Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfyui提示词验证异常怎么解决

Answer

如果 ComfyUI 提示词验证异常,您可以尝试以下解决方法:

  1. 对于翻译失效的问题:
    • 双击“embedded_instail”进行安装。
    • 用记事本打开 BaiduTranslate.py,填入在百度翻译开发平台申请的 ID 和密码,以实现正常翻译。
  2. 注意如果想要引用负向 embedding,要确保文件夹路径中没有中文,否则可能导致路径错误。

此外,ComfyUI 本身自带的【clip 文本编码器】对权重的识别可能不够准确,您可以使用插件提供的更高级的编码器,并选择不同的权重插值方式。例如,当从别的网址复制提示词过来效果不一样时,可能是因为 ComfyUI 读不懂提示词中的权重表达。

在模型使用和工作流方面,可能会遇到诸如 inspire 节点安装问题、负向提示词和系数权重的疑问、添加提示词队列报错、工作流的保存和使用、放大图片未显示及节点未跑通、只跑工作流后面一段等问题,相应的解决方法包括更换并加载默认工作流尝试、将随机换成固定等。同时,还包括节点打包操作、报错处理、模型选择及参数设置、快捷键及资源获取等方面的内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

【ComfyUI】爽玩必备!6大插件汇总推荐

安装完成之后,在【新建节点】-【Alek节点】下面,我们就能看到这个插件下的所有的节点。它一共包含了【预览文本】、【绘画】、【姿态】、【clip文本编码器】和【翻译文本】这五个节点。【clip文本编码器(翻译)】可以代替自带的【clip文本编码器】,接下来直接输入中文就好了。需要注意的是,如果想要引用负向embedding的话,要确保你的文件夹路径中没有中文,不然它给你翻译一下之后路径就不对了。我们使用一个简单的文生图流程,可以看到翻译信息是可以正确的传递到最终的输出的。【翻译文本】节点呢,是可以用来替换【元节点】的,在sdxl的流程中,当我们需要将文本信息单独列出来的时候,就可以使用这个节点来代替。【预览文本】节点是可以连接到【翻译文本】上的,用来检查翻译的对不对。[heading1]注意!这里的翻译默认是连接的外网,所以大家在使用的时候,很有可能翻译会失效。这里如果翻译不成功的话,[content]双击“embedded_instail”进行安装。然后用记事本打开BaiduTranslate.py,填入我们在百度翻译开发平台申请的ID和密码,这样我们就能正常的翻译了。[heading1]#05

【ComfyUI】爽玩必备!6大插件汇总推荐

comfyUI本身自带的【clip文本编码器】(左1)对权重的识别不是那么准确,我们这个插件呢,提供了一种更高级的编码器(右2),可以选择不同的权重插值方式。举个例子,我先使用自带的编码器,提示词设置为“(1男孩),1女孩”。按照我们以往的经验,男孩的权重得到了加强,画面中应该主要出现男孩。但是得到的结果,却还是一个女孩的照片,说明它对我们提示词的权重没有很好的识别。现在我们就编码器换成插件提供的高级编码节点,切换编码方式为“A1111”,也就是我们在webUI中常用的形式。可以看到,男孩和女孩就均等地出现了。再试一次,这一次为了让对比更严谨一些,我们锁定随机种子。提示词设为“(1男孩:1.3),1女孩”,使劲强调男孩,但是也需要女孩出现,我们先使用comfyui自带的编码器来绘制一下。画面中出现了两个男孩,和提示词不符。接下来使用高级编码器,切换一个“权重差值方式”,其他参数完全一样。这次的效果就比较符合我们提示词的描述,一个大男人和一个小女孩。所以有的时候,我们从别的网址复制提示词过来却发现效果不一样,可能是因为comfyui读不懂我们提示词中的权重表达。介绍完了,ComfyUI的插件很多,这6个是我建议大家在一开始学习的时候就装上的,可以很大程度的提高学习的体验。这些插件我会放到到网盘当中,大家想要的可以关注我的公众号【白马与少年】,发送【ComfyUI】即可获取链接。-END-白马与少年Stable Diffusion、Blender等学习心得分享139篇原创内容(持续更新中)公众号微信扫一扫关注该公众号

