Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfyui 随机种子是什么意思

Answer

在 ComfyUI 中,随机种子(seed)主要用于控制潜空间的初始噪声。如果您想重复生成一模一样的图片,就需要用到这个随机种子。需要注意的是,要生成完全相同的图片,种子和 Prompt 都要相同。每次生成完图片后,上面的 seed 数字都会变化,而 control_after_generate 配置项则是设置这个变化规则,包括 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。例如在某些工作流中,随机种子可能被设置为特定的值,如 30 或 79 等,以实现特定的效果或结果重现。

Content generated by AI large model, please carefully verify (powered by aily)

References

小田:ComfyUI基础教程—小谈

KSampler,Sampler中文名称是采样器,如果你想详细了解采样器,可以阅读相关进阶教程,而基础教程只会告诉你如何使用。KSampler包含以下参数:seed:这个是随机种子,它主要用于控制潜空间的初始噪声。如果你想重复生成一模一样的图片。就需要用到这个随机种子。需要注意种子和Prompt都要相同,才能生成一模一样的图。control_after_generate:每次生成完图片后,上面的seed数字都会变化,而这个配置项,则是设置这个变化规则:randomize(随机)、increment(递增1)、decrement(递减1)、fixed(固定)。step:采样的步数。一般步数越大,效果越好,但也跟使用的模型和采样器有关。cfg:这个值设置一般设置为6~8之间会比较好。sampler_name:采样器名称。你可以通过这个来设置采样器算法。scheduler:调度器主要是控制每个步骤中去噪的过程。你可以通过它选择不同的调度算法,有些算法是选择每一步减去相同数量的噪声,有些则是每一步都尽可能去掉多的噪声。denoise:表示要增加多少初始噪声,1表示全部。一般文生图你都可以默认将其设置成1。

8月13日ComfyUI共学

[heading2]智能章节本章节讨论了麦菊老师纹身图相关内容,提到可从小田帮忙贴入文档或在其live站直接获取,还讲解了如何抄作业,即在lib上点生成信息获取正面和负面提示词,以及复制相关采样器等信息。[01:52:33](https://waytoagi.feishu.cn/minutes/obcn4w986vn7d5kc9tg2zy69?t=6753000)关于飞桨降噪设置与相关问题的讨论本章节讨论了有关飞桨的问题,比如飞桨的降噪设置不是数值且有人找不到设置的地方,需删掉默认流跟随搭建。还提到飞桨用的是其自身一些节点而非通用config里的节点,此外对NSFW含义有所疑问。[01:53:38](https://waytoagi.feishu.cn/minutes/obcn4w986vn7d5kc9tg2zy69?t=6818000)关于SD绘图相关问题的讨论本章节主要讨论了NSFW的含义及对SD出图的限制,提到了从网上抄的提示词及模型相关,包括调整采样器和生成图片大小,还探讨了文本编辑框爆红及阿里云默认麦菊模型等问题,并对图像油油的原因进行了猜测。[01:57:34](https://waytoagi.feishu.cn/minutes/obcn4w986vn7d5kc9tg2zy69?t=7054000)郭佑萌讲解实现Config UI与Web UI统一的操作本章节中,郭佑萌指出config UI与SD不同,并展示如何与Web UI统一,需用编码器和一套东西,把某些地方改成A111和A11,随机种子设为30。

ComfyUI MiniCPM多模态模型加入工作流中的多种玩法

[heading4]输入部分[content]在"MiniCPM VQA"下方添加说明:source_video_path:输入视频文件路径source_image_path_1st/2nd/3rd:输入图像文件路径(最多3个)[heading4]模型参数说明[content]为每个参数添加简短说明:1.model:MiniCPM-V2_6-int4-选择使用的模型版本2.keep_model_loaded:false-使用后是否保持模型加载3.top_p:0.8-控制采样概率阈值,影响输出多样性4.top_k:100-限制每步选择的最可能token数量5.temperature:0.7-控制输出随机性,越低越确定6.repetition_penalty:1.1-减少重复词语出现7.max_new_tokens:2048-限制生成的最大token数量8.video_max_num_frames:64-处理视频时的最大帧数9.video_max_slice_nums:2-视频处理中的切片数量10.seed:79-随机种子,用于结果重现11.control_after_generate:fixed-随机种子生成后的控制方式

