Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

多Agent

Answer

多智能体(Multi-Agent)是由多个自主、独立的智能体(Agent)组成的系统。每个智能体能够感知环境、进行决策并执行任务,它们之间可以进行信息共享、任务协调以及协同行动,以实现整体目标。

随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统近期受到广泛关注。在单 Agent 场景下,其核心在于 LLM 与工具的协同配合,可能需要与用户进行多轮交互。而在多 Agent 场景中,会为不同的 Agent 指定不同角色,并通过协作完成复杂任务,与用户的交互可能相对减少。

构建多 Agent 框架的主要组成部分包括:

  1. 环境:所有 Agent 处于同一个环境中,环境包含全局状态信息,Agent 与环境存在信息交互与更新。
  2. 阶段:通常采用 SOP 思想,将复杂任务分解为多个子任务。
  3. 控制器:可以是 LLM 或预先定义好的规则,负责环境在不同 Agent 和阶段之间的切换。
  4. 记忆:相比单 Agent,多 Agent 框架中由于 Agent 数量增多,消息数量及相关字段也会增加。

在实际应用中,如《执笔者》基于多 Agent 模式的全能写手,操作步骤包括:

  1. 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面自动切换为调试状态,相比单 agent 多了中间的 agent 连接区。
  2. 添加合适节点:有使用已发布的 bot 或创建新的 agent 两种方式,添加的 agent 直接连接在默认的总管 agent 后面,无结束节点。
  3. 添加合适的 prompt:为每个 agent 填写合适的 prompt,外围人设填写主要功能,内部 bot 填写应用场景。
  4. 调试与美化:经过以上步骤基本搭建完成,后续可通过调整提示词优化交互。

在 Agent 产品开发中,不要过于神话 Agent。其本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 prompt。包括短期记忆(messages 里的历史 QA 对)、长期记忆(summary 之后的文本塞回 system prompt)、RAG(向量相似性检索)、Action(触发 tool_calls 标记进行请求循环)等。Multi Agents 则是更换 system prompt 和 tools。当然,要做深做好还有很多坑需要踩。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:Multi-Agent是什么

多智能体(Multi-Agent)是由多个自主、独立的智能体(Agent)组成的系统。在这个系统中,每个智能体都能够感知环境、进行决策并执行任务,同时它们之间可以进行信息共享、任务协调以及协同行动,以实现整体的目标。[heading2]关于Multi-Agent[content]随着大型语言模型(LLM)的出现,以LLM为核心构建的Agent系统近期受到了广泛关注。Agent系统旨在利用LLM的归纳推理能力,为不同的Agent分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。目前,更常见的框架主要集中在单Agent场景下。单Agent的核心在于LLM与工具的协同配合。LLM根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈。在任务完成过程中,Agent可能需要与用户进行多轮交互。与此同时,越来越多的Agent框架开始关注多Agent场景。为了完成任务,多Agent会为不同的Agent指定不同的角色,并通过Agent之间的协作来完成复杂的任务。与单Agent相比,在任务完成过程中,与用户的交互可能会减少一些。[heading2]主要组成部分[content]为构建一个多Agent框架,我们需要思考相对于单Agent,框架中增加了哪些组件。环境(environment):所有Agent应该处于同一个环境中。环境中包含全局状态信息,Agent与环境之间存在信息的交互与更新。阶段(stage):为了完成复杂任务,现有多Agent框架通常采用SOP思想,将复杂任务分解为多个子任务。控制器(controller):控制器可以是LLM,也可以是预先定义好的规则。它主要负责环境在不同Agent和阶段之间的切换。记忆:在单Agent中,记忆只包括用户、LLM回应和工具调用结果等部分。而在多Agent框架中,由于Agent数量增多,导致消息数量增多。同时,每条消息可能需要记录发送方、接收方等字段。

《执笔者》:基于多Agent模式的全能写手

1.多agent模式切换在bot编排页面点选多agent模式,页面将会自动切换为多agent调式状态,相比单agent,主要是多了中间一块的agent连接区。切换多agent后的默认页面1.添加合适节点节点这里有两种方式可以选择,用已发布的bot,或者创建一个新的agent,大家按需选取。添加的agent直接连接在默认的总管agent(“执笔者”)后面即可,无结束节点。1.添加合适的prompt在多agent模式下,我们需要为每个agent填写合适的prompt。外围的人设填写该bot的主要功能,内部的bot填写各个bot/agent的应用场景。1.调试与美化经过以上简单三步,一个多agent的bot就基本搭建完成,接下来就是漫长的调试过程,如果输出与自己设想有差异,可以不断调整外围和内部bot的提示词,提升命中率,优化交互。