8月13日ComfyUI共学

[heading2]总结关于模型使用和工作流相关问题的讨论inspire节点安装问题:许键表示inspire节点未找到,郭佑萌称其不是当前课程内容,之后再讲。负向提示词和系数权重的疑问:许键对负向提示词和加系数权重后图的奇怪效果提出疑问,郭佑萌解释了原因。提示词的后续课程安排:郭佑萌表示关于提示词的详细内容下节课再讲。添加提示词队列报错的处理:白状在添加提示词队列时报错,郭佑萌指出VE错误,建议更换并加载默认工作流尝试。工作流的保存和使用:AJ和郭佑萌介绍了工作流保存为json文件或工作流图像的方法及使用方式。放大图片未显示及节点未跑通:谭轶骅放大后的图片未显示,原因是节点未跑通,郭佑萌建议截整个工作流查看。只跑工作流后面一段的操作:杨元询问只想跑工作流后面一段的操作,郭佑萌告知将随机换成固定即可。关于图像生成相关问题的讨论节点打包操作:将部分节点打包成组,可通过Control+B或框选加Shift键实现,便于一起拖动。报错处理:杨天朗线上使用飞甲时生成图像报错,可能是平台问题,可刷新重试;林鸿光生成的图片有斑点,可能是CFG值过高、VE配置错误或模型选择不当。模型选择及参数设置:杨天朗使用XL模型时分辨率不宜过低;林鸿光可更换为自带VE的模型,并调整CFG和部署参数;不同模型有不同特点,要选择合适的。快捷键及资源获取:锁定种子值可在相应位置选择固定;快捷键列表可在GitHub官方页面获取,小田的教程会分享;模型及VE的保存路径和获取方式有相应说明。