Others are asking
我要学ComfyUI,我们有哪些学习资源?
以下是一些学习 ComfyUI 的资源: 1. 网站资源: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,介绍了 ComfyUI 的特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。教程地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程。教程地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 2. 飞书学习群资源: 王蓉🍀🎈Wang Easy 基础搭建和转绘 唯有葵花向日晴 基础教程,工作流开发,实际应用场景 热辣 Huolarr AI 系统课私聊图生视频 咖菲猫咪 基础教程/工作流搭建思路/各版本模型使用的优缺点 傅小瑶 Lucky 如何制作多人转绘视频 云尚 工作流节点搭建思路 FǎFá 热门节点功能,搭建 森林小羊 基本报错解决方式及基础工作流逻辑分析 苏小蕊 基础教程 Sophy 基础课程 蜂老六 装一百个最新常用插件后如何快速解决冲突问题 阿苏 工作流框架设计 aflyrt comfyui 节点设计与开发 老宋&SD 深度解释虚拟环境部署和缺失模型的安装 Liguo 模型训练 啊乐福 基础课程 塵 优秀案例 风信 基础课程➕平面设计应用场景 北南 基础课程 视频工作流框架设计 Damon 基础课程 渔舟 基础课程+工作流搭建思路 乔木船长 工作流 ☘️ 基础教程 ☘ 基础教程 工作流设计+典型案例剖析 麒白掌 工作流搭建 OutSider 风格迁移 吴鹏 基础+工作流搭建 拾光 工作流基础搭建从入门到精通 茶浅浅。视频转绘/节点工作流介绍 百废待.新(早睡版)工作流从入门到进阶 电商应用场景 Stuart 风格迁移 红泥小火炉 基础课程 大雨 换背景图 Anna 娜娜° 图生 3D 🎵柒小毓 基础课程 Ting 基础课程 郑个小目标 针对于某个插件的深入讲解 波风若川 报错解决 chen 工作流的研发 朱敏🎈 基础课程,工作流 王卓圻 基础课程 南城 基础课程 Zero one 工作流开发 梓阳 基础课程 蓝牙耍手机 工作流搭建思路 皮皮 Peter 工作流的设计规划和调优逻辑 Jāy Līn 锦鲤 工作流搭建逻辑和原理 K 如何本地部署基础生图参数选择工作流的基本应用 Adai 基础课程 镜生 视频 x 基础教程 梦飞 基础教程 🙋🙋🙋 各个节点讲解和参数含义 戴志伟 基础课程 雪娴_CC 基础课程,从安装开始 Joey 实时转绘工作流 倪星宇 22 换脸换背景实践落地 早点睡觉 CT 优秀案例 三思 基础教程 晓珍 Mr.大狐🏝 报错解决 Duo 多吉~ 基础课程 陈旭 常用节点讲解和简单的节点制作 长风归庭 基础教程+工作流创建 ヘヘ阿甘 采样器原理与优化 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-12
comfyUI和webUI的区别
ComfyUI 和 WebUI 的区别主要体现在以下几个方面: ComfyUI: 简介:是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 WebUI 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 WebUI 多(常用的都有),但也有一些针对 ComfyUI 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 插件推荐: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD WebUI: 采样器与调度器:在 ComfyUI 中,采样器与调度器分开,而在 WebUI 中的采样方法是把两者合并在一起。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,一般选择 karras 调度器效果较好。 在插件安装方面,WebUI 有较好的用户界面,安装插件后可直观看到并使用;而 ComfyUI 安装插件后可能看不到,需通过节点连接才能感受到其功能。
2025-03-12
如何学习comfyUI
