Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

写一篇1到100的随机数,用python

Answer

好的,以下是根据你的需求为你生成的文章:

生成 1 到 100 的随机数的 Python 代码

我们可以使用 Python 标准库中的 random 模块来生成随机数。以下是一个简单的例子,它将生成一个包含 1 到 100 之间的随机整数的列表:

import random

# 生成 1 到 100 之间的随机整数的列表
random_list = [random.randint(1, 100) for _ in range(100)]

# 打印随机整数的列表
print(random_list)

这段代码使用了列表推导式,它会生成一个长度为 100 的列表,其中每个元素都是 1 到 100 之间的随机整数。random.randint(1, 100) 会返回一个随机的整数,范围在 1 到 100 之间,包括 1 和 100。

希望这段代码能够满足你的需求!如果你还有其他问题,请随时提问。

Content generated by AI large model, please carefully verify (powered by aily)

References

训练Midjourney的prompt

--seed <integer between 0–4294967295> The Midjourney bot uses a seed number to create a field of visual noise,like television static,as a starting point to generate the initial image grids.Seed numbers are generated randomly for each image but can be specified with the --seed or --sameseed parameter.Using the same seed number and prompt will produce similar ending images.Stop--stop <integer between 10–100> Use the --stop parameter to finish a Job partway through the process.Stopping a Job at an earlier percentage can create blurrier,less detailed results.Style--style <4a,4b or 4c> Switch between versions of the Midjourney Model Version 4Stylize--stylize <number>,or --s <number> parameter influences how strongly Midjourney's default aesthetic style is applied to Jobs.Uplight--uplight Use an alternative"light"upscaler when selecting the U buttons.The results are closer to the original grid image.The upscaled image is less detailed and smoother.Upbeta--upbeta Use an alternative beta upscaler when selecting the U buttons.The results are closer to the original grid image.The upscaled image has significantly fewer added details.Default Values(Model Version 5)Aspect Ratio Chaos Quality Seed Stop StylizeDefault Value1:1 0 1 Random 100 100Rangeany 0–100.25.5,or 1 whole numbers 0–4294967295 10–100 0–1000Aspect ratios greater than 2:1 are experimental and may produce unpredicatble results.CompatibilityModel Version & Parameter CompatabilityAffects initial generation Affects variations + remix Version 5 Version 4 Version 3 Test / Testp NijiMax Aspect Ratio ✓ ✓ any 1:2 or 2:1 5:2 or 2:5 3:2 or 2:3 1:2 or 2:1Chaos ✓ ✓ ✓ ✓ ✓ ✓Image Weight ✓ ✓ ✓ ✓

🎯训练Midjourney的prompt(可举一反三)

--quality <.25,.5,1,or 2>,or --q <.25,.5,1,or 2> How much rendering quality time you want to spend.The default value is 1.Higher values cost more and lower values cost less.Seed--seed <integer between 0–4294967295> The Midjourney bot uses a seed number to create a field of visual noise,like television static,as a starting point to generate the initial image grids.Seed numbers are generated randomly for each image but can be specified with the --seed or --sameseed parameter.Using the same seed number and prompt will produce similar ending images.Stop--stop <integer between 10–100> Use the --stop parameter to finish a Job partway through the process.Stopping a Job at an earlier percentage can create blurrier,less detailed results.Style--style <4a,4b or 4c> Switch between versions of the Midjourney Model Version 4Stylize--stylize <number>,or --s <number> parameter influences how strongly Midjourney's default aesthetic style is applied to Jobs.Uplight--uplight Use an alternative"light"upscaler when selecting the U buttons.The results are closer to the original grid image.The upscaled image is less detailed and smoother.Upbeta--upbeta Use an alternative beta upscaler when selecting the U buttons.The results are closer to the original grid image.The upscaled image has significantly fewer added details.Default Values(Model Version 5)Aspect Ratio Chaos Quality Seed Stop StylizeDefault Value1:1 0 1 Random 100 100Rangeany 0–100.25.5,or 1 whole numbers 0–4294967295 10–100 0–1000Aspect ratios greater than 2:1 are experimental and may produce unpredicatble results.CompatibilityModel Version & Parameter CompatabilityAffects initial generation Affects variations + remix Version 5 Version 4 Version 3 Test / Testp Niji