Others are asking
comfyUi与webui的区别
ComfyUI 与 WebUI 的区别如下: ComfyUI 简介: 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将流程拆分成节点,实现更精准工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 WebUI 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要清晰逻辑。 生态不如 WebUI 丰富,但也有针对其开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 采样器与调度器: 在 ComfyUI 中,采样器与调度器分开,不同于 WebUI 中将两者合并。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,选择 karras 调度器一般效果较好。 插件: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD 在 WebUI 中安装插件能直观看到并使用,因其有良好用户界面;而 ComfyUI 安装插件后可能看不到,需通过节点连接感受其功能,安装方法是将解压好的文件夹放入“E:\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes”目录,然后重新启动。
2025-03-06
ComfyUI只能在N卡使用?可以在A卡上使用吗
ComfyUI 对电脑硬件有一定要求: 系统:Windows 7 以上。 显卡:推荐使用 NVIDIA 独立显卡且显存至少 4G 起步。不过,mac 系统、AMD 显卡以及低显卡的情况也可以安装使用,但可能存在功能不全、出错率偏高的问题,严重影响使用体验,建议升级设备或者采用云服务器玩耍。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。 运行内存:最低 32GB,越高越好,最低配会经常爆显存。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 甚至没有 GPU,光用 CPU 也可以运行,缺点是速度极慢。 综上所述,ComfyUI 虽然在某些情况下 A 卡也能安装使用,但使用体验可能不佳,一般建议使用 N 卡。
2025-03-06
ComfyUI是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,具有以下特点: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更加精准的工作流定制和完善的可复现性。 优劣势: 优势:对显存要求相对较低,启动速度快,出图速度快;具有更高的生成自由度;可以和 webui 共享环境和模型;可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步;生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 生图原理: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,这个对应于你可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。在生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 Latent Space(潜在空间):ComfyUI 中的应用:ComfyUI 的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,你可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。这部分通常由潜在空间操作模块来实现。 扩散过程(Diffusion Process):噪声的生成和逐步还原:扩散过程表示的是从噪声生成图像的过程。在 ComfyUI 中,这通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。你可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数:在生成图像时,扩散模型会进行多个去噪步。图中展示的 zT 代表不同时间步长下的潜在表示。在 ComfyUI 中,你可以通过控制步数来影响图像生成的精细度和质量。 延伸应用:开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能。由于是基于 comfyui 开发,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改工作。
2025-03-06
comfyUI怎么用
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI。 简介: 可以把它想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。 优劣势: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接: 从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 1. 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并更新 Nvidia 显卡驱动下载地址 https://www.nvidia.cn/ geforce/drivers/ 2. 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode https://code.visualstudio.com/Download 。 安装 Git https://gitscm.com/download/win 。 安装 CUDA https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 生图原理: ComfyUI 是一个开源的图形用户界面,用于生成 AI 图像,主要基于 Stable Diffusion 等扩散模型。 1. Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,这个对应于你可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。在生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 Latent Space(潜在空间):ComfyUI 中的应用:ComfyUI 的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,你可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。这部分通常由潜在空间操作模块来实现。 2. 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示的是从噪声生成图像的过程。在 ComfyUI 中,这通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。 时间步数 TTT:在生成图像时,扩散模型会进行多个去噪步。图中展示的 zT 代表不同时间步长下的潜在表示。在 ComfyUI 中,你可以通过控制步数来影响图像生成的精细度和质量。