以下是一些学习 ComfyUI 的途径和资源: 1. 官方文档:ComfyUI 官方文档提供了使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了其特点、安装方法及如何生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在找到。 此外,还有以下 ComfyUI 共学快闪的学习内容: 王蓉🍀🎈Wang Easy 基础搭建和转绘 唯有葵花向日晴 基础教程,工作流开发,实际应用场景 热辣 HuolarrAI 系统课私聊图生视频 咖菲猫咪 基础教程/工作流搭建思路/各版本模型使用的优缺点 傅小瑶 Lucky 如何制作多人转绘视频 云尚 工作流节点搭建思路 FǎFá 热门节点功能,搭建 森林小羊 基本报错解决方式及基础工作流逻辑分析 苏小蕊 基础教程 Sophy 基础课程 蜂老六 装一百个最新常用插件后如何快速解决冲突问题 阿苏 工作流框架设计 aflyrt comfyui 节点设计与开发 老宋&SD 深度解释虚拟环境部署和缺失模型的安装 Liguo 模型训练 啊乐福 基础课程 塵 优秀案例 风信 基础课程➕平面设计应用场景 北南 基础课程 视频工作流框架设计 Damon 基础课程 渔舟 基础课程+工作流搭建思路 乔木船长 工作流 ☘️ 基础教程 ☘ 基础教程 工作流设计+典型案例剖析 麒白掌 工作流搭建 OutSider 风格迁移 吴鹏 基础+工作流搭建 拾光 工作流基础搭建从入门到精通 茶浅浅 视频转绘/节点工作流介绍 百废待.新(早睡版)工作流从入门到进阶 电商应用场景 学习使用 ComfyUI 的原因包括: 更接近 SD 的底层工作原理。 实现自动化工作流,消灭重复性工作。 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 api 及本文所讲的内容等。 可根据定制需求开发节点或模块。 例如,金属文创建工作流是因为工作室需要抠图素材,传统途径存在问题,近期在 github 上看到相关项目后创建了工作流,不仅可用于绿幕素材抠图,还能自动生成定制需求的抠图素材,全程只需几秒。
2025-03-12
ComfyUI的生图原理
ComfyUI 的生图原理主要包括以下几个方面: 1. Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,可能通过“图像输入”模块或直接从文本提示生成随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行,可通过节点调整对潜在空间的操作,如噪声添加、去噪步数等,通常由潜在空间操作模块实现。 2. 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,通常通过调度器(如 Normal、Karras 等)控制,可通过“采样器”节点选择不同调度器控制潜在空间中噪声处理及逐步去噪回归到最终图像。 时间步数:生成图像时,扩散模型会进行多个去噪步,在 ComfyUI 中可通过控制步数影响图像生成的精细度和质量。 3. Denoising UNet(去噪 UNet 结构): UNet 模型:ComfyUI 底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成,它是一种编码器解码器结构,能处理多尺度特征表示,在 ComfyUI 中去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。 Cross Attention(交叉注意力):交叉注意力机制在 Stable Diffusion 中尤为重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现,可调整文本提示的权重影响生成图像的内容。 Skip Connection(跳跃连接):是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表示为中间过程数据的流转,可在不同推理步骤中查看中间生成结果并通过跳跃连接调整特定尺度上的生成效果。 Switch(切换器):在去噪过程中的不同阶段对特征流进行控制,在 ComfyUI 中可通过修改模型的参数节点或自定义网络结构节点,对不同阶段的噪声去除策略进行微调。 4. 基础模型:ComfyUI 使用预训练的扩散模型作为核心,通常是 Stable Diffusion 模型,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等模型,这些模型通过大量图像和文本对的训练,学会将文本描述与视觉概念关联起来。 5. 文本编码:当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示,该向量捕捉文本的语义信息。
2025-03-12
