Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfyUI是什么

Answer

ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer。通过把 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和良好的可复现性。

其具有以下优势:

  1. 对显存要求相对较低,启动速度快,出图速度快。
  2. 具有更高的生成自由度。
  3. 可以和 webui 共享环境和模型。
  4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。
  5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。

但也存在一些劣势:

  1. 操作门槛高,需要有清晰的逻辑。
  2. 生态没有 webui 多(常用的都有),不过也有一些针对 Comfyui 开发的有趣插件。

您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可,官方链接为:https://github.com/comfyanonymous/ComfyUI 。

ComfyUI 是一个开源的图形用户界面,用于生成 AI 图像,主要基于 Stable Diffusion 等扩散模型。其工作原理包括:

  1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。在生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。
  2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。
  3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示的是从噪声生成图像的过程。在 ComfyUI 中,这通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数在生成图像时,扩散模型会进行多个去噪步。

此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:ComfyUI 是什么?

ComfyUI是一个基于节点流程式的stable diffusion AI绘图工具WebUI,你可以把它想象成集成了stable diffusion功能的substance designer,通过将stable diffusion的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。[heading2]优劣势[content]优势:1.对显存要求相对较低,启动速度快,出图速度快;2.具有更高的生成自由度;3.可以和webui共享环境和模型;4.可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步;5.生成的图片拖进后会还原整个工作流程,模型也会选择好。劣势:1.操作门槛高,需要有清晰的逻辑;2.生态没有webui多(常用的都有),也有一些针对Comfyui开发的有趣插件。[heading2]官方链接[content]从github上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI[heading2]截图示例[content][heading2]延伸阅读:[content]内容由AI大模型生成,请仔细甄别。

ComfyUI的生图原理 副本

ComfyUI是一个开源的图形用户界面,用于生成AI图像,主要基于Stable Diffusion等扩散模型。想要达到精准控制图像生成就要了解他的底层原理,这样才能做到什么时间什么节点用什么办法对其精准控制,以下是其工作原理的详细解释:[heading3]Pixel Space和Latent Space[content]Pixel Space(像素空间):图的左边表示输入图像的像素空间,在ComfyUI中,这个对应于你可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。在生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。Latent Space(潜在空间):ComfyUI中的应用:ComfyUI的许多操作都在潜在空间中进行,如KSampler节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在ComfyUI中,你可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。这部分通常由潜在空间操作模块来实现。[heading3]2.扩散过程(Diffusion Process)[content]噪声的生成和逐步还原:扩散过程表示的是从噪声生成图像的过程。在ComfyUI中,这通常通过调度器(Schedulers)控制,典型的调度器有Normal、Karras等,它们会根据不同的采样策略逐步将噪声还原为图像。你可以通过ComfyUI中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数TTT:在生成图像时,扩散模型会进行多个去噪步。图中展示的zTz_TzT代表不同时间步长下的潜在表示。在ComfyUI中,你可以通过控制步数来影响图像生成的精细度和质量。

AI 女友麦洛薇(0 代码 comfyui 搭建,知识图谱稳定人设,无限上下文,永久记忆,可接入飞书)

大家好,我是一个开源项目作者ailm。ComfyUI是一个专为Stable Diffusion设计的基于节点的图形用户界面。它允许用户通过链接不同的节点来构建复杂的图像生成工作流程。而笔者ailm在ComfyUI上搭建了一个可以接入飞书的AI女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动SD绘图等功能。由于是基于comfyui开发,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改我的工作。