2025-03-06
ComfyUI是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,具有以下特点: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势:对显存要求相对较低,启动和出图速度快;具有更高的生成自由度;可以和 webui 共享环境和模型;可以搭建自己的工作流程,能导出流程并分享,报错时能清晰发现错误所在;生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 生图原理: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示从噪声生成图像的过程。在 ComfyUI 中,通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,可通过“采样器”节点选择不同的调度器,控制如何在潜在空间中处理噪声,以及逐步去噪回归到最终图像。时间步数也会影响图像生成的精细度和质量。 延伸应用:开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2025-03-06
ComfyUI如何学
以下是学习 ComfyUI 的相关资源和途径: 1. 网站学习资源: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户,可在获取。 优设网:有详细的 ComfyUI 入门教程,适合初学者,教程地址是。 知乎:用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到。 Bilibili:提供了从新手入门到精通各个阶段的视频教程,可在获取。 2. ComfyUI 共学计划: 日程安排: 开场:,时间 8/13 20:00 22:00,讲师为佑萌、ZHO。 第一课:。 第二课:,时间 8/15 20:00 22:00,讲师为郭佑萌。 第三课:。 第四课:,时间 8/20 20:00 22:00。 第二期时间待定。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-05
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04
AI 在早期创业需求验证和市场调研的落地应用有哪些
以下是 AI 在早期创业需求验证和市场调研的落地应用: 1. 辅助创作与学习:如 AI 智能写作助手帮助用户快速生成高质量文本;AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划:包括 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警:如 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理:涉及办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,提高工作效率和管理水平。 5. 销售与交易:有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 对于中小企业利用人工智能(AI)进行转型中的创新产品和服务,特别是 AI 驱动的产品/服务开发,包括以下方面: 首先,探索基于 AI 的新产品或服务。通过开发基于 AI 的新产品或服务,创造新的市场机会和客户价值。调查和分析市场需求,探索 AI 技术在不同领域的应用潜力。鼓励团队进行创新思维,探索如何将 AI 技术融入新产品或服务中。开发 AI 驱动产品或服务的原型,并进行测试以验证其可行性和市场吸引力。例如,开发智能分析工具,帮助企业自动分析市场趋势;或创建 AI 辅助应用程序,如个性化健康指导应用。 其次,利用 AI 技术提升现有产品的智能化程度。通过集成 AI 功能,提升现有产品或服务的智能化水平和竞争力。识别现有产品或服务中可以通过 AI 技术优化的部分,如添加智能推荐、自动化流程等。利用 AI 改善用户界面和交互体验,使产品更加直观和易用。基于客户反馈和市场变化,不断迭代和更新 AI 集成的功能。例如,对于在线零售平台,可以通过集成 AI 来优化产品搜索和推荐算法,提供更精准的购物建议。 总之,这些 AI 应用为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。同时,对 AI 产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。产品经理要关注的还是场景、痛点、价值。
2024-11-19
cozeAPI身份验证无效的解决方案
很抱歉,目前知识库中没有关于“cozeAPI 身份验证无效”的解决方案。但一般来说,遇到身份验证无效的问题,您可以尝试以下几种常见的解决方法: 1. 检查您输入的认证信息是否准确,包括用户名、密码、密钥等。 2. 确认您的账号是否已被激活或处于正常状态。 3. 检查网络连接是否稳定,有时网络问题可能导致验证失败。 4. 查看相关的 API 文档,了解身份验证的具体要求和可能的错误情况。 5. 尝试重新生成或更新认证凭证。 如果问题仍然存在,建议您进一步查阅相关技术资料或联系 API 提供方的技术支持获取更准确的帮助。
2024-10-14
现在有哪些GenAI原生应用验证了PMF?
目前,一些 GenAI 原生应用已展现出产品市场契合度(PMF)的早期成功迹象。例如,ChatGPT 成为增长最快的应用,在学生和开发者中具有很强的产品市场契合度;Midjourney 成为集体创意的灵感来源,据报道仅 11 人的团队就实现了数亿美元的收入;Character 推动了 AI 娱乐和伴侣领域的发展,创造了用户平均在应用中花费两小时的消费者“社交”应用。然而,尽管有这些成功案例,仍有许多 AI 公司尚未实现产品市场契合度(PMF)或拥有可持续的竞争优势,整个 AI 生态系统的繁荣也并非完全可持续。
2024-08-30
提示词优化
以下是关于优化提示词(Prompt)的一些方法: 1. 明确具体的描述:使用更具体、细节的词语和短语,避免过于笼统。 2. 添加视觉参考:在 Prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt,先生成基本结构,再完善细节。 7. 参考优秀案例:研究流行且有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,根据输出效果反馈持续完善,直至理想结果。 需要注意的是,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界。保持开放思维尝试创新描述方式也很有帮助。另外,/shorten 命令可分析提示,突出有影响力的单词并建议删除不必要的单词,但它与多重提示或参数不兼容,且可能不适用于所有主题和提示风格。例如,对于“tower of donuts,sprinkles”的提示,“异想天开”“令人着迷”“杰作”等填充词可省略,了解“塔”和“魔法”等重要标记有助于解释生成的图像,若目标是制作甜甜圈,应从提示中删除“神奇”。内容由 AI 大模型生成,请仔细甄别。