comfyUI是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer。通过把 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和良好的可复现性。 其具有以下优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 但也存在一些劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),不过也有一些针对 Comfyui 开发的有趣插件。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可,官方链接为:https://github.com/comfyanonymous/ComfyUI 。 ComfyUI 是一个开源的图形用户界面,用于生成 AI 图像,主要基于 Stable Diffusion 等扩散模型。其工作原理包括: 1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。在生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示的是从噪声生成图像的过程。在 ComfyUI 中,这通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数在生成图像时,扩散模型会进行多个去噪步。 此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2025-03-12
如何使用comfyUI和cursor做小程序
以下是关于使用 ComfyUI 和 Cursor 做小程序的一些信息: 雪梅 May 在其 AI 学习日记中提到,ComfyUI 的工作流加上 Cursor 的前端网页,可以完整地制作一个个人的 AI 产品。对于个人来说,这是一个可以学习的方向,学会这些,就有可能成为一人产品公司。 关于在 Pycharm 中运行代码的步骤: 新建一个文件夹来保存代码文件,比如在 E 盘新建“python”文件夹。 打开 Pycharm,新建项目,安排好路径。 新建好会自动生成.idea 文件夹和.venv 文件夹。 在路径文件夹里新建一个放代码文件的文件夹,可自行命名方便分类,如“game”。 在新建的文件夹里新建 python 文件或新建文件并加.py 后缀。 双击新建命名好的文件,如“2048game.py”,右侧会打开文本框,将代码复制到这里面。 把从第 3 步得来的代码复制进来,运行即可。 通常来说,只需要简单沟通即可。有问题复制进去继续问即可。 即便使用 Cursor 产出的代码,最好也在 Pycharm 中运行。若直接运行 2048 游戏代码可能会出现红字报错,需要 pip 安装 pygame 库。点击左下角红色方框,将 Deepseek 或 Cursor 提示的安装 Pygame 库的 pip 代码复制过来粘贴在刚点出来的界面,回车安装到虚拟环境里面,再回到运行点击三角形状的“运行”即可。提示词误差得不到好结果的可以复制上述代码试试,再自己尝试找找问题。 您可以参考以上内容来使用 ComfyUI 和 Cursor 做小程序,希望对您有所帮助。
2025-03-12
如何根据虑库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构呢
很抱歉,目前没有关于如何根据您提到的库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构的具体内容。但我可以为您提供一些一般性的思路和步骤: 首先,需要对库存水平、需求预测、补货成本和库存持有成本等数据进行详细的收集和分析。 对于线性规划方法,您可以建立一个目标函数,例如最小化总成本(包括补货成本和库存持有成本),同时满足库存水平和需求预测的约束条件。通过求解这个线性规划问题,得到最优的库存调整策略。 动态规划则是将问题分解为多个阶段,在每个阶段根据当前状态和决策选择来优化未来的结果。在库存调整中,可以根据不同时期的库存和需求情况,逐步做出最优决策。 随机优化适用于需求存在不确定性的情况。您可以建立概率模型来描述需求的不确定性,然后通过优化算法找到在不确定性条件下的最优库存策略。 不过,具体的应用和实现需要根据您的实际业务情况和数据特点进行深入研究和定制化的建模。
2025-01-06
deforum中初始化为什么不能以视频路径的视频进行风格转变?而是随机生成新视频?是哪里出现了问题?
很抱歉,目前知识库中没有关于“deforum 中初始化不能以视频路径的视频进行风格转变,而是随机生成新视频的原因及问题所在”的相关内容。但一般来说,出现这种情况可能是由于以下原因: 1. 视频格式或编码不兼容:deforum 可能不支持您所提供的视频的特定格式或编码方式。 2. 参数设置错误:可能在初始化过程中的某些参数设置不正确,导致无法按照预期使用指定视频进行风格转变。 3. 软件版本问题:您使用的 deforum 版本可能存在缺陷或不具备该功能。 建议您检查视频格式和编码,确认参数设置是否正确,并尝试更新到最新版本的 deforum 以查看是否能解决问题。
2024-10-18
随机森林模型的特征的选择方法