有用Agent产品开发踩坑及思考

其实只要看过官方文档的应该都能知道,大模型请求中,最大的两个变量:Messages和Tools。Messages里面放的是sys prompt,memory,user query;Tools里面放的是一些能力的Json Scheme;而这两者组合在一起,就形成整个完全的Prompt。所以Agent应用开发的本质是什么?动态Prompt拼接。通过工程化的手段,不断把业务需求转述成新的prompt。短期记忆:messages里的历史QA对;长期记忆:summary之后的本文,再塞回system prompt;RAG是啥?向量相似性检索,然后放在system prompt里或者通过tools触发检索Action:触发tool_calls标记,进入请求循环,拿模型生成的请求参数进行API request,再把结果返回给大模型进行交互;没有tool_calls标记了,循环结束。对应页面上就是对话一轮对话结束。Multi Agents是啥?把system prompt和tools换一换,A就变成B了。还有啥?没了呀,本质就是这些东西。当然,这也就是最基本的原理,想做深,做好,肯定还有很多坑需要踩。

Others are asking
我要从哪里了解特定领域的agent发布的信息
以下是一些了解特定领域 agent 发布信息的途径: 1. 飞书:可以在飞书上建机器人,并添加知识库或多维表格编辑权限,通过获取机器人的 app_id 和 app_secret 获得租用 token:tenant_access_token 来获取多维表格数据和编辑能力。然后通过 Coze 搭建定时任务,执行工作流,添加分析文章和搜索文章等能力,变成消息情报官的 Agent,并发布到飞书等平台使用。 2. 微信:可以通过微信公众号、微信小程序等渠道获取特定领域 agent 发布的信息。 3. Coze 商店:特定领域的 agent 可能会在 Coze 商店发布相关信息。 4. 相关比赛网站:例如 2025AGENT 智能体全球创作大赛网站(http://agentga.me),可以了解比赛报名、作品提交、奖项设置等信息,还能获取关于参赛作品知识产权归属等常见问题的解答。 此外,如果您对特定领域 agent 相关的招聘信息感兴趣,可关注序智科技的招聘信息,如算法/后端/前端正式&实习岗位,了解其职责和要求等。
2025-03-20
我应该在哪里获取垂类agent
以下是获取垂类 agent 的途径和一些相关的 Agent 构建平台: 智能体 Agent 目录: Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,在 To C 领域,目前市面上的 AI 产品中也有 agent 产品,如字节的扣子,支付宝的智能助理,百度的文心智能体,腾讯的元宝。这类产品会提供一套 AI 开放平台框架,允许三方在上面通过组装 LLM 和组件和自有的知识库信息等,定义自己专属垂域的 agent。但做这类平台需要有完备且有吸引力的分发渠道。
2025-03-20
推荐一下将草图生成效果图的agent
以下是为您推荐的将草图生成效果图的工具: https://www.stablevideo.com/tools ,该网站更新了草图变效果图的工具。 您还可以参考《》,了解相关实践。
2025-03-20
搭建agent
以下是关于搭建 Agent 的相关信息: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系: 首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息。 点击确认后完成工作流的新建,可以看到整个编辑视图与功能。 左侧「选择节点」模块中,根据子任务需要,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。 大模型:调用 LLM,实现各项文本内容的生成。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 搭建工作流驱动的 Agent 的步骤: 规划:制定任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能,在 Coze 上搭建工作流框架,设定每个节点的逻辑关系,详细配置子任务节点,并验证每个子任务的可用性。 完善:全面评估并优化 Agent 效果,整体试运行 Agent,识别功能和性能的卡点,通过反复测试和迭代,优化至达到预期水平。 一些 Agent 构建平台: Coze:新一代的一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。
2025-03-19
AI Agent和Agentic Workflow的区别
AI Agent 和 Agentic Workflow 存在以下区别: AI Agent: 基本框架:由“LLM + 规划 + 记忆 + 工具使用”构成,大模型 LLM 充当“大脑”。 规划方面:包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,能对过去行动进行自我批评和反思,从错误中学习并改进未来步骤。 记忆方面:用于存储和调用相关信息。 Agentic Workflow: 驱动角色工作流变革:使用多智能体协作的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。 涉及人机协同关系:生成式 AI 的人机协同分为嵌入式、副驾驶、智能代理 3 种产品设计模式,在不同模式下,人与 AI 的协作流程有所差异。 重塑获取信息的方式:如搜索引擎和基于大模型的聊天机器人在获取信息上目标一致,ChatGPT 的出现被认为将对传统搜索引擎带来颠覆。 包含多种设计模式:如反思、工具使用、规划、多智能体协同等。反思是让 Agent 审视和修正自己生成的输出;工具使用指 LLM 生成代码、调用 API 等工具进行操作;规划是让 Agent 分解复杂任务并按计划执行;多智能体协同是多个 Agent 扮演不同角色合作完成任务。
2025-03-19
AI Agent
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态) 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体) 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈 Responser Agent、Daily Agent、Background Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间) 此外,唐小引等人预测 AI Agent 仍需 5 年以上才能实用,一旦突破,将有极快进化速度。Andrej Karpathy 认为 2025 2035 是 Agent 十年,技术与任务领域需突破。Operator 类比“人形机器人”,突破需多模态及长期任务支持。
2025-03-19