2025-03-06
提示词优化
以下是关于优化提示词(Prompt)的一些方法: 1. 明确具体的描述:使用更具体、细节的词语和短语,避免过于笼统。 2. 添加视觉参考:在 Prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt,先生成基本结构,再完善细节。 7. 参考优秀案例:研究流行且有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,根据输出效果反馈持续完善,直至理想结果。 需要注意的是,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界。保持开放思维尝试创新描述方式也很有帮助。另外,/shorten 命令可分析提示,突出有影响力的单词并建议删除不必要的单词,但它与多重提示或参数不兼容,且可能不适用于所有主题和提示风格。例如,对于“tower of donuts,sprinkles”的提示,“异想天开”“令人着迷”“杰作”等填充词可省略,了解“塔”和“魔法”等重要标记有助于解释生成的图像,若目标是制作甜甜圈,应从提示中删除“神奇”。内容由 AI 大模型生成,请仔细甄别。
2025-03-06
我想让cursor帮我编程一个能在Android studio编译的Android应用,它的主要功能是接受esp32通过websocket协议发送过来的opus数据,保存opus并把数据转换成wav,再使用sherpa-onnx语音识别成文字。我该使用什么提示词让cursor帮我写出这个Android应用?
很抱歉,目前没有适用于让 Cursor 生成您所需 Android 应用的特定提示词。编写这样一个复杂的 Android 应用需要对 Android 开发、网络通信、音频处理和语音识别等多个领域有深入的了解和专业知识。您可能需要逐步向 Cursor 描述应用的架构、各个模块的功能和实现逻辑,例如先描述如何建立与 ESP32 的 WebSocket 连接,如何接收和处理 Opus 数据,如何进行数据转换以及如何调用 Sherpaonnx 进行语音识别等。但需要注意的是,仅仅依靠提示词让 Cursor 生成完整可用的复杂应用可能具有一定的局限性,建议您在具备相关基础知识的前提下,结合 Cursor 的辅助来逐步完成开发。
2025-03-06
我想让cursor帮我编程一个能在Android studio编译的Android应用,它的主要功能是接受esp32通过websocket协议发送过来的opus数据,保存opus并把数据转换成wav,再使用sherpa-onnx语音识别成文字。我该使用什么提示词让cursor帮我写出这个Android应用?
很抱歉,目前没有关于使用 Cursor 生成您所需的这种特定 Android 应用的提示词的相关内容。一般来说,您可以向 Cursor 提供以下关键信息作为提示词的参考: 1. 明确应用的功能需求,如“编写一个在 Android Studio 中编译的 Android 应用,用于接收 ESP32 通过 WebSocket 协议发送的 Opus 数据,保存 Opus 并转换为 WAV 格式,然后使用 Sherpaonnx 进行语音识别成文字。” 2. 描述应用的技术架构和关键技术点,例如“应用需基于 Android 平台,使用合适的网络库处理 WebSocket 连接,采用有效的数据存储方式保存 Opus 数据,利用特定的音频转换库将 Opus 转换为 WAV,以及集成 Sherpaonnx 语音识别库实现文字转换。” 3. 提及开发环境和工具要求,比如“在 Android Studio 开发环境中,遵循 Android 应用开发规范和最佳实践。” 但需要注意的是,Cursor 生成的代码可能并不完全满足您的需求,还需要您进行进一步的修改和完善。
2025-03-06
如何写好提示词。
以下是关于如何写好提示词的相关内容: 1. 提示词用于描绘您想呈现的画面。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 写好提示词的要点: 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。也可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 编写提示词(prompt)的通用建议: 明确任务:清晰定义任务,如写故事时包含故事背景、角色和主要情节。 提供上下文:若任务需特定背景知识,提供足够信息。 使用清晰语言:避免模糊或歧义词汇。 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 使用示例:若有特定期望结果,提供示例。 保持简洁:避免过多信息导致困惑。 使用关键词和标签:帮助 AI 更好理解任务主题和类型。 测试和调整:生成文本后检查结果,根据需要调整提示词。 同时,提示词应清晰明确,避免模糊不清的指令。提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。您还可以通过以下链接获取更多信息:
2025-03-06
如何写好提示词。
以下是关于如何写好提示词的相关内容: 1. 提示词用于描绘您想呈现的画面。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 写好提示词的要点: 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。也可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 编写提示词(prompt)的通用建议: 明确任务:清晰定义任务,如写故事时包含故事背景、角色和主要情节。 提供上下文:若任务需特定背景知识,提供足够信息。 使用清晰语言:避免模糊或歧义词汇。 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 使用示例:若有特定期望结果,提供示例。 保持简洁:避免过多信息导致困惑。 使用关键词和标签:帮助 AI 更好理解任务主题和类型。 测试和调整:生成文本后检查结果,根据需要调整提示词。 同时,提示词应清晰明确,避免模糊不清的指令。提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。您还可以通过以下链接获取更多信息:
2025-03-06
请介绍聚类分析、异常检测算法
聚类分析是一种将数据集中相似的数据点分组在一起的方法。当数据集中的簇不是明显的球形或高斯分布时,KNN 算法也可用于聚类任务。 异常检测算法用于识别数据集中偏离常态的异常数据点。KNN 算法由于可以识别与大多数邻居不同的点,常用于异常检测。此外,大语言模型(LLM)在识别模式和趋势方面表现出色,也适用于异常检测任务,能够基于一个或多个列值来识别异常数据点。
2024-08-23