Others are asking
我要学ComfyUI,我们有哪些学习资源?
以下是一些学习 ComfyUI 的资源: 1. 网站资源: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,介绍了 ComfyUI 的特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。教程地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程。教程地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 2. 飞书学习群资源: 王蓉🍀🎈Wang Easy 基础搭建和转绘 唯有葵花向日晴 基础教程,工作流开发,实际应用场景 热辣 Huolarr AI 系统课私聊图生视频 咖菲猫咪 基础教程/工作流搭建思路/各版本模型使用的优缺点 傅小瑶 Lucky 如何制作多人转绘视频 云尚 工作流节点搭建思路 FǎFá 热门节点功能,搭建 森林小羊 基本报错解决方式及基础工作流逻辑分析 苏小蕊 基础教程 Sophy 基础课程 蜂老六 装一百个最新常用插件后如何快速解决冲突问题 阿苏 工作流框架设计 aflyrt comfyui 节点设计与开发 老宋&SD 深度解释虚拟环境部署和缺失模型的安装 Liguo 模型训练 啊乐福 基础课程 塵 优秀案例 风信 基础课程➕平面设计应用场景 北南 基础课程 视频工作流框架设计 Damon 基础课程 渔舟 基础课程+工作流搭建思路 乔木船长 工作流 ☘️ 基础教程 ☘ 基础教程 工作流设计+典型案例剖析 麒白掌 工作流搭建 OutSider 风格迁移 吴鹏 基础+工作流搭建 拾光 工作流基础搭建从入门到精通 茶浅浅。视频转绘/节点工作流介绍 百废待.新(早睡版)工作流从入门到进阶 电商应用场景 Stuart 风格迁移 红泥小火炉 基础课程 大雨 换背景图 Anna 娜娜° 图生 3D 🎵柒小毓 基础课程 Ting 基础课程 郑个小目标 针对于某个插件的深入讲解 波风若川 报错解决 chen 工作流的研发 朱敏🎈 基础课程,工作流 王卓圻 基础课程 南城 基础课程 Zero one 工作流开发 梓阳 基础课程 蓝牙耍手机 工作流搭建思路 皮皮 Peter 工作流的设计规划和调优逻辑 Jāy Līn 锦鲤 工作流搭建逻辑和原理 K 如何本地部署基础生图参数选择工作流的基本应用 Adai 基础课程 镜生 视频 x 基础教程 梦飞 基础教程 🙋🙋🙋 各个节点讲解和参数含义 戴志伟 基础课程 雪娴_CC 基础课程,从安装开始 Joey 实时转绘工作流 倪星宇 22 换脸换背景实践落地 早点睡觉 CT 优秀案例 三思 基础教程 晓珍 Mr.大狐🏝 报错解决 Duo 多吉~ 基础课程 陈旭 常用节点讲解和简单的节点制作 长风归庭 基础教程+工作流创建 ヘヘ阿甘 采样器原理与优化 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-12
comfyUI和webUI的区别
ComfyUI 和 WebUI 的区别主要体现在以下几个方面: ComfyUI: 简介:是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 WebUI 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 WebUI 多(常用的都有),但也有一些针对 ComfyUI 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 插件推荐: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD WebUI: 采样器与调度器:在 ComfyUI 中,采样器与调度器分开,而在 WebUI 中的采样方法是把两者合并在一起。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,一般选择 karras 调度器效果较好。 在插件安装方面,WebUI 有较好的用户界面,安装插件后可直观看到并使用;而 ComfyUI 安装插件后可能看不到,需通过节点连接才能感受到其功能。
2025-03-12
如何学习comfyUI
以下是一些学习 ComfyUI 的途径和资源: 1. 官方文档:ComfyUI 官方文档提供了使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了其特点、安装方法及如何生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在找到。 此外,还有以下 ComfyUI 共学快闪的学习内容: 王蓉🍀🎈Wang Easy 基础搭建和转绘 唯有葵花向日晴 基础教程,工作流开发,实际应用场景 热辣 HuolarrAI 系统课私聊图生视频 咖菲猫咪 基础教程/工作流搭建思路/各版本模型使用的优缺点 傅小瑶 Lucky 如何制作多人转绘视频 云尚 工作流节点搭建思路 FǎFá 热门节点功能,搭建 森林小羊 基本报错解决方式及基础工作流逻辑分析 苏小蕊 基础教程 Sophy 基础课程 蜂老六 装一百个最新常用插件后如何快速解决冲突问题 阿苏 工作流框架设计 aflyrt comfyui 节点设计与开发 老宋&SD 深度解释虚拟环境部署和缺失模型的安装 Liguo 模型训练 啊乐福 基础课程 塵 优秀案例 风信 基础课程➕平面设计应用场景 北南 基础课程 视频工作流框架设计 Damon 基础课程 渔舟 基础课程+工作流搭建思路 乔木船长 工作流 ☘️ 基础教程 ☘ 基础教程 工作流设计+典型案例剖析 麒白掌 工作流搭建 OutSider 风格迁移 吴鹏 基础+工作流搭建 拾光 工作流基础搭建从入门到精通 茶浅浅 视频转绘/节点工作流介绍 百废待.新(早睡版)工作流从入门到进阶 电商应用场景 学习使用 ComfyUI 的原因包括: 更接近 SD 的底层工作原理。 实现自动化工作流,消灭重复性工作。 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 api 及本文所讲的内容等。 可根据定制需求开发节点或模块。 例如,金属文创建工作流是因为工作室需要抠图素材,传统途径存在问题,近期在 github 上看到相关项目后创建了工作流,不仅可用于绿幕素材抠图,还能自动生成定制需求的抠图素材,全程只需几秒。