Claude官方提示词工程最佳实践s (2).pdf

响应中注入的随机性数量●默认为1,范围从0到1●温度设定为0的时候,通常能在多次使用相同提示的实验中产生更加一致的结果对于分析性任务/有很多选项的任务,使用接近0的温度;对于创造性和生成性任务,使用接近1的温度Guide to API parametersLengthRandomness & diversitytemperature● Amount of randomness injected into the response● Defaults to 1,ranges from 0 to 1● Temperature 0 will generally yield much more consistent results over repeated trialsusing the same promptUse temp closer to 0 for analytical / multiple choice tasks,andcloser to 1 for creative and generative tasksAPI参数指南长度随机性与多样性top_p●使用nucleus sampling:●对每个后续token的所有选项以递减概率顺序计算累积分布,一旦达到由top_p指定的特定概率就切断top_k●对于每个要接龙的token,仅从前K个选项中进行采样●用于消除“长尾”低概率响应。在这里了解更多最好是调整温度或top_p中的一个,而不是同时把这两个都调了(建议多用温度,少用top_p)@未来力场总结注释(欢迎指正):Top_p和Top_k都是用于控制文本生成的采样策略,可以生成更加连贯和可读的文本。Top p通过设置累积概率阈值来采样高概率词汇,去除低概率的“长尾部”。Top K直接仅从前K个最可能的词中采样,也可以起到消除低概率词的作用。

