GPT 是“生成式预训练变换器”(Generative Pre-trained Transformer)的缩写,是一种大型语言模型(LLM),也是生成式人工智能的重要框架。首个 GPT 由 OpenAI 于 2018 年推出。GPT 模型是基于 Transformer 模型的人工神经网络,在大型未标记文本数据集上进行预训练,并能够生成类似于人类自然语言的文本。
Transformer 是一个相对专业的概念,其工作原理涉及一些线性代数和概率学知识。
生成式预训练是机器学习领域由来已久的概念。直到 2017 年 Google 推出 Transformer 模型,才有了如 BERT 和 XLNet 这样的大型语言模型的诞生。这些模型基于预训练的转换器,但并非为生成文本设计,而是作为“仅编码器”使用。2018 年,OpenAI 发表文章首次介绍了基于转换器的生成式预训练模型(GPT)系统,即“GPT-1”。
ChatGPT 从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本,能够从“提示”开始,继续生成“类似于训练内容”的文本。ChatGPT 中的实际神经网络由非常简单的元素组成,尽管数量庞大。其基本操作也简单,为每个新单词生成“输入”,然后将其“通过其元素”。但这个过程能产生成功的类似于网络、书籍等内容的文本,这表明人类语言及背后思维模式的结构比想象中更简单和具有“法律属性”。ChatGPT 在生成文本方面表现出色,结果接近人类所产生的,但它并不像大脑一样工作,其基本人工神经网络结构最终基于大脑的理想化模型,人类生成语言时许多方面的工作与之有相似之处。
所谓的大模型,简而言之,就是那些拥有庞大参数数量的模型。它们通过处理和理解海量数据,能够胜任一系列复杂的任务。大模型强大的原因在于庞大的参数数量和大量的数据训练。参数帮助模型更深入地理解和生成数据,大量数据是学习的基础,使其掌握丰富的知识和技能。
大家玩GPT应该有一段时间了,我们都知道GPT的全称是“Generative Pre-trained Transformer“,前两个词比较好理解,Transformer是个相对专业的概念。这篇文章我们就主要讲一下Transformer的工作原理。下面的内容涉及一些线性代数和概率学知识,我在具体的计算过程里面有一些解释,大家也可以用AI工具针对性学习一下相关的概念,理解起来会容易一些。
GPT是“生成式预训练变换器”(Generative Pre-trained Transformer)的缩写,是一种大型语言模型(LLM),也是生成式人工智能的重要框架。首个GPT由OpenAI于2018年推出。GPT模型是基于Transformer模型的人工神经网络,在大型未标记文本数据集上进行预训练,并能够生成类似于人类自然语言的文本。截至2023年,大多数LLM都具备这些特征,并广泛被称为GPT。而所谓的生成式预训练,其实是机器学习领域一个由来已久的概念。但是,直到2017年Google推出了Transformer模型,我们才见到了如BERT(2018年发布)和XLNet(2019年发布)这样的大型语言模型的诞生。这些模型都是基于预训练的转换器,但它们并不是为生成文本而设计,而是作为“仅编码器”使用。2018年,OpenAI发表了一篇名为《通过生成式预训练提高语言理解能力》的文章,首次介绍了基于转换器的生成式预训练模型(GPT)系统,即我们所说的“GPT-1”。[heading1]问题六、大模型是什么东西?[content]所谓的大模型,简而言之,就是那些拥有庞大参数数量的模型。它们通过处理和理解海量数据,能够胜任一系列复杂的任务。那么,为何将这些模型称作“大”模型呢?原因在于它们的规模之大,通常包含从数十亿到数千亿的参数。这些庞大的参数集合赋予了模型强大的学习和记忆能力,使其在处理各种任务时表现出色。我们可以从两个方面来进一步解读大模型的特点:1.大模型之所以强大,一个重要原因在于它们庞大的参数数量。这些参数,或者说“权重”,是模型在学习过程中不断调整的核心,它们帮助模型更深入地理解和生成数据。2.大模型的训练离不开大量的数据。无论是文本、图像还是音频数据,都是大模型学习的基础。通过对这些数据的深入学习,模型能够掌握丰富的知识和技能。
ChatGPT的基本概念在某种程度上相当简单。从网络、书籍等来源中获取大量人类创作的文本样本。然后训练神经网络生成“类似”的文本。特别是让它能够从“提示”开始,然后继续生成“类似于训练内容”的文本。正如我们所见,ChatGPT中的实际神经网络由非常简单的元素组成,尽管有数十亿个。神经网络的基本操作也非常简单,基本上是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。但是,这个过程能够产生成功地“类似于”网络、书籍等内容的文本,这是非常卓越和出乎意料的。它不仅是连贯的人类语言,而且“说的话”是“遵循其提示”的,利用其“读到”的内容。它并不总是说出“全局意义上的话”(或对应于正确的计算),因为(例如,没有访问Wolfram|Alpha的“计算超能力”)它只是根据训练材料中的“声音类似”的东西“说出”“听起来正确”的东西。ChatGPT的具体工程使其相当引人入胜。但是,最终(至少在它可以使用外部工具之前),ChatGPT仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。但是,其结果有多么类似于人类。正如我所讨论的,这表明了一些至少在科学上非常重要的事情:人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”。ChatGPT已经隐含地发现了它。但是我们可能可以用语义语法、计算语言等明确地揭示它。ChatGPT在生成文本方面的表现非常出色,结果通常非常接近我们人类所产生的。那么这是否意味着ChatGPT像大脑一样工作呢?它的基本人工神经网络结构最终是基于大脑的理想化模型的。当我们人类生成语言时,许多方面的工作似乎是相当相似的,这似乎是非常可能的。