随机森林模型特征的选择方法主要包括以下几种: 1. 特征选择:通过统计测试(如皮尔森相关系数检测)来识别高度相关的特征,并从模型中移除一些。 2. 特征抽取:使用主成分分析(PCA)等方法将相关特征合并成少数几个独立的特征。 3. 正则化技术:在模型训练过程中应用正则化方法(如 L1、L2 正则化),可以减少冗余特征的影响。 通过这些方式,可以优化特征集,避免由于维度相近导致的问题,从而提高模型的准确性和解释性。这在任何数据驱动的系统中都是至关重要的,尤其是在依赖精确特征工程的推荐系统中。
2024-08-11
利用随机森林模型来预测空调制冷剂注入量
很抱歉,目前知识库中没有关于利用随机森林模型来预测空调制冷剂注入量的相关内容。但一般来说,使用随机森林模型进行预测需要以下步骤: 1. 数据收集:收集与空调制冷剂注入量相关的各种特征数据,例如空调型号、运行时间、环境温度、压力等。 2. 数据预处理:对收集到的数据进行清洗、标准化、缺失值处理等操作,以确保数据质量。 3. 特征工程:选择对预测有重要影响的特征,并进行适当的转换和组合。 4. 划分数据集:将数据分为训练集、验证集和测试集。 5. 训练模型:使用训练集数据训练随机森林模型,调整参数以获得较好的性能。 6. 模型评估:使用验证集评估模型的性能,如准确率、召回率等。 7. 模型调整:根据评估结果对模型进行调整和优化。 8. 最终预测:使用训练好的模型对新的空调数据进行制冷剂注入量的预测。 以上是一个大致的流程框架,实际应用中还需要根据具体情况进行调整和优化。
2024-08-11
基于随机森林模型的特征选择方法
基于随机森林模型的特征选择方法包括以下几种: 1. 统计测试:如通过皮尔森相关系数检测来识别高度相关的特征,并从模型中移除一些。 2. 特征抽取:使用主成分分析(PCA)等方法将相关特征合并成少数几个独立的特征。 3. 正则化技术:在模型训练过程中应用正则化方法(如 L1、L2 正则化),以减少冗余特征的影响。 通过这些特征选择方法,可以优化特征集,避免由于维度相近导致的问题,从而提高模型的准确性和解释性。这在任何数据驱动的系统中都非常重要,尤其是在依赖精确特征工程的推荐系统中。
2024-08-11
写一篇1到100的随机数,用python
好的,以下是根据你的需求为你生成的文章: 生成 1 到 100 的随机数的 Python 代码 我们可以使用 Python 标准库中的 `random` 模块来生成随机数。以下是一个简单的例子,它将生成一个包含 1 到 100 之间的随机整数的列表: ```python import random 生成 1 到 100 之间的随机整数的列表 random_list = 打印随机整数的列表 print ``` 这段代码使用了列表推导式,它会生成一个长度为 100 的列表,其中每个元素都是 1 到 100 之间的随机整数。`random.randint` 会返回一个随机的整数,范围在 1 到 100 之间,包括 1 和 100。 希望这段代码能够满足你的需求!如果你还有其他问题,请随时提问。
2024-08-11
我做过微商,主要是网上卖门票优惠劵,美食优惠卷,过节卖月饼种子礼盒,还有蟹卡,我平时时间比较富裕,请推荐我适合做那个行业的副业,我45岁,男士,适合利用哪款ai工具来帮助我的副业,我应该具体从什么开始学起,我是做能源石油开采行业的,请给我推荐几款副业,
您好,鉴于您的情况,以下是一些可能适合您的副业推荐: 1. 电商直播带货:您有销售经验,可以通过直播介绍和销售各类特色产品。 2. 在线咨询服务:利用您在能源石油开采行业的专业知识,为相关从业者提供咨询。 在 AI 工具方面,您可以考虑以下几种: 1. 智能客服工具:例如阿里云小蜜等,帮助您处理客户的常见问题,提高服务效率。 2. 数据分析工具:如百度统计、腾讯分析等,帮助您分析市场数据和客户需求。 对于学习,建议您从以下方面开始: 1. 了解 AI 工具的基本功能和操作方法。 2. 学习如何运用数据分析工具来挖掘潜在的市场需求和客户偏好。 希望以上建议对您有所帮助。
2024-09-16
Midjourney如何使用种子库
Midjourney 中种子库的使用方法如下: Midjourney 机器人使用种子数来创建一个类似于电视静电的视觉噪声场,作为生成初始图像网格的起点。每个图像的种子数是随机生成的,但可以通过“seed”或“sameseed”参数进行指定。在 v4 模型中,使用相同的种子数和提示词将产生相似的最终图像结果,利用这一点可以生成连贯一致的人物形象或者场景。种子数的取值范围在 0 到 4294967295 之间。 此外,Midjourney 还有其他相关参数,如“stop”用于在过程中途完成任务,“style”用于在 Midjourney 模型版本 4 之间切换,“stylize”影响 Midjourney 默认美学风格在任务中的应用强度,“uplight”和“upbeta”用于选择不同的放大方式等。 模型版本 5 的默认值包括纵横比、混沌、质量、种子、停止、风格化等,其取值范围和影响也各有不同。纵横比大于 2:1 属于实验性的,可能产生不可预测的结果。不同模型版本和参数之间的兼容性也有所差异。