Others are asking
100 万 tokens 什么概念
100 万 tokens 具有以下重要意义和影响: 算法视角:更宽的上下文窗口允许模型在推理时纳入训练数据中未找到的大量新的、特定于任务的信息,从而提高各种自然语言或多模式任务的性能。对越来越长的上下文进行数据建模的能力经历了从 Shannon 1948 提出的 2gram 语言模型、到 1990 年代和 2000 年代的现代 ngram 模型(5 个上下文 token),2010 年代的循环神经网络(RNN)达到数百个 token(Jozefowicz 等),到 2023 年 Anthropic 将上下文扩展到几十万 token 的发展历程。 产品视角:长上下文意味着 LLM 理解能力增强。从提示词到 RAG,都是为了增加给模型的上下文,进而让需求更明确,让模型理解得更好。从用数据训练模型、到指令微调,到提示词和 RAG,到大模型的超长下文,机器越来越像人了。提示词和 RAG 正在快速被弱化,但出于工程和商业考量,目前在很多领域还是主流,未来依然可能是一个混合状态。模型上下文长度覆盖了书籍、电影、长视频等产品的通用长度,应该会引发相关链路上产品交互层的变化。 具体应用:Gemini1.5 支持 100 万 token,可以一次性处理大量信息,比如 1 小时的视频,11 小时的音频,超过 30,000 行代码或超过 700,000 个单词的代码库。Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 Token。ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 Token;ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 Token。Token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时,会遗忘最前面的对话。若想直观查看 GPT 如何切分 token,可以打开。此外,英文的 Token 占用相对于中文较少,因此很多中文长 Prompt 会被建议翻译成英文设定,然后要求中文输出。
2025-01-28
分析一下a16z 的ai top100榜单
以下是对 a16z 的 AI top100 榜单的分析: A16Z 的 AI top100 榜单聚焦生成式 AI 应用。自 ChatGPT 将生成式 AI 引入公众视野以来,已涌现出成千上万面向消费者的相关产品。 在 AI 陪伴方面,它已成为生成式 AI 的主流应用场景之一。例如,Character.AI 在网页端和移动端榜单上表现出色。网页端有八家 AI 陪伴公司进入榜单,移动端有两家。其中,多数产品自诩“无限制”,用户可进行不受限的对话或互动,且访问主要通过移动网页,平均 75%的流量来自移动设备。对于有移动应用的陪伴产品,用户参与度高,如 Character.AI 每位用户平均每月会话次数达 298 次,Poly.AI 为 74 次。 时隔六个月更新分析,超过 40%的公司是首次出现在榜单上。与六个月前相比,有 30%的新公司。名次进步最大的是 Suno,从第 36 名到第 5 名。移动端最多的应用是图像和视频编辑,占 22%。Luzia 服务西班牙语用户值得关注。字节多款应用上榜,包括 Coze、豆包、CiCi、醒图、Gauth。美学和约会应用开始增加,为用户提供相关建议。此外,Discord 流量值得关注,相当多的应用在其平台完成 PMF 验证。 原文链接:https://a16z.com/100genaiapps/ 作者:A16Z Olivia Moore 发布时间:2024.03.13 去年 9 月的报告:
2025-01-02
AI 100天学习日志
以下是关于雪梅 May 的 AI 学习日记的相关内容: 1. 适合人群:适合纯 AI 小白,若还在观望不知如何入手,可参考此日记。 2. 学习模式:学习模式为输入→模仿→自发创造。若对费曼学习法没自信,可尝试此模式。 3. 学习内容:日记中的学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区发现感兴趣的领域并学习最新内容。 4. 学习时间:在半年多时间跨度中,其中 100 天学习 AI,并非每天依次进行,有空时学习,目前作者已进行到 90 天。 5. 学习费用:学习资源免费开源。 此外,作者在第九阶段的感受是,想明白从让个人更优秀角度前进就有很多灵感,其学习路径为迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。在第二阶段,作者因自身工作选择了 AI agent 领域的 coze 进行学习,认为可根据自身熟悉领域选择学习方向,coze 适用所有人,无需代码基础和图文审美,只要能发现智能体需求,就可用工作流实现。
2025-01-02
coze 如何 100% 调用插件
