPT 存在以下差别: 1. App Store 排名:DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与推广:DeepSeek 没有市场部和市场投放,依靠技术实力和口碑获得认可;而 ChatGPT 可能有不同的推广策略。 3. 性能与成本:DeepSeek R1 效果比肩顶尖闭源模型 o1,价格仅为 o1 的 27 分之一。 4. 开源与创新:DeepSeek R1 开源让行业认知拉齐,得到尊重和喜爱;ChatGPT 可能在开源方面有所不同。 5. 创新模型:DeepSeek R1 的创新模型 R1 Zero 跳过监督微调(SFT)阶段,直接采用强化学习(RL)训练,且发现模型思考能力可自我涌现。 6. 影响:DeepSeek R1 的发布引发美国科技界恐慌,挑战英伟达市场地位;ChatGPT 也有其自身的影响。 此外,游戏科学创始人冯骥称 DeepSeek 具备强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有 AI 大模型。相关报道还指出 DeepSeek R1 在美国 App Store 夺冠,成为开源 AI 领域的领军者。
2025-03-27
AI、AIGC、大模型这三者之间有什么关系
AI(人工智能)是一种让机器展现智慧的目标。AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。大模型如大语言模型(LLM)是具有大量参数的“深度学习”模型。 生成式 AI 是一种让机器产生复杂有结构内容的目标。机器学习是让机器自动从资料中找公式的手段,深度学习是更厉害的类神经网络且有大量参数的手段。 AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-13
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
agent 打通应用之间的协议?
在 AI 领域中,Agent 是连接模型与应用的关键。端侧 Agents 是在终端设备上自主运行的智能代理程序,具备感知、决策、执行的闭环能力。 Agent 之所以重要,原因包括:端侧资源约束要求最优化使用,任务具有复杂性,生态存在多样性,双系统路线更适合端侧。 Agent 创造价值的方式体现在双重价值实现:一是资源优化,包括任务分解、按需调用;二是生态连接,比如跨应用协作、UI 理解。 其发展趋势包括:技术上从单一模型到多智能体协作;生态上从封闭应用到开放服务;交互上从指令执行到场景理解。 在技术层面,AI Agent 的发展出现了两条技术路线:一是以自主决策为核心的 LLM 控制流,二是以工作流(Workflow)编排为重点的工具集成系统。 特别值得关注的是 Anthropic 提出的 MCP(Model Context Protocol),它的本质是一个通用接口协议,试图解决让 AI 模型能够以标准化、可扩展的方式与外部世界交互的问题。 此外,还有 Agent Protocol 这种用于与 AI 代理进行通信的统一接口,它提供了一种 API 规范,任何代理开发者都可以实现该协议,设计简单且不依赖特定技术栈,有助于生态系统发展和简化集成,并提供了不同语言的 SDK 供开发者使用。
2025-03-09
我有个计算流体力学相关的数值模式,代码是C++写的,几万行,有多个文件,各个文件之间是相互关联,现在想对代码的运行效率、代码规范等进行优化升级,有什么AI工具推荐
目前在您所描述的这种对大规模、相互关联的 C++代码进行运行效率和代码规范优化升级的场景中,暂时没有特别直接适用的 AI 工具。不过,您可以考虑使用一些传统的代码分析和优化工具,例如: 1. ClangTidy:这是一个用于 C++代码的静态分析工具,可以帮助发现代码中的潜在问题,并提供一些改进建议。 2. Valgrind:用于检测内存管理错误和性能问题。 同时,您也可以利用一些代码版本管理工具,如 Git,来更好地跟踪和管理代码的修改。
2025-03-08
大模型、小模型之间的区别和联系是什么
大模型和小模型的区别与联系如下: 区别: 类型:大模型主要分为大型语言模型和大型多模态模型,前者专注于处理和生成文本信息,后者能处理包括文本、图片、音频等多种类型的信息。 应用场景:大型语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等;大型多模态模型可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 数据需求:大型语言模型主要依赖大量文本数据训练,大型多模态模型则需要多种类型的数据,包括文本、图片、音频等。 功能:小模型通常被设计来完成特定任务,如专门识别猫或狗;大模型像多功能的基础平台,能处理多种不同任务,应用范围广泛,拥有更多通识知识。 联系: 相对比较:小模型是相对于大模型的规模而言较小。 共同作用:在不同场景中发挥各自的优势,共同为解决问题提供支持。 在 AI 绘图模型中,大模型如同主菜或主食,小模型(Lora)如同佐料或调料包,Lora 能帮助快速实现特定风格或角色的绘制,且大模型和 Lora 要基于同一个基础模型才能搭配使用,以生成各种风格的图片。
2025-02-26
完全免費的AI工具目前有哪些
目前完全免费的 AI 工具包括: 1. 麻省理工学院(MIT)为 8 18 岁孩子推出的 AI 课程 Day of AI,包含在 MIT 的 RAISE 项目中。不过该课程资源主要面向家长和老师群体,大孩子可自学,小孩子可能需要家长辅助。 2. 元子提到的一些能让普通人最低成本直接上手试的 AI 工具,包括聊天工具、绘画工具、视频工具、音乐工具等,但未具体指明具体的工具名称。
2025-04-13
gemini-2.5目前是什么水平
Gemini 2.5 是一款全能思考模型,具有以下特点和优势: 多领域达到 SOTA 水平,逻辑、代码、任务处理能力大幅提升。 支持 100 万 tokens 上下文,具备强大的阅读能力。 统一架构原生多模态支持,图文音码协同处理,并非外挂而是原生融合。 您可以通过以下链接获取更多详细信息:https://www.xiaohu.ai/c/xiaohuai/googlegemini25proexperimental
2025-04-13
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13