2024-08-14
AI大模型训练是什么意思
AI 大模型训练是一个复杂的过程,主要包括以下方面: 1. 数据转换:当请求输入到模型时,会从自然语言形式转化为机器可理解的格式,通常是向量。 2. 数学计算确定参数:类似于通过已知的几组(x,y)值计算方程式 y=f(x)=ax+b 中的参数 a 和 b,大语言模型通过计算确定可能多达 1750 亿个的参数。 3. 一般训练步骤: 无监督学习:分析大量文本数据,学习语言基本结构和常识,具备文本补齐能力,将人类知识向量化以获得基础语言模型。 清洗出好的数据。 指令微调:训练模型理解并执行具体指令,如翻译文本,以回答问题,此阶段数据输入量相对减少。 对齐过程:引入人类评价标准和处理特定格式要求,优化模型输出以符合人类期望,包括处理文化、道德等细节。 4. 生成式预训练:是机器学习领域由来已久的概念,如 GPT 模型基于 Transformer 模型,在大型未标记文本数据集上进行预训练,并能生成类似人类自然语言的文本。 5. 大模型特点: 强大在于庞大的参数数量,这些参数在学习过程中不断调整,帮助模型深入理解和生成数据。 训练依赖大量数据,包括文本、图像、音频等,通过对数据的学习掌握丰富知识和技能。 总之,大模型训练是一个涉及多步骤、大量数据和复杂计算的过程,旨在使模型具备强大的语言处理和生成能力。
2025-03-11
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能系统。能够像人类一样思考、学习和执行多种任务,在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 ChatGPT 被认为是朝着 AGI 迈出的巨大一步。同时,Sam Altman 也指出人工通用智能的系统正浮现,它是人类进步脚手架上的另一个工具,可能标志着一个新的开始,带来经济增长和生活改善,比如治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等。
2025-03-10
AGI什么意思
AGI 指的是通用人工智能(Artificial General Intelligence),是一种能够像人类一样思考、学习和执行多种任务的人工智能系统,能够胜任几乎所有人类智力活动,其能力不局限于特定领域。例如,OpenAI 致力于 AGI 的研究,ChatGPT 就是由致力于 AGI 的 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具。当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革。
2025-03-10
请解释一下AGI是什么意思
AGI 指的是通用人工智能(Artificial General Intelligence),它是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。 例如,OpenAI 致力于研发实现 AGI 的技术,像 GPT 系列模型在某种程度上是朝着 AGI 迈出的巨大一步。人类在不断创新,从电力、晶体管、计算机、互联网,到很快可能出现的 AGI,每一代新的工具都推动着世界的进步。在未来,AGI 可能会让人们的生活在各方面获得极大的改善,比如治愈所有疾病、有更多时间陪伴家人以及充分发挥创造潜能等。
2025-03-06
你页面中的“AI提示词”是什么意思
AI 提示词是用于指挥 AI 生成您所需要内容的指令。它具有以下特点和作用: 角色设定:告诉大语言模型它在特定场景中所扮演的角色以及应专注的技能,使其能按照您的想法成为满足需求的“员工”。 描绘画面:用于描述您想要生成的画面,比如人物主体、风格、场景特点、环境光照、画面构图、画质等。 输入语言:支持中英文输入,不同的模型可能对输入语言的形式有不同要求。 优化方式:可以通过启用提示词优化来更生动地描述画面内容,还可以调整负面提示词以帮助 AI 理解不想生成的内容,利用“加权重”功能让 AI 明白重点内容,以及使用辅助功能如翻译、删除所有提示词、会员加速等。 语法规则:用英文半角符号逗号来分隔提示词,改变提示词权重有多种写法,还可以进行提示词的步数控制。
2025-03-05
AGI什么意思
AGI 指的是通用人工智能(Artificial General Intelligence)。它通常被定义为一种能够像人类一样思考、学习和执行多种任务的人工智能系统,能够在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 ChatGPT 被认为是朝着 AGI 迈出的巨大一步。同时,Sam Altman 也指出呈现人工通用智能特征的系统正浮现,人工通用智能是人类进步脚手架上的另一个工具,可能会带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好愿景。
2025-03-05