在 Coze 中调用插件并非能 100% 保证成功,以下是一些相关信息: Coze 的工作流中,节点是基本单元,插件节点可用于扩展大语言模型本身的限制,实现特定功能,如抓取网页内容。 加入智能体后,会有调用次数的统计。 即使是官方插件也可能存在不稳定的情况,需要自行尝试找到适合当前场景的插件。 例如在微信图片助手的打造中,有以下操作: 任务 1 总结图片内容对应【识图小能手】等任务与相应插件存在对应关系,已在 Coze 插件商店上架,搜索关联即可。 配置插件时,需准备好 Glif 的 Token,在 Coze 中编辑参数选项填入 Token 并保存,同时关闭对大模型的可见按钮。 通过已有服务 api 创建插件时: 进入 Coze 个人空间选择插件,新建并命名,填入 ngrok 随机生成的 https 链接地址,配置输出参数,测试后发布。 手捏插件后可创建 bot 并接入插件,在 prompt 中要求调用插件。 需要注意的是,Coze 调用插件有一定随机性,对输入输出内容会有过滤,如果多次尝试不成功,可优化提示词使其更准确识别输入意图,且不要使用违规字词和图片内容。
2024-12-28
coze 如何 100% 调用工作流或插件
要 100% 调用 Coze 的工作流或插件,您可以参考以下内容: 实现工作流方面: 上传输入图片。 理解图片信息,提取图片中的文本内容信息。 进行场景提示词优化/图像风格化处理。 返回文本/图像结果。 搭建流程时,主要步骤包括上传图片(将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用),以及将图片理解大模型和图片 OCR 封装为工作流插件(若市场中有可直接使用)。 Coze 简介: 插件:Coze 提供丰富的插件选项,允许通过 API 连接集成各种平台和服务,扩展 Bot 功能,可轻松调用或创建定制插件。 工作流:是强大的工具,用于设计和实施复杂的功能逻辑,通过拖拽不同任务节点构建多步骤任务,提高 Bot 处理任务效率。 图像流:提供可视化操作界面,允许灵活添加处理节点,设计图像处理流程。 触发器:允许 Bot 在设定的特定时间或发生特定事件时自动执行任务,是自动化处理的关键组件。 知识库:使您能够添加和利用本地或在线的文本内容和数据表,支持 Bot 提供更准确和实用的回答。 变量:帮助 Bot 存储用户的个人信息,如语言偏好,使回复更加个性化和精准。 数据库:提供简单高效的方式管理和操作结构化数据,支持自然语言的数据插入和查询,还支持多用户模式,提供灵活读写权限控制。 长期记忆:使 Bot 能够形成对用户的个人记忆,基于这些记忆提供个性化回复,提升用户体验。 卡片:允许自定义 Bot 生成内容的格式,以卡片形式展示,增强交互体验。 大模型:通过人设与回复逻辑中的一系列设定,编排 Bot 的具体执行任务和执行逻辑。 此外,判断任务/Prompt 是否需要拆解为工作流时,通常先从当前性能最强的 LLM 着手,用单条 Prompt 或 Prompt Chain 测试任务执行质量和稳定性,再根据实际情况逐步拆解子任务。对于场景多样、结构复杂、对输出格式要求严格的内容,基本可预见需要拆解为工作流。鉴于 LLM 只能处理文本输入输出的特性,涉及生成多媒体内容或从网络自主获取额外信息等能力时,必然需要通过工作流来调用相应的插件。
2024-12-28
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
怎么学python,以适应AI时代趋势为导向
以下是一些关于以适应 AI 时代趋势为导向学习 Python 的建议: 1. 学习资源: 微信机器人教程,其中介绍了在 Linux 环境安装 Python 以及 Python 虚拟环境的相关知识。 吴恩达的 AI Python 初学者课程,这是一系列四门短期课程,适合任何技术水平的人。 2. 基础知识: 掌握 Python 的安装和编程基础,包括变量、数据类型、控制结构、函数等。 了解 Python 虚拟环境,它是一个独立的 Python 运行空间,用于隔离不同项目的依赖库,避免与系统的 Python 版本形成冲突。 3. 数学和理论基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的发展历程和重要里程碑。 4. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN),以及常用的激活函数,如 ReLU、Sigmoid、Tanh。 5. 实践和应用: 学会向 AI 提供线索,这对于快速修复问题非常重要。 可以使用 Cursor 的菜单 Open in intergrated Terminal 直接切换到对应目录,也可以使用 cd 命令。 参考 Cursor 提示词网站:https://cursor.directory/,学习和参考其中大量网友实践后上传的提示词。 通过构建 AI 应用程序进行学习,例如编写与大型语言模型交互的代码,以快速创建有趣的应用程序来定制诗歌、编写食谱和管理待办事项列表。 总之,强烈推荐在 AI 时代掌握 Python 这门编程语言,不断学习和实践,以适应时代的发展趋势。