2025-03-12
comfyui 随机种子是什么意思
在 ComfyUI 中,随机种子(seed)主要用于控制潜空间的初始噪声。如果您想重复生成一模一样的图片,就需要用到这个随机种子。需要注意的是,要生成完全相同的图片,种子和 Prompt 都要相同。每次生成完图片后,上面的 seed 数字都会变化,而 control_after_generate 配置项则是设置这个变化规则,包括 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。例如在某些工作流中,随机种子可能被设置为特定的值,如 30 或 79 等,以实现特定的效果或结果重现。
2025-03-12
ComfyUI的生图原理
ComfyUI 的生图原理主要包括以下几个方面: 1. Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,可能通过“图像输入”模块或直接从文本提示生成随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行,可通过节点调整对潜在空间的操作,如噪声添加、去噪步数等,通常由潜在空间操作模块实现。 2. 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,通常通过调度器(如 Normal、Karras 等)控制,可通过“采样器”节点选择不同调度器控制潜在空间中噪声处理及逐步去噪回归到最终图像。 时间步数:生成图像时,扩散模型会进行多个去噪步,在 ComfyUI 中可通过控制步数影响图像生成的精细度和质量。 3. Denoising UNet(去噪 UNet 结构): UNet 模型:ComfyUI 底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成,它是一种编码器解码器结构,能处理多尺度特征表示,在 ComfyUI 中去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。 Cross Attention(交叉注意力):交叉注意力机制在 Stable Diffusion 中尤为重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现,可调整文本提示的权重影响生成图像的内容。 Skip Connection(跳跃连接):是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表示为中间过程数据的流转,可在不同推理步骤中查看中间生成结果并通过跳跃连接调整特定尺度上的生成效果。 Switch(切换器):在去噪过程中的不同阶段对特征流进行控制,在 ComfyUI 中可通过修改模型的参数节点或自定义网络结构节点,对不同阶段的噪声去除策略进行微调。 4. 基础模型:ComfyUI 使用预训练的扩散模型作为核心,通常是 Stable Diffusion 模型,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等模型,这些模型通过大量图像和文本对的训练,学会将文本描述与视觉概念关联起来。 5. 文本编码:当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示,该向量捕捉文本的语义信息。
2025-03-12
如何使用comfyUI和cursor做小程序
以下是关于使用 ComfyUI 和 Cursor 做小程序的一些信息: 雪梅 May 在其 AI 学习日记中提到,ComfyUI 的工作流加上 Cursor 的前端网页,可以完整地制作一个个人的 AI 产品。对于个人来说,这是一个可以学习的方向,学会这些,就有可能成为一人产品公司。 关于在 Pycharm 中运行代码的步骤: 新建一个文件夹来保存代码文件,比如在 E 盘新建“python”文件夹。 打开 Pycharm,新建项目,安排好路径。 新建好会自动生成.idea 文件夹和.venv 文件夹。 在路径文件夹里新建一个放代码文件的文件夹,可自行命名方便分类,如“game”。 在新建的文件夹里新建 python 文件或新建文件并加.py 后缀。 双击新建命名好的文件,如“2048game.py”,右侧会打开文本框,将代码复制到这里面。 把从第 3 步得来的代码复制进来,运行即可。 通常来说,只需要简单沟通即可。有问题复制进去继续问即可。 即便使用 Cursor 产出的代码,最好也在 Pycharm 中运行。若直接运行 2048 游戏代码可能会出现红字报错,需要 pip 安装 pygame 库。点击左下角红色方框,将 Deepseek 或 Cursor 提示的安装 Pygame 库的 pip 代码复制过来粘贴在刚点出来的界面,回车安装到虚拟环境里面,再回到运行点击三角形状的“运行”即可。提示词误差得不到好结果的可以复制上述代码试试,再自己尝试找找问题。 您可以参考以上内容来使用 ComfyUI 和 Cursor 做小程序,希望对您有所帮助。
2025-03-12