2025-02-17
python
以下是关于 Python 安装相关 AI 编程助手的信息: 安装 FittenAI 编程助手: 这两年 AI 发展迅猛,改变了很多人的工作方式,编程领域也不例外,AI 作为编程助手能提供实时建议和解决方案,提升工作效率。 配置 AI 插件前需先安装 Python 运行环境,可参考:。 安装步骤:点击左上角的 File Settings Plugins Marketplace。安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。 功能包括智能补全(按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议)、AI 问答(通过点击左上角工具栏中的 Fitten Code 开始新对话打开对话窗口进行对话)、自动生成代码(Fitten Code 工具栏中选择“Fitten Code 生成代码”,然后在输入框中输入指令即可生成代码)、代码转换(选中需要进行翻译的代码段,右键选择“Fitten Code 编辑代码”,然后在输入框中输入需求即可完成转换)、自动生成注释(Fitten Code 能够根据代码自动生成相关注释)。 安装灵码 AI 编程助手: 同样在 AI 快速发展的背景下,其能为编程带来高效帮助。 配置前也需先安装 Python 运行环境,可参考:。 安装步骤:点击左上角的 File Settings Plugins Marketplace。安装完成插件会提示登录,按要求注册登录即可。使用上和 Fitten 差不多。 安装 FaceFusion 时的 Python 环境配置: FaceFusion 是开源换脸工具,安装较繁琐。 其所需环境包括 Python(需是 3.10 版本,不能高于 3.7 到 3.10,因为 onnxruntime==1.16.3 需要 Python 版本在 3.7 到 3.10 之间,推荐使用安装包下载安装:python 下载地址 https://www.python.org/downloads/,下载对应版本后点击安装,注意添加到系统环境变量中,也可使用命令行安装方式)、PIP、GIT、FFmpeg(安装后需重新启动系统以使 FFmpeg 正常运行)、Microsoft Visual C++2015 可再发行组件包、微软 Visual Studio 2022 构建工具(安装过程中确保选择桌面开发与 C++包)。
2025-02-13
python现在能和ai软件怎么结合应用
Python 与 AI 软件可以通过以下方式结合应用: 1. 安装编程助手插件,如 FittenAI 编程助手或灵码 AI 编程助手: 安装 Python 的运行环境,可参考 。 对于 FittenAI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成后左侧会出现插件图标,注册登录后即可开始使用。使用时,按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议;通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行 AI 问答;在 Fitten Code 工具栏中选择“Fitten Code生成代码”,然后在输入框中输入指令即可自动生成代码;选中需要进行翻译的代码段,右键选择“Fitten Code–编辑代码”,然后在输入框中输入需求即可完成代码转换;Fitten Code 能够根据代码自动生成相关注释。 对于灵码 AI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成插件会提示登录,按要求注册登录即可,使用上和 Fitten 差不多。 2. 如果希望更深入地结合应用,最好体系化地了解编程以及 AI 知识,至少熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。
2025-01-25
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
Python机器学习基础教程
很抱歉,目前知识库中没有关于“Python 机器学习基础教程”的具体内容。但我可以为您提供一个大致的指导方向。 首先,学习 Python 机器学习需要掌握 Python 编程语言的基础知识,包括数据类型、控制结构、函数等。 其次,了解常见的机器学习概念和算法,如线性回归、逻辑回归、决策树、聚类等。 然后,学习使用相关的 Python 库,如 Scikitlearn,它提供了丰富的机器学习工具和函数。 您可以通过在线课程、书籍、官方文档等多种资源来深入学习 Python 机器学习。
2025-01-23
我想学习使用python
Python 是一种高级编程语言,具有以下特点和优势: 特点:简单易学、功能强大、库丰富。可以想象成一个拥有多种工具的工具箱,能帮助完成画画、计算、整理东西等各种任务。 起源:1989 年由 Guido van Rossum 在荷兰的 Centrum Wiskunde&Informatica(CWI)开始开发,1991 年发布第一个公开发行版 Python 0.9.0,之后不断发展,2020 年 1 月 1 日 Python 2 正式停止支持。 为什么使用:环境部署简单,下载两个软件并点击安装即可;语法简单且可读性强,适合小白;应用广泛,可用于做网站、开发游戏、分析数据、自动化任务等。 如果您想深入学习 Python,至少需要熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进)、数据类型(如字符串、整数、浮点数、列表、元组、字典)、控制流(如条件语句、循环语句)。 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块和使用包来扩展程序功能。 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。 异常处理:理解异常以及如何使用 try 和 except 语句处理错误。 文件操作:掌握文件读写和文件与路径操作。 在学习 Python 的课程中,比如“和 Cursor AI 一起学 Python 编程”的第一节,会介绍 Python 是什么、Cursor 使用、notebook 远程编程。包括 Python 的简介、发展历史和特点,在数据分析和人工智能等领域的优势及应用案例,还会介绍 Cursor 编程环境,它是结合了 AI 功能的编程编辑器,具有 AI 辅助代码补全和生成、实时语法和错误检查等功能和优势,以及 Bohrium 在线编程平台,它是 AI for Science 的科研学习平台,利用其 Jupyter Notebook 进行远程编程具有无需本地环境配置、内置丰富功能、适合团队协作和教学场景等优势。
2025-01-13
怎么用ai辅助写一篇文章
以下是关于如何用 AI 辅助写一篇文章的方法: 1. 对于孩子使用 AI 辅助写作文,应避免提封闭性问题,改为开放性问题或让 AI 帮助提出拓展思考的问题。担心孩子代写偷懒,可要求孩子提交与 AI 共同完成作文的聊天记录,由 AI 写作文,孩子进行点评批改并让 AI 迭代出更好的文章,评价关注点在于孩子能否说清 AI 作文的优缺点及如何修改。 2. 成人使用 AI 辅助写作时,可参考以下高效写作的关键步骤: 把对标选题内化成自己的东西,思考如何注入个人特色,打造专属爆款。 常见做法包括:结合自身人设、定位,融入相关内容;结合自身经历,分享真实体验;补充新信息、新观点,使文章更全面;使用自己的语言风格;调整文章结构。 例如,人设可以是最懂 AI 工作流的 00 后,写作时收敛到 AI 工作流话题,还可加入 00 后大学生用相关工具的情况;对于选题可以加入自己使用的真实体验;补充原文未提到的新进展、新观点或实用技巧;按照自己的语言风格写作;调整文章结构,如将“5 种方法”改为“3 步上手+2 个进阶技巧”等。目的是让读者感觉文章具有个人特色。
2025-02-13
写一篇关于个人AI生存协作的探索指南
以下是一篇关于个人 AI 生存协作的探索指南: 一、相关研究和报告 1. 平安证券发布的《AI 系列深度报告(六):AI 智能眼镜:AI 技术应用落地新风口,25 年有望迎来新品密集发布》指出,AI 技术推动终端创新,AI 智能眼镜成为新风口,具有轻薄、功能聚焦视听、佩戴舒适等特点,预计 2025 年新品将密集发布,销量有望翻倍。 2. 腾讯研究院发布的《2025 年 AI 转型的进展洞察报告》深入探讨了 AI 转型的定义、内涵、应用现状、投资情况、挑战与风险以及未来展望。报告指出企业对生成式 AI 的探索集中在核心业务环节,但在职能性环节成熟度更高,应用时以多目标为导向,优先聚焦提升核心能力和优化现有业务。 二、基础篇 过去一年持续进行了关于 AI 协作探索的研究和分享,包括 AI 产品的流量和竞争视角分析等。 三、协同智能的七种武器 1. 认知层/武器一:As Team,Be Leader 2. 视角层/武器二:AI as Person 3. 视角层/武器三:AI as ME 4. 视角层/武器四:AI as Alien 5. 实践层/武器五:AI as Tool 6. 实践层/武器六:AI as Mirror&Coach 7. 实践层/武器七:AI as Coworker&Friend 四、拓展阅读 包括 Gamma embed、AIGC 行业、AI 变革、公司/产业实践等方面的内容。 五、人类价值的低替代、提升方向和方式重塑 在领导决策、创新思维、沟通能力等方面,思考和创新占 70%,想法的实现执行和与 AI 协作执行占 30%。
2025-02-12
我需要你给我生成一些提示词,我会给你我想的想法。《》以内的是想法。《我想写一篇影视解说的文案,写作的视角以我,第一人称的视角来写。想要风格偏幽默风趣一点,就像跟朋友在讲述一样,可以模仿鲁迅先生的手法。而且还想把影片的剧情内容写出来,从开篇到电影的结尾,如果有需要保留原片的地方,请把原片的画面场景以及时间段描述出来。要求这篇文案要附上我自己的内心独白,以此引人深思!请你深度思考后,在做答复!要求字数不少于5000字。》请问我该如何写提示词?请你整理好提示词后发给我
以下是为您生成的一些提示词,希望对您有所帮助: 影视解说文案提示词 1. 以第一人称幽默风趣的口吻,像与朋友讲述般,描绘影片从开篇到结尾的精彩剧情,融入自己的内心独白,模仿鲁迅先生的手法,展现独特的视角和深刻的思考。 2. 用轻松幽默的语言,以我的视角详述影片情节,穿插搞笑的评论和内心想法,借鉴鲁迅先生的讽刺技巧,使解说引人入胜。 3. 以亲切自然的叙述方式,如同与好友聊天,讲述影片故事,从开头至结束,结合鲁迅先生的文风,加入个人的情感起伏和独特见解。 DALL·E 相关提示词 1. 绘画:提及颜料种类、画布纹理和笔触形状/纹理(列表)。 2. 数字:注明使用的软件、阴影技术和多媒体方法(列表)。 3. 基于详细提示使用 DALL·E 3 生成图像,让创意鲜活起来,为提示的每个元素做出大胆有趣的选择。 4. 遵循提示指南,提出四个全新的简单概念,而非完整提示,从上次给出的建议中获取灵感。 请注意,默认方面比率为正方形(1:1),默认风格为摄影,包括相机设置、摄影类型和设备。同时,避免违反服务条款的词汇或概念,不侵犯版权,不使用暗示性或露骨的图像,强调符合 G 级评级的元素。
2025-02-06
想让ai帮助写一篇论文
在论文写作方面,AI 技术的应用能提供多方面的辅助。以下为您介绍一些相关的 AI 工具和利用 AI 写论文、课题的方法: 常用的论文写作 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写论文的方法: 目前大多数人零碎使用 AI 工具,未系统应用到工作场景,可能导致整体效率不高。要形成适合自己的 AI 工作方法论和流程,比如在挑选和切换工具时避免浪费时间。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 请注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时要保持批判性思维,确保研究质量和学术诚信。
2025-01-30
如何让ai写一篇很好的文学理论 论文
以下是关于如何让 AI 写一篇好的文学理论论文的相关内容: 首先,过度追求模型的正面描述和对齐人类价值观可能会带来问题。比如在文学创作中,道德过度正确和大量正面描述实际上是一种“对齐税”,会让模型变得愚蠢。像生成的游戏中主人公全是幸福人生,这样的故事缺乏冲突,人物单薄,不好看。而且全乎正确的道德和完美的正面在现实世界中并不存在,纵观文学史,伟大的文学作品几乎没有全是正面描述的,因为人类的心灵与生活极为复杂,痛苦、绝望和悲伤也是生命体验的一部分,只有正面的故事很难获得共鸣。 其次,好的文字能引起人的生理共鸣与情绪。人们在感受到好文字时,往往有一种被击中、头皮发麻的感觉。共鸣是文学的基础,有共鸣才有读者,有读者才有文学。文学映照的是人类相同的渴望与恐惧,人类之间的共性大于差异。对于像 GPT 这样的大语言模型,其预训练数据量大且丰富,储存了人类几乎所有可能的生命经验,理应能够学会引发人类的共鸣与情绪。 最后,在实际操作中,对于处理文本特别是 PDF,Claude 2 表现出色。可以将整本书粘贴到 Claude 的前一版本中取得不错的结果,新模型更强大。但需要注意的是,这些系统仍会产生幻觉,若要确保准确性,需检查其结果。
2025-01-29
我把一篇文章导入后可以快速生成思维导图的工具有什么
以下是一些可以在导入文章后快速生成思维导图的工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内的思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的思维导图助手,可一键拓展思路并生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 此外,利用 GPTs 结合 Gapier 这个提供免费 Action 的第三方平台,也可以实现将文章转换为思维导图。具体操作如下: 1. GPTs 地址: 2. 提供文章或者链接,可以是网络路径,也可以直接提供文章内容。 3. 查看思维导图,可按需求自行优化 prompt,要求提供图片下载路径或直接显示图片。但使用过程中可能偶尔存在一些问题,反馈给 Gapier 官方后解决速度较快。
